《数列的概念》说课稿

合集下载

高等数学说课稿《数列极限》(精选5篇)

高等数学说课稿《数列极限》(精选5篇)

高等数学说课稿《数列极限》(精选5篇)第一篇:高等数学说课稿《数列极限》《数列极限》说课稿袁勋这次我说课的内容是由盛祥耀主编的《高等数学》(上册)第一章第二节极限概念中的数列极限。

这部分内容在课本第18页至20页。

下面我把对本节课的教学目的、过程、方法、工具等方面的简单认识作一个说明。

一、关于教学目的的确定:众所周知,对极限这个概念的理解是高等数学的学习基础,但由于学生对数列极限概念及其定义的数学语言表述的理解比较困难,这种理解上的困难将影响学生对后继知识的学习,因此,我从知识、能力、情感等方面确定了本次课的教学目标。

1.在知识上,使学生理解极限的概念,能初步利用极限定义确定某些简单的数列极限;2.在能力上,培养学生观察、分析、概括的能力和在探索问题中的,由静态到动态、由有限到无限的辨证观点。

体验‚从具体到抽象,从特殊到一般再到特殊‛的认识过程;3.在情感上,通过介绍我国古代数学家刘徽的成就,激发学生的民族自尊心和爱国主义思想情感,并使他们对数列极限知识有一个形象化的了解。

二、关于教学过程的设计:为了达到以上教学目的,根据两节。

在具体教学中,根据‚循序渐进原则‛,我把这次课分为三个阶段:‚概念探索阶段‛;‚概念建立阶段‛;‚概念巩固阶段‛。

下面我将对每一阶段教学中计划解决的主要问题和教学步骤作出说明。

(一)‚概念探索阶段‛ 1.这一阶段要解决的主要问题在这一阶段的教学中,由于注意到学生在开始接触数列极限这个概念时,总是以静止的观点来理解这个描述变化过程的动态概念,总觉得与以前知识相比,接受起来有困难,似乎这个概念是突然产生的,甚至于不明概念所云,故我在这一阶段计划主要解决这样几个问题:①使学生了解以研究函数值的变化趋势的观点研究无穷数列,从而发现数列极限的过程;②使学生形成对数列极限的初步认识;③使学生了解学习数列极限概念的必要性。

2.本阶段教学安排我采取温故知新、推陈出新的教学过程,分三个步骤进行教学。

高中数学数列概念教案

高中数学数列概念教案

高中数学数列概念教案
教学内容:数列概念
教学目标:能够理解数列概念,掌握常见数列的性质及求解方法。

教学重点和难点:掌握数列的定义及常见数列的性质。

教学准备:教学课件、教学实验材料、小黑板、粉笔、教科书。

教学过程:
一、引入(5分钟)
通过渐进法引入数列的概念,并引导学生思考数列在生活中的实际应用,激发学生学习的
兴趣。

二、讲解(15分钟)
1. 数列的定义:依据顺序排列的一系列数构成的序列称为数列。

2. 数列的表示方法:通项公式及递推公式。

3. 常见数列及性质:等差数列、等比数列、斐波那契数列等。

三、实例讲解(20分钟)
通过实例演算,帮助学生掌握数列的性质及求解方法,巩固所学知识。

四、练习(15分钟)
设计一些与课堂内容相关的练习题,让学生在课堂上进行练习,检验他们的学习情况。

五、总结(5分钟)
对本节课所学内容进行总结,强调重点知识点,帮助学生将学到的知识点牢固记忆。

六、作业布置(5分钟)
布置相关的课外作业,加深学生对数列的理解。

教学反思:
此教案通过引入、讲解、演算、练习、总结和作业布置等方式,全面系统地向学生介绍了
数列的概念及性质,帮助学生掌握了数列的基本知识,同时激发了学生对数学的学习兴趣。

