航空模型基础知识

合集下载

航模入门必读基础知识

航模入门必读基础知识
;对于飞机,要先适应再控制。
祝小白们早日成为老鸟!加油
⑤舵面
接下来介绍各种舵面的作用。舵面主要有以下四种:副翼,襟翼,升降舵和方向舵。
在介绍各舵面的作用之前,我先说说模型飞机的三轴,横轴,纵轴,立轴。纵轴是与机身的几何对称轴,穿过机身;横轴与纵轴垂直且穿过机翼的一条直线;立轴是与上述二者皆垂直的直线。这三者交与一点,这一点就是模型飞机重力的合力点,即重心。
副翼:机翼后面可以上下运动且两侧差动的舵面;襟翼:机翼后面只能向下运动且两侧只能同向运动的舵面;升降舵:水平尾翼后面可以上下运动的舵面;方向舵:垂直尾翼后面可以左右摆动的舵面。
副翼的作用是使飞机绕纵轴做旋转运动;方向舵使飞机绕立轴做旋转运动,这个旋转运动与飞机向前的合速度即为转弯的实际速度方向;升降舵使飞机绕横轴做旋转运动;襟翼的作用是减速,也叫空气刹车。
②通道及映射
习惯性的,我们会把1通用来控制幅翼,2通用来控制升降舵,3通(不会自动回中的那个通道)用来控制油门,4通用来控制方向舵。
③具体操作及模型的响应
正反舵:首先机尾对着自己。然后从1通道,向左打(左幅翼,飞机绕纵轴逆时针旋转),左侧幅翼向上旋转;向右打(右幅翼,飞机绕纵轴顺时针旋转),右侧机翼向上旋转。2通,向下(拉杆,抬头),升降舵向上旋转;向上(推杆,低头),升降舵向下旋转。3通,杆在最下面动力应该是最小的,内燃机的话,发动机处于怠速状态,电动机的话,应该停转。4通,向左(左方向,飞机绕立轴向左旋转),方向舵向左旋转,向右(右方向,飞机绕立轴向右旋转),方向舵向右旋转。
航空模型介绍
一组成
首先,航空模型分为五个基本的部分:1机头,2机翼,3机身,4发动机,5尾翼,6起落架
二定义
航空模型的定义:凡是 1翼展小于5米;2带有或不带有动力装置;3不能载人;4密度大于空气 的飞行器统成航空模型。

