七上数学数轴动点压轴题

合集下载

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(1) ______, ______(1)若点P 到A 、B 两点的距离都相等,请直接写出点P 对应的数(2)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为10=a b =(1)___________,___________.(2)若在数轴上有两动点、分别从同时出发向右运动,点的速度为2个单位长度/秒,点的速度为1个单位长度秒,当点在点追上了点,求点对应的数为多少?=a c =P Q A B ,P Q P D Q D(1)写出数轴上点B 表示的数 ;(2)表示5与3之差的绝对值,实际上也可理解为(1)求出线段的长度;(1)点表示的数为________,点|53|-AB A(1)请直接写出a 、b 、c 的值. ______,设点P 运动时间为t 秒.(1)若M ,N ,P 三点同时出发,=a(1)数轴上点B 表示的数是 ;当点P 运动到(1)则______,______. A =a b =(1)A 点所表示的数是___________,C 点所表示的数是___________;(2)若动点P 从点C 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一动点Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设点P 和点Q 在数轴上的点M 相遇,求点M所表示的数是多少?(3)若动点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左运动,另一动点Q 恰好从A 点出发,以每秒2个单位长度的速度沿数轴也向左运动,是否存在时间t ,使得P ,Q 到原点的距离相等,并求出此时点P 和点Q 所表示的数.13.如图,点在线段上,,,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动;同时,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动.当点到达终点时,点也随之停止运动.设点的运动时间为秒.(1)线段的长为______.(2)当点与点相遇时,求的值.(3)当点与点之间的距离为个单位长度时,求的值.(4)当时,直接写出的值.14.如图,在数轴上点A 、C 、B 表示的数分别是、1、12.动点P 从点A 出发,沿数轴以每秒3个单位长度的速度向终点B 匀速运动;同时,点Q 从点B 出发,沿数轴以每秒2个单位长度的速度向终点A 匀速运动,设点Q 的运动时间为t 秒.C AB 3AC =11BC =P A AB 3B Q B BA 2A P Q P t AB P Q t P Q 9t 2.5PC QB +=t 8-(1)的长为________;AB(2)当点P与点Q相遇时,求t的值;(1)点A表示的数为___________,点B表示的数为(1)OA=__________cm,OB=__________cm参考答案:。