在今后的教学中,应注重巩固学生的基础知识,引导学生灵活运用所学知识解决实际问题,提高学生的数学素养和解题能力。

数列概念说课稿

数列概念说课稿

数列概念说课稿一、引入大家好,我今天的主题是数列概念。

数列作为数学中的重要概念之一,是我们在高中数学中经常遇到的内容。

通过学习数列,我们可以深入了解数学中的变化规律和数与算法的关系。

接下来,我将为大家对数列的概念进行详细阐述,并介绍它的基本性质、分类及应用。

二、概念解析数列,顾名思义,是一系列按照特定规律排列的数的集合。

它是数字的有序排列,其中每个数字称为数列的项。

数列的一般表示形式为{a1, a2, a3, ...},其中ai表示第i个项。

比如,{1, 3, 5, 7, 9, ...}就是一个数列,其中1是第1项,3是第2项,以此类推。

三、基本性质1. 公式数列中的每个项都可以通过一个确定的公式来表示。

这个公式通常包含两个变量:项数n和公式中的常数。

通过这个公式,我们可以轻松地计算出数列的任意一项,如等差数列中的通项公式an=a1+(n-1)d,其中a1为首项,d为公差。

2. 差值与比值在数列中,我们可以关注两个相邻项之间的差值或比值。

对于差值,我们称之为公差,对于比值,我们称之为公比。

等差数列中相邻项之间的差值是恒定的,而等比数列中相邻项之间的比值是恒定的。

四、分类在数学中,数列可以按照不同的特征进行分类。

常见的分类如下:1. 等差数列在等差数列中,相邻项之间的差值是恒定的。

例如,{2, 4, 6, 8, ...}就是一个等差数列,其中相邻项之间的差值为2。

2. 等比数列在等比数列中,相邻项之间的比值是恒定的。

例如,{2, 4, 8, 16, ...}就是一个等比数列,其中相邻项之间的比值为2。

3. 斐波那契数列斐波那契数列是一个特殊的数列,在这个数列中,每一项等于前两项的和。

例如,{0, 1, 1, 2, 3, 5, 8, ...}就是一个斐波那契数列。

五、应用数列在我们的生活中有着广泛的应用。

下面我将介绍几个常见的应用场景:1. 数学问题求解数列常常用于解决数学问题,特别是那些与变化规律有关的问题。

2024数列概念说课稿范文

2024数列概念说课稿范文

2024数列概念说课稿范文今天我说课的内容是《数列概念》,下面我将就这个内容从以下几个方面进行阐述。

一、说教材1、《数列概念》是人教版高中数学2024年级上册第一单元的内容。

数列在数学中具有广泛的应用,是数学中重要的概念之一。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的数学知识,我制定了以下三点教学目标:① 认知目标:掌握数列的概念、性质以及常见的数列形式;② 能力目标:能够判断数列的有界性、单调性,以及求解数列中的未知项;③ 情感目标:培养学生对数列的兴趣,增强学生对数学的自信心。

二、说教法学法在数列概念的教学中,让学生主动参与到数学活动中是非常重要的。

因此,本节课我采用的教法是启发式教学法和探究式学习法。

让学生通过观察、实验、讨论等方式,主动探索数列的概念和性质,培养学生的思维能力和合作能力。

三、说教学准备在教学过程中,我将使用多媒体教学工具,以图表、示意图等形式呈现教学素材。

同时,我还准备了一些实际问题和练习题,用于巩固学生的学习成果。

四、说教学过程新课标强调学生的主体性,因此,我设计了以下教学环节,让学生在参与中探索数列的概念和性质。

环节一、引入新知通过一个实际生活中的例子,让学生思考一下什么是数列,并引出数列的概念。

例如,我可以提问学生:你们能列举一些实际生活中的数列吗?让学生参与讨论,激发他们对数列的兴趣和思考。

环节二、探究数列的性质让学生观察一些数列的图像或数据表格,发现其中的规律,并从中归纳数列的性质。

例如,通过观察等差数列的图像和数据表格,让学生发现等差数列的公差、通项公式等性质。

引导学生进行讨论和总结,进一步加深对数列性质的理解。

环节三、解决实际问题通过一些实际问题的讨论,让学生运用数列的知识解决问题。

例如,我可以提出一个问题:某人每天存钱,第一天存1元,第二天存2元,第三天存3元,以此类推,问第n天他一共存了多少钱?通过讨论和计算,让学生找到解决问题的方法,加深对数列的应用理解。

(完整版)高中数学优秀说课稿

(完整版)高中数学优秀说课稿

(完整版)⾼中数学优秀说课稿2.1数列的概念_说课稿1课题介绍课题《数列的概念与简单表⽰⽅法(⼀)》选⾃普通⾼中课程标准试验教科书⼈教版A版数学必修5第⼆章第⼀节的第⼀课时.我将从教材分析、学情分析、教学⽬标分析、教法分析、教学过程这五个⽅⾯来汇报我对这节课的教学设想。