航模基础知识要点

航模基础知识要点

航模基础知识要点航模基础知识要点一、航模的组成航模一般由动力源、螺旋桨、安定器、电池、遥控器等其他配件组成。

1、动力源:航模的动力源主要分为两种,一种是燃油发动机,一种是电动机。

燃油发动机航模的优点是马力大,不需要电源,飞行时间长,但需要燃烧汽油,有污染。

电动机航模的优点是噪音小,马力大,环保,但飞行时间短。

2、螺旋桨:螺旋桨是航模飞行的直接动力部分,通过旋转产生升力,推动航模飞行。

根据飞行需要,可选择不同规格的螺旋桨。

3、安定器:安定器是航模的重要配件,主要作用是稳定航模飞行,减少航模的摇晃和旋转。

4、电池:电池是航模的能源来源,一般使用聚合物锂电池。

电池的容量和放电倍率会影响航模的飞行时间和性能。

5、遥控器:遥控器是操纵航模的设备,通过遥控器上的操纵杆和控制按钮,飞行员可以控制航模的飞行方向、高度、速度等。

二、航模的性能航模的性能主要分为三种:最大飞行速度、最大爬升率、最大下降率。

1、最大飞行速度:指航模在正常飞行条件下所能达到的最大速度。

2、最大爬升率:指航模在最大推力条件下所能达到的最大爬升速度。

3、最大下降率:指航模在最大推力条件下所能达到的最大下降速度。

三、航模的飞行环境航模的飞行环境对其飞行性能有很大影响,因此飞行员需要了解航模的最佳飞行环境。

1、高度:航模的飞行高度受到空气密度、温度、气压等因素的影响,一般适合在1000米以下飞行。

2、气象条件:航模一般适合在晴朗、无风的天气飞行,风速一般不超过10米/秒。

大风、暴雨、雷电等恶劣天气不适合飞行。

3、地形:航模的飞行场地需要选择平坦、开阔、无障碍物的地形,以保证航模的安全飞行。

四、航模的操纵技巧操纵航模需要有一定的技巧和经验,以下是几个重要的操纵技巧:1、控制油门:油门是控制发动机或电机的转速,通过控制油门的大小,可以控制航模的飞行速度和高度。

2、控制姿态:通过控制遥控器的操纵杆,可以控制航模的姿态,如俯冲、爬升、侧滑等。

3、调整重心:航模的重心位置会影响航模的稳定性和操纵性,通过调整配重,可以调整航模的重心位置。

《航模基础知识》课件

《航模基础知识》课件

第七部分:安全与维护
1 安全飞行的注意事项
分享航模飞行时需要注意的安全事项。
2 航模的维护和保养
介绍保持航模正常运行所需的维护和保养步骤。
3 故障排除及维修技巧
指导故障排除以及维修航模的技巧和方法。
遥控器原理及使用
介绍航模遥控器的工作原理和正确使用方法。
接收机、伺服、速度控制器等的使用方法
讲解接收机、伺服、速度控制器等电子设备的正确使用方法。
第六部分:飞行技巧
起飞和着陆技巧
分享航模起飞和着陆时的技巧 和注意事项。
基本飞行动作技巧
教授航模基本飞行动作的技巧 和窍门。
天气状况对飞行的影响
探讨不同天气状况对航模飞行 的影响以及应对策略。
讨论航模设计中的稳定性和控制性要素。
第四部分:零件制作与安装
1
三视图和剖视图的理解与绘制
解释航模设计中的三视图和剖视图,并
零件制作的基本工艺
2
教授如何绘制。
分享航模零件制作过程中的基本工艺。
3
零件的安装和调试
指导安装和调试航模零件的步骤和技巧。
第五部分:电子控制系统
电机选择与控制
讲解如何选择和控制航模电机。
探索航模所包含的各个组成部分及其功能。
第二部分:材料与工具
1
常用材料及其特性
介绍航模常用的材料种类和特性。
2
常用工具及其用途
探索航模制作过程中所需的常用工具及其用途。
第三部ห้องสมุดไป่ตู้:设计理论基础
空气动力学基础
讲解航模设计中涉及的空气动力学知识和原理。
标准大气模型
介绍标准大气模型在航模设计中的应用。
稳定性和控制性
《航模基础知识》PPT课 件