人教版七年级上册数学 期末复习考点提分专练:数轴类动点压轴题

人教版七年级上册数学 期末复习考点提分专练:数轴类动点压轴题

人教版七年级上册数学期末复习考点提分专练:数轴类动点压轴题1.数轴上任意两点之间的距离均可用“右﹣左”表示,即右边的数(较大)减去左边的数(较小).已知数轴上两点A、B对应的数分别为﹣2、5,则A、B两点之间的距离记为AB,且AB=5﹣(﹣2)=7.P为数轴上的动点,其对应的数为x.(1)若点P到A,B两点的距离相等,写出点P对应的数;(2)数轴上是否存在点P,使点P到A,B两点的距离之和为11,若存在,请求出x的值;若不存在,请说明理由;(3)若点P在原点,现在A,B,P三个点均向左匀速运动,其中点P的速度为每秒1个单位;A,B两点中有一个点速度与点P的速度一致,另一个点以每秒3单位的速度运动;则几秒后点P到A,B两点的距离相等?2.阅读下列材料,并回答问题.我们知道|a|的几何意义是指数轴上表示数的点与原点的距离,那么|a﹣b|的几何意义又是什么呢?我们不妨考虑一下,取特殊值时的情况.比如考虑|5﹣(﹣6)|的几何意义,在数轴上分别标出表示﹣6和5的点,(如图所示),两点间的距离是11,而|5﹣(﹣6)|=11,因此不难看出|5﹣(﹣6)|就是数轴上表示﹣6和5两点间的距离.(1)|a﹣b|的几何意义是;(2)当|x﹣2|=2时,求出x的值.(3)设Q=|x+6|﹣|x﹣5|,请问Q是否存在最大值,若没有请说明理由,若有,请求出最大值.3.【阅读理解】点A、B在数轴上对应的数分别是a,b,且|a+2|+(b﹣8)2=0.A、B两点的中点表示的数为;当b>a时,A、B两点间的距离为AB=b﹣a.(1)求AB的长.(2)点C在数轴上对应的数为x,且x是方程2x+8=x﹣2的解,在数轴上是否存在点P,使PA+PB=PC?若存在,求出点P对应的数;若不存在,说明理由.(3)点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒8个单位的速度向左运动,点N从点B出发,以每秒5个单位的速度向右运动,P、Q分别为ME、ON的中点,求证:在运动过程中,的值不变,并求出这个值.4.阅读理解:若A,B,C为数轴上三点且点C在A,B之间,若点C到A的距离是点C到B的距离的3倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为﹣2,点B表示的数为2.表示1的点C到A的距离是3,到B的距离是1,那么点C是【A,B】的好点;又如,表示﹣1的点D到A的距离是1,到B的距离是3,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:(1)若M、N为数轴上两点,点M所表示的数为﹣6,点N所表示的数为2.数所表示的点是【M,N】的好点;数所表示的点是【N,M】的好点;(2)若点A表示的数为a,点B表示的数为b,点B在点A的右边,且点B在A,C之间,点B是【C,A】的好点,求点C所表示的数(用含a、b的代数式表示);(3)若A、B为数轴上两点,点A所表示的数为﹣33,点B所表示的数为27,现有一只电子蚂蚁P从点A出发,以每秒6个单位的速度向右运动,运动时间为t秒.如果P,A,B中恰有一个点为其余两点的好点,求t的值.5.数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.当点P到达点C时,两点都停止运动.设运动的时间为t秒.问:(1)t=2秒时,点P在“折线数轴”上所对应的数是;点P到点Q的距离是个单位长度;(2)动点P从点A运动至C点需要秒;(3)P、Q两点相遇时,t=秒;此时相遇点M在“折线数轴”上所对应的数是;(4)如果动点P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等,直接写出 t 的值.6.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?7.已知数轴上A,B两点对应数分别为﹣2和4,P为数轴上一动点,对应数为x.(1)若P为线段AB的三等分点,求P点对应的数.(2)数轴上是否存在点P,使P点到A点、B点距离之和为10?若存在,求出x的值;若不存在,请说明理由.(3)若点A、点B和点P(点P在原点)同时向左运动,它们的速度分别为1个单位长度/分、2个单位长度/分和1个单位长度/分,则经过多长时间点P为AB的中点?8.如图,点A、B分别在数轴原点O的两侧,且OB+8=OA,点A对应数是20.(1)求B点所对应的数;(2)动点P、Q、R分别从B、O、A同时出发,其中P、Q均向右运动,速度分别为2个单位长度/秒,4个单位长度/秒,点R向左运动,速度为5个单位长度/秒,设它们的运动时间为t秒,当点R恰好为PQ的中点时,求t的值及R所表示的数;(3)当t≤5时,BP+AQ的值是否保持不变?若不变,直接写出定值;若变化,试说明理由.9.如图,已知数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,动点P 从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,当点P运动到AB中点时,它所表示的数是;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数辅向右匀速运动,若P,Q两点同时出发,求点P与Q运动多少秒时重合?(3)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若P,Q两点同时出发,求:①当点P运动多少秒时,点P追上点Q?②当点P与点Q之间的距离为8个单位长度时,求此时点P在数轴上所表示的数.10.综合与探究阅读材料:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;在数轴上,有理数3与1对应的两点之间的距离为|3﹣1|=2;在数轴上,有理数5与﹣2对应的两点之间的距离为|5﹣(﹣2)|=7;在数轴上,有理数﹣2与3对应的两点之间的距离为|﹣2﹣3|=5;在数轴上,有理数﹣8与﹣5对应的两点之间的距离为|﹣8﹣(﹣5)|=3;……如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a﹣b|或|b﹣a|,记为|AB|=|a﹣b|=|b﹣a|.解决问题:(1)数轴上有理数﹣10与﹣5对应的两点之间的距离等于;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为;若数轴上有理数x与﹣1对应的两点A,B之间的距离|AB|=2,则x等于;联系拓广:(2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣2,动点P表示的数为x.请从A,B两题中任选一题作答,我选择题.A.①若点P在点M,N两点之间,则|PM|+|PN|=;②若|PM|=2|PN|,即点P到点M的距离等于点P到点N的距离的2倍,则x等于.B.①若点P在点M,N之间,则|x+2|+|x﹣4|=;若|x+2|+|x﹣4|═10,则x=;②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于.。