⼀、教材分析1、教材的地位和作⽤数列是⾼中数学的重要内容之⼀,它的地位作⽤可以从三个⽅⾯来看:(1)数列有着⼴泛的实际应⽤.如堆放的物品的总数计算要⽤到数列的前n项和,⼜如分期储蓄、付款公式的有关计算也要⽤到数列的⼀些知识.(2)数列起着承前启后的作⽤.⼀⽅⾯,初中数学的许多内容在解决数列的某些问题中得到了充分运⽤,数列是前⾯函数知识的延伸及应⽤,可以使学⽣加深对函数概念的理解;另⼀⽅⾯,学习数列⼜为进⼀步学习数列的极限,等差数列、等⽐数列的前n项和以及通项公式打好了铺垫.因此就有必要讲好、学好数列.(3)数列是培养学⽣数学能⼒的良好题材.是进⾏计算,推理等基本训练,综合训练的重要教材.学习数列,要经常观察、分析、归纳、猜想,还要综合运⽤前⾯的知识解决数列中的⼀些问题,这些都有助于学⽣数学能⼒的提⾼.⼆、学情分析从学⽣知识层⾯看:学⽣对数列已有初步的认识,对⽅程、函数、数学公式的运⽤已有⼀定的基础,对⽅程、函数思想的体会也逐渐深刻。

从学⽣素质层⾯看:从⾼⼀新⽣⼊学开始,我就很注意学⽣⾃主探究习惯的养成。

现阶段我的学⽣思维活跃,课堂参与意识较强,⽽且已经具有⼀定的分析、推理能⼒。

三、教学⽬标分析根据上⾯的教材分析以及学情分析,确定了本节课的教学⽬标:(1) 知识⽬标:认识数列的特点,掌握数列的概念及表⽰⽅法,并明⽩数列与集合的不同点.了解数列通项公式的意义及数列分类.能由数列的通项公式求出数列的各项,反之,⼜能由数列的前⼏项写出数列的⼀个通项公式.(2) 能⼒⽬标:通过对数列概念以及通项公式的探究、推导、应⽤等过程,锻炼了学⽣的观察、归纳、类⽐等分析问题的能⼒.同时更深层次的理解了数学知识之间的相互渗透性思想.(3) 情感⽬标:在教学中使学⽣体会教学知识与现实世界的联系,并且利⽤各种有趣的,贴近学⽣⽣活的素材激发学⽣的学习兴趣,培养热爱⽣活的情感. .3、教学重点与难点根据教学⽬标以及学⽣的理解能⼒与认知⽔平,我确定了如下的教学重难点重点:理解数列的概念,能由函数的观点去认识数列,以及对通项公式的理解.难点:根据数列的前⼏项的特点,通过多⾓度、多层次的观察分析归纳出数列的⼀个通项公式.四、教法分析根据本节课的内容和学⽣的实际情况,结合波利亚的先猜后证理论,本节课主要以讲解法为主,引导发现为辅,由⽼师带领同学们发现问题,分析问题,并解决问题.考虑到学⽣的认知过程,本节课会采⽤由易到难的教学进程以及实例给出与练习设置,让学⽣们充分体会到事物的发展规律.同时为了增⼤课堂容量,提⾼教学效率,更吸引同学们的眼光,提⾼学习热情,本节课还会采⽤常规⼿段与现代⼿段相结合的办法,充分利⽤多媒体,将引例、例题具体呈现.五、教学过程分析为了突出重点,突破难点,探究新知,强化认识,激发兴趣,把本节课的教学流程分为了创设情境,引⼊课题;师⽣互动,形成概念;启发引导,演绎结论;实践应⽤,开放思考;归纳⼩结,提炼精华;课后作业运⽤巩固。