航模基础知识

航模基础知识

(1)伯努利原理如果两手各拿一张薄纸,使它们之间的距离大约4~6厘米。

然后用嘴向这两张纸中间吹气,你会看到,这两张纸不但没有分开,反而相互靠近了,而且用最吹出的气体速度越大,两张纸就越靠近。

从这个现象可以看出,当两纸中间有空气流过时,压强变小了,纸外压强比纸内大,内外的压强差就把两纸往中间压去。

中间空气流动的速度越快,纸内外的压强差也就越大。

(2)机翼升力原理飞机机翼地翼剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。

前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。

当气流迎面流过机翼时,由于机翼地插入,被分成上下两股。

通过机翼后,在后缘又重合成一股。

由于机翼上表面拱起,是上方的那股气流的通道变窄。

根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。

(3)失速原理在机翼迎角较小的范围内,升力随着迎角的加大而增大。

但是,当迎角加大到某个值时,升力就不再增加了。

这时候的迎角叫做临界迎角。

当超过临界迎角后,迎角再加大,阻力增加,升力反而减小。

这现象就叫做失速。

产生失速的原因是:由于迎角的增加,机翼上表面从前缘到最高点压强减小和从最高点到后缘压强增大的情况更加突出。

当超过临界迎角以后,气流在流过机翼的最高点不多远,就从翼表面上分离;了,在翼面后半部分产生很大的涡流,造成阻力增加,升力减小。

(4)人工扰流方案要推迟失速的发生,就要想办法使气流晚些从机翼上分离。

机翼表面如果是层流边界层,气流比较容易分离;如果是絮流边界层,气流比较难分离。

也就是说,为了推迟失速,在机翼表面要造成絮流边界层。

一般来说,雷诺数增大,机翼表面的层流边界层容易变成絮流边界层。

但是,模型飞机的速度很低,翼弦很小,所以雷诺数不可能增大很大。

要推迟模型飞机失速的发生,就必须要想别的办法。

(2024年)航模入门基本知识

(2024年)航模入门基本知识

偏航角调整
通过改变方向舵角度,控制飞机左右 转向。
滚转角调整
通过改变副翼角度,控制飞机左右倾 斜。
2024/3/26
15
性能参数评估方法
01
02
03
04
飞行速度
评估航模在不同飞行阶段的速 度表现。
爬升率与下滑率
评估航模爬升和下滑的能力及 效率。
续航时间
评估航模在一次充电或加油后 的持续飞行时间。
载荷能力
13
空气动力学基础知识
01
02
03
伯努利定理
流体流速越快,压力越低 ;流速越慢,压力越高。
2024/3/26
升力产生原因
机翼上表面空气流速快, 下表面空气流速慢,产生 向上的升力。
阻力与升力关系
在飞行中,阻力与升力并 存,需通过设计优化减小 阻力。
14
飞行姿态调整技巧
俯仰角调整
通过改变升降舵角度,控制飞机抬头 或低头。
评估航模携带设备或完成任务 的能力。
2024/3/26
16
飞行安全注意事项
飞行场地选择
选择空旷、无遮挡物的 场地进行飞行。
2024/3/26
气象条件关注
避免在恶劣天气下飞行 ,如风大、雨雪等。
电池安全管理
遥控器操作规范
确保电池充电、放电过 程安全,避免过充、过
放。
17
熟悉遥控器操作,避免 误操作导致飞行事故。
传感器技术应用
传感器技术在航模中的应用主要体现在飞行姿态的稳定和控制精度的提高上。例如,陀螺仪可以检测 航模的角速度信息,通过反馈控制实现飞行姿态的稳定;GPS则可以提供航模的精确位置信息,实现 定点悬停、自动返航等高级飞行功能。

航模基础知识

航模基础知识
陆性能有很大影响。
航模的材料与工艺
材料
航模的材料主要包括轻木、碳纤维、玻璃钢等轻质、高强度 材料。这些材料可以有效地减轻航模的重量,提高飞行性能 。
工艺
航模的制造工艺主要包括切割、打磨、粘接、热压等。这些 工艺的使用需要根据材料的不同特性进行选择,以保证航模 的质量和可靠性。
航模的动力系统
发动机
尾翼
尾翼是航模用来保持稳 定性的部件,包括水平 尾翼和垂直尾翼。尾翼 的位置、尺寸和形状对 航模的飞行性能有很大
影响。
机身
机身是航模的主体结构 ,用于安装发动机、接 收器、电池等部件。机 身的材料和结构对航模 的整体性能有很大影响

起落架
起落架是航模在地面停 放和起飞着陆时使用的 支撑机构,通常由轻质 材料制成,如铝管或碳 纤维。起落架的设计和 布局对航模的起飞和着
03
CATALOGUE
航模的组装与调试
航模的组装步骤
准备工作
确保工具齐全,阅读说明书, 了解航模的结构和原理。
机体组装
按照说明书指示,组装机身、 机翼、尾翼等部分,确保连接 牢固。
电子设备安装
安装电池、接收机、舵机等电 子设备,确保正确连接。
调试与检查
检查航模各部分工作是否正常 ,进行必要的调试,确保飞行
05
CATALOGUE
航模的进阶知识
航模的性能优化
动力系统优化
根据飞行需求选择合适的发动机和螺旋桨, 调整发动机参数以获得最佳性能。
空气动力学优化
通过改进机体设计、翼型选择和翼面布局, 减少空气阻力,提高飞行效率。
重量与平衡优化
合理分配机体各部分重量,确保航模在空中 保持稳定。
操控性能优化