人教版七年级上册数学期末动点问题压轴题训练(含答案)

人教版七年级上册数学期末动点问题压轴题训练(含答案)

人教版七年级上册数学期末动点问题压轴题训练1.已知数轴上两点A、B对应的数分别为-1、3,数轴上一动点P对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等.2.如图,已知数轴上的A点对应的数是a,点B对应的数是b,且满足()2510+-=+.||a b(1)求数轴上到点A、点B距离相等的点C对应的数;(2)动点P从点A出发,以2个单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出的值;若不存在,请说明理由.3.已知M=(a+18)x3﹣6x2+12x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c,数轴上有一动点P从点A 出发,以每秒2个单位长度的速度沿数轴向终点C移动,设移动时间为t秒.(1)则a=___,b=___,c=___.(2)当点P运动到点B时,点Q从点O出发,以每秒6个单位长度的速度沿数轴在点O和点C之间往复运动,①求t为何值时,点Q第一次与点P重合?①当点P运动到点C时,点Q的运动停止,求此时点Q一共运动了多少个单位长度,并求出此时点Q在数轴上所表示的有理数.①设点P,Q所对应的数分别是m、n,当6<t<8时,|c﹣n|+|b﹣m|=8,求t的值.4.如图,动点A从原点出发向数轴负方向运动,同时动点B也从原点出发向数轴正方向运动,2秒后,两点相距16个单位长度.已知动点A、B的速度比为1:3(速度单位:每秒1个单位长度).(1)动点A的运动速度为每秒______ 个单位长度,动点B的运动速度为______个单位长度.(2)在数轴上标出A、B两点从原点出发运动2秒时的位置;(3)若表示数0的点记为O,A、B两点分别从()2中标出的位置同时向数轴负方向运动,再经过多长时间,A、B两点相距4个单位?5.在如图的数轴上,一动点Q从原点O出发,沿数轴以每秒钟4个单位长度的速度来回移动,其移动方式是先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度(1)求出2.5秒钟后动点Q所处的位置表示的数是_______;(2)求出5秒钟后动点Q所处的位置表示的数是_______;(3)数轴上有一个定点A与原点O相距10个单位长度,问:动点Q从原点出发,可能与点A 重合吗?若能,则第一次与点A重合需多长时间?若不能,请说明理由.6.已知:数轴上点A 、C 对应的数分别为a 、c ,且满足27(1)0a c ++-=,点B 对应的数为3-,(1)求数=a ______,c =______;(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P ,Q 两点的距离为43;(3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.7.已知:ABC 中,BC a =,AC b =,AB c =,a 是最小的合数,b 、c 满足等式:()2560b c -+-=,点P 是ABC 的边上一动点,点P 从点B 开始沿着ABC 的边按BA AC CB →→顺序顺时针移动一周,回到点B 后停止,移动的路径为S ,移动的速度为每秒3个单位长度.如图1所示.(1)试求出ABC 的周长;(2)当点P 移动到AC 边上时,化简:436445S S S -+-+-;(3)如图2所示,若点Q 是ABC 边上一动点,P 、Q 两点分别从B 、C 同时出发,即当点P 开始移动的时候,点Q 从点C 开始沿着ABC 的边顺时针移动,移动的速度为每秒5个单位,试问:当t 为何值时,P , Q 两点的路径(在三角形边上的距离)相差3?此时点P 在ABC 哪条边上?8.如图,数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,b 是最小的正整数,a ,c 满足()2380a c ++-=.(1)a =_____,b =_____,c =_____;(2)若动点P 、Q 分别从A 、B 同时出发,点P 以速度为3个单位长度/秒向右运动;点Q 以速度为1个单位长度/秒向左运动,求经过几秒后P 、Q 两点重合?