等差数列及通项公式说课稿1

等差数列及通项公式说课稿1

等差数列及通项公式说课稿1一、说教材(1)作用与地位本文为数学课程中“数列”知识模块的重要组成部分,主要围绕等差数列的概念、性质以及通项公式的推导与应用展开。

等差数列作为数列中的基础类型,不仅在数学理论中具有举足轻重的地位,而且在实际生活、科学研究等领域也具有广泛的应用。

通过学习等差数列及其通项公式,有助于培养学生严密的逻辑思维能力和解决实际问题的能力。

(2)主要内容本文主要包括以下几个部分:1. 等差数列的定义:介绍等差数列的概念,使学生理解等差数列的基本性质。

2. 等差数列的性质:探讨等差数列的通项公式、求和公式等,为解决相关问题提供理论依据。

3. 等差数列的通项公式推导:通过分析等差数列的递推关系,引导学生掌握通项公式的推导过程。

4. 等差数列的应用:介绍等差数列在实际问题中的应用,提高学生解决问题的能力。

(3)与前后知识的联系本文与前后知识的联系如下:1. 前置知识:数列的基本概念、数列的通项公式、数列的求和公式等。

2. 后续知识:等差数列的求和、等差数列的判定、等差数列的线性方程组等。

二、说教学目标(1)知识与技能1. 理解等差数列的概念,掌握等差数列的性质。

2. 学会推导等差数列的通项公式,并能熟练应用。

3. 能够运用等差数列的知识解决实际问题。

(2)过程与方法1. 通过分析等差数列的特点,培养学生严密的逻辑思维能力。

2. 通过推导等差数列的通项公式,提高学生的问题解决能力。

3. 通过实际应用,使学生掌握等差数列的解题技巧。

(3)情感态度与价值观1. 培养学生对数学的兴趣和热情。

2. 培养学生团结协作、积极探究的精神。

3. 增强学生对数学美的认识,提高审美情趣。

三、说教学重难点(1)重点1. 等差数列的概念及其性质。

2. 等差数列通项公式的推导与应用。

(2)难点1. 等差数列通项公式的推导过程。

2. 等差数列在实际问题中的应用。

在教学过程中,应注重引导学生理解等差数列的本质,突破推导过程这一难点,同时,通过实例分析,使学生掌握等差数列在实际问题中的应用。

等差数列概念说课稿

等差数列概念说课稿

课题§6.等差数列的概念说课稿之樊仲川亿创作尊敬的各位领导各位老师大家上午好!今天我说课内容是选自人教版数学(基础模块)下册第六章第二节《等差数列的概念》,本节是第一课时。

下面我将从说教材、说学生、说教法与学法、说教学过程设计等方面来对本节课进行说明。

一、教材分析等差数列是数列这一章的重要内容之一,它在实际生活中有广泛的应用。

本节内容是学生在学习了数列的有关概念的基础上,对数列的知识进一步深入学习和拓展。

同时等差数列的学习也为今后继续学习等比数列提供了学习对比的依据。

所以,本节课在知识结构上起着承上启下的作用。

2、教学目标根据教学大纲与学生的实际情况我制定如下教学目标:【知识目标】a.理解等差数列的概念,掌握等差数列的通项公式。

b. 逐步灵活应用等差数列的概念和通项公式解决问题。

【能力目标】通过教学,培养学生的观察、分析、归纳、推理的能力;提高学生分析问题解决问题的能力。

【情感目标】a.让学生体验从特殊到一般的认知规律,培养学生勇于创新的科学精神。

b. 让学生养成细心观察、认真分析问题的良好的思维习惯。

【教学重点】等差数列的概念和通项公式。

【教学难点】等差数列的通项公式推导过程及灵活应用。

二、学情分析中职学生数学基础比较单薄,但作为高中生他们自己具备一定的观察,思考,分析能力。

前面已对数列的知识有了初步的接触与认识,对数学公式运用已具备一定的技能,针对学生的这些情况我在教学中从学生的生活经验和已有的知识布景出发,充分调动学生的积极性,发挥他们的主观能动性及其在教学过程中的主体地位。

三、教法与学法【教法分析】本节课我采取启发式、小组探究法以及讲练结合的教学方法。

通过问题激发学生求知欲,在教师的启发引导下,使学生主动介入数学实践活动,让学生去分析、探索,得到结论。

从而使学生既获得知识又发展智能。

通过讲练结合法可以及时巩固所学内容,抓住重点,突破难点。

【学法分析】在引导分析时,留出学生的思考空间,让学生去观察分析,探索新知。

等差数列的概念及通项公式说课稿

等差数列的概念及通项公式说课稿

等差数列的概念及通项公式说课稿一、教材分析1、教材的地位和作用:数列就是职专数学关键内容之一,它不仅有著广为的实际应用领域,而且起至着承前启后的促进作用。

一方面,数列做为一种特定的函数与函数思想密不可分;另一方面,自学数列也为进一步自学数列的音速等内容搞好准备工作。

而等差数列就是在学生自学了数列的有关概念和得出数列的两种方法——通项公式和关系式公式的基础上,对数列的科学知识进一步深入细致和拓广。

同时等差数列也为今后自学等比数列提供更多了自学对照的依据。

2、教学目标根据教学大纲的建议和学生的实际水平,确认了本次课的教学目标1、在知识上:理解并掌握等差数列的概念,并用定义判断一个数列是否为等差数列;了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,并能在解题中灵活应用;初步引入“数学建模”的思想方法并能运用。