航模基础知识

航模基础知识

一、什么叫航空模型二、在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。

其技术要求是:三、最大飞行重量同燃料在内为五千克;四、最大升力面积一百五十平方分米;五、最大的翼载荷100克/平方分米;六、活塞式发动机最大工作容积10亳升。

七、1、什么叫飞机模型八、一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。

九、2、什么叫模型飞机十、一般称能在空中飞行的模型为模型飞机,叫航空模型。

十一、二、模型飞机的组成十二、模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。

十三、1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。

十四、2、尾翼——包括水平尾翼和垂直尾翼两部分。

水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。

水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。

十五、3、机身——将模型的各部分联结成一个整体的主干部分叫机身。

同时机身内可以装载必要的控制机件,设备和燃料等。

十六、4、起落架——供模型飞机起飞、着陆和停放的装置。

前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。

十七、5、发动机——它是模型飞机产生飞行动力的装置。

模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。

十八、三、航空模型技术常用术语十九、1、翼展——机翼(尾翼)左右翼尖间的直线距离。

(穿过机身部分也计算在内)。

二十、2、机身全长——模型飞机最前端到最末端的直线距离。

二十一、3、重心——模型飞机各部分重力的合力作用点称为重心。

二十二、4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。

二十三、5、翼型——机翼或尾翼的横剖面形状。

二十四、6、前缘——翼型的最前端。

航模基础知识003

航模基础知识003

——弹射模型滑翔机(P1T-1)的制作与放飞第一节基本概念一、航空模型的定义凡是不能载人,符合一定技术要求,重于空气的飞行器都能够称为航空模型。

二、航空模型的基本组成模型飞机与真飞机一样,主要有机翼、尾翼、机身、起装装置;动力装置五局部组成。

图1-1-11.机翼:在一定的速度下,产生升力,克服重力使飞机升空飞行。

机翼后部的副翼,能够调整模型飞机左右倾斜。

2.尾翼:由垂直尾翼和水平尾翼组成,用于保证模型飞机在飞行时的平衡和稳定,并通过尾翼的舵面对飞机实行操纵。

其中水平尾翼保持模型飞机的俯仰稳定,并可产生一局部升力,垂直尾翼保持模型飞机飞行方向的稳定。

水平尾翼后部的舵是升降舵,它的上下偏转能够控制模型升降。

垂直尾翼后部的舵是方向舵,它的左右偏转能够控制模型飞机的飞行方向。

3.机身:连接模型的各局部,使之成为一个整体。

同时能够装载一些设备。

4.动力系统:产生拉力或推力,使模型飞机获得前进速度。

5.起落装置:支撑模型飞机,供起飞着陆时使用。

典型的常规飞机一般都具有以上五局部,但在特殊形式的飞机也有例外。

比方弹射和手掷模型滑翔机,就没有动力和起落装置。

三、航空模型的常见术语1.翼展:左右机翼终端两点间的最大直线距离。

2.翼型:机翼或尾翼的剖面形状。

3.上反角:机翼与模型飞机横轴之间的夹角。

图1-1-24.安装角:翼弦与机身量度用的基准线的夹角。

图1-1-35.重心:模型各局部重力的合力点称为重心。

6.前缘:机翼最前面的边缘。

7.尾力臂:由重心到尾翼前缘1/4弦长处的距离。

8.(翼)载荷:每平方米升力面积所承受的(以克为单位的)重量。

四、航空模型的分类:P级(国内青少年级)F级(国际级)1.自由飞类(PI类)(1)P1A牵引模型滑翔机分为P1A-1一级牵引模型滑翔机P1A-2二级引模型滑翔机(2)P1B橡筋模型滑翔机分为P1B-1一级橡筋模型滑翔机P1B-2二级橡筋模型滑翔机(3)P1C活塞式发动机模型滑翔机(4)P1D室内模型飞机(橡筋动力)(5)P1E电动模型飞机(6)P1F橡筋模型直升机(7)P1S手掷模型滑翔机技术要求:最大飞行重量15克,比赛方式有两种,一种比留空时间,另一种比飞行距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航空模型基础知识
航空模型是一种机型缩小版,通常由轻质材料制成,包括木材、泡沫、高强度轻金属及碳纤维等。

它们可以飞行并提供很大的乐趣和挑战。

航空模型种类
航空模型有几种主要的种类,包括飞机、直升机、固定翼和无人机等。

这些种类通常通过它们的设计和功能来区分。

飞机类的航空模型通常被称为RC(遥控)飞机。

它们的设计和结构通常是基于现实生活中的飞机。

RC飞机可以飞行在内部或者室外,并能进行3D飞行,如升降、翻滚和翻转等动作,需要有高超的技术操作才能顺利完成。

直升机类的航空模型是比较困难的挑战,因为它们需要进行特殊的控
制技能。

直升机航空模型具有在空中悬停的能力,因此在制作和设计
过程中必须考虑到很多因素,如重量平衡、旋转速率、稳定性等。

固定翼航空模型通常是集群飞行,通常需要两个或多个人进行操作。

它们在高空进行飞行,需要高超的操作技术和良好的沟通能力。

固定
翼航空模型通常是运动性和竞技性最为强烈的机型。

无人机航空模型是多功能的机型,它们适用于各种不同的领域,如灵
敏度检测、农业和航拍等。

无论您是在小区,果园还是大农场里都可
以找到无人机的踪迹。

无人机航空模型的优势在于可以进行高空拍摄、搭载传感器进行探测、自主导航、支持实时遥控等领域。

航空模型的控制方式
航空模型的控制通常会使用遥控器。

目前市场上遥控器主要有4通道、6通道和8通道等不同型号。

4通道遥控器
4通道遥控器通常用于最基本的飞行和控制,它能控制飞机的升降、角度和飞行方向等基本要素。

6通道遥控器
6通道遥控器则更为高级,它可以控制飞机的航向、俯仰角、横滚角、升降、油门等所有要素,因此也适用于直升机和固定翼模型。

8通道遥控器
8通道遥控器是最为高级的遥控器型号,它可以更加精确地控制飞机,包括航向、俯仰角、横滚角、油门、起落架、照明、道钉、电动机排队等等。

航空模型利用的动力机制
航空模型的动力来源通常是电动机或油动发动机,也有少数航空模型使用弹弓或发射器等非电动发动机。

电动机
使用电动机作为动力源是最为普遍的方法之一,它可以为模型信号源提供足够的能量,并且有很高的可靠性和稳定性。

电动机的优点是清洁、安静和环保,同时体积越来越小。

油动发动机
油动发动机是用燃油提供动力的一种方法。

虽然这种方法速度快,但是油液变质带来的麻烦、高噪音污染以及不方便取油、放油等缺点,使得使用者越来越少了。

航空模型制造
航空模型的制造需要仔细考虑重量分配、结构设计、材料选择和装饰等方面。

制造模型的最好工具是铣床、电烙铁和准确的尺寸测量和测试工具。

要制作一架成功的飞机或其他类型的航空模型,需要有一定的制造技术和知识。

总结:
作为一种具有挑战性的爱好,航空模型可以为玩家提供极佳的飞行体验和乐趣。

它们利用最先进的遥控技术和电动发动机,能够在空中进行各种各样的动作,满足飞行玩家的不同需求。

此外,准确的规格和完美的结构设计,使得航空模型成为真正的艺术品。

相关文档
最新文档