2、在能力上:培育学生观测、分析、概括、推理小说的能力;通过阶梯性练,提升学生分析问题和解决问题的能力。

3、在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点根据教学大纲的要求确定本节课的教学重点为:1、等差数列的概念。

4、教学难点1、用数学建摸的思想化解实际问题2、通项公式的灵活运用二、学情分析由于是中专学生,他们学习基础差且参差不齐,幸好经过几个月的磨合,学生对学习数学产生了浓厚兴趣。

课堂上均能听老师的指挥,能大胆发言,乐于做练习,基本堂堂清。

三、教法分析针对中专生思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

四、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

五、教学程序本节课的教学过程由(一)新课导入(二)新课讲授(三)讲解范例(四)课堂小结(五)作业布置(六)板书设计,六个教学环节构成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数列的概念》说课稿
一、课题介绍
课题《数列的概念与简单表示方法(一)》选自普通高中课程标准试验教科书人教版A 版数学必修5第二章第一节的第一课时.
二、教材分析
1、教材的地位和作用
数列是高中数学的重要内容之一,它的地位作用可以从三个方面来看:
(1)数列有着广泛的实际应用.如堆放的物品的总数计算要用到数列的前n项和,又如分期储蓄、付款公式的有关计算也要用到数列的一些知识.
(2)数列起着承前启后的作用.一方面,初中数学的许多内容在解决数列的某些问题中得到了充分运用,数列是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面,学习数列又为进一步学习数列的极限,等差数列、等比数列的前n项和以及通项公式打好了铺垫.因此就有必要讲好、学好数列.
(3)数列是培养学生数学能力的良好题材.是进行计算,推理等基本训练,综合训练的重要教材.学习数列,要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有助于学生数学能力的提高.
2、教学目标
根据上面的教材分析以及学生们的认知水平和思维特点,确定了本节课的教学目标:
(1) 知识目标:认识数列的特点,掌握数列的概念及表示方法,并明白数列与集合的不同点.了解数列通项公式的意义及数列分类.能由数列的通项公式求出数列的各项,反之,又能由数列的前几项写出数列的一个通项公式.
(2) 能力目标:通过对数列概念以及通项公式的探究、推导、应用等过程,锻炼了学生的观察、归纳、类比等分析问题的能力.同时更深层次的理解了数学知识之间的相互渗透性思想.
(3) 情感目标:在教学中使学生体会教学知识与现实世界的联系,并且利用各种有趣的,贴近学生生活的素材激发学生的学习兴趣,培养热爱生活的情感. .
3、教学重点与难点
根据教学目标以及学生的理解能力与认知水平,我确定了如下的教学重难点
重点:理解数列的概念,能由函数的观点去认识数列,以及对通项公式的理解.
难点:根据数列的前几项的特点,通过多角度、多层次的观察分析归纳出数列的一个通项公式.
三、教学方法
根据本节课的内容和学生的实际情况,结合波利亚的先猜后证理论,本节课主要以讲解法为主,引导发现为辅,由老师带领同学们发现问题,分析问题,并解决问题.考虑到学生的认知过程,本节课会采用由易到难的教学进程以及实例给出与练习设置,让学生们充分体会到事物的发展规律.同时为了增大课堂容量,提高教学效率,更吸引同学们的眼光,提高学习热情,本节课还会采用常规手段与现代手段相结合的办法,充分利用多媒体,将引例、例题具体呈现.
四、教学流程
为了突出重点,突破难点,探究新知,强化认识,激发兴趣,把本节课的教学流程分为了创设情境引入课题、概念引出探究新知、类比分析突破难点、知识应用深化认识、小结反
根据这节课的内容,我把黑板分为了四个板块.第一个板块给出引入的情景,第二个和第三个板块推出定义,以及定义的辨析.第四个板块为例题讲解和练习题得给出,以及作业的布置.这样设计直观大方,把情景放在第一板块更能吸引同学们得目光.把最重要的知识放在2,3板块更照顾全体同学.更引起同学们的注意.。

相关文档
最新文档