(3)点A ,B ,C 在数轴上移动,点A 以每秒1个单位长度的速度向左移动,同时点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右移动.设t 秒后,点A ,B ,C 分别移动到点1A ,1B ,1C ,若点1A 与点1B 之间的距离表示为11A B ,点1B 与点1C 之间的距离表示为11B C ,试问311B C ﹣211A B 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求其值.9.如图,在长方形ABCD 中,AB =CD =10,AD =BC =6.动点P 从点A 出发,每秒1个单位长度的速度沿A →B 匀速运动,到B 点停止运动;同时点Q 从点C 出发,以每秒2个单位长度的速度沿C →B →A 匀速运动,到A 点停止运动.设P 点运动的时间为t 秒(t >0).(1)点P 在AB 上运动时,P A =______,PB =______,点Q 在AB 上运动时,BQ =______,QA =______(用含t 的代数式表示); (2)求当t 为何值时,AP =BQ ;(3)当P ,Q 两点在运动路线上相距3个单位长度时,请直接写出t 的值.10.如图,点A 表示的数是a ,点B 表示的数是b ,满足210(8)0a b -++=,动点P 从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒,动点P 表示的数是p .(1)直接写=a ______,b =______,p =______(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,①问点P 运动多少秒时追上点Q①问点P 运动多少秒时与点Q 相距4个单位长度?并求出此时点P 表示的数;(3)点P 、Q 以(2)中的速度同时分别从点A 、B 向右运动,同时点R 从原点O 以每秒7个单位的速度向右运动,是否存在常数m ,使得23QR OP mOR +-的值为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由.11.已知在数轴上有A ,B 两点,点A 表示的数为8,点B 在A 点的左边,且AB =12.若有一动点P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t 秒.(1)解决问题:①当t =1秒时,写出数轴上点B ,P 所表示的数;①若点P ,Q 分别从A ,B 两点同时出发,问点P 运动多少秒与Q 相距3个单位长度? (2)探索问题:若M 为AQ 的中点,N 为BP 的中点.当点P 在P 、Q 上运动过程中,探索线段MN 与线段PQ 的数量关系(写出过程).12.已知数轴上三点A,O,B表示的数分别为8,0,4-,(1)动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,点P运动________秒追上点R,此时点P在数轴上表示的数是________.(2)若点M以每秒4个单位的速度从A点出发,点N以每秒3个单位的速度运动从B点出发,设点M、N同时出发,运动时间为t秒,试探究:经过多少秒时,点M、N两点间的距离为5个单位?-,2-,1,3.5及其所对应的点A,B,C,D;13.(1)在数轴上标出数: 4.5(2)A,D两点间的距离=;(3)若动点P、Q分别从B、C同时出发,沿数轴的负方向运动;设P、Q两点的运动时间为t秒,已知点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,问①t为何值时P,Q两点重合?①t为何值时P,Q两点之间的距离为1?14.已知数轴上,M表示-10,点N在点M的右边,且距M点40个单位长度.点P,点Q 是数轴上的动点.(1)直接写出点N所对应的数.(2)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向左运动,设点P,Q在数轴上的D点相遇,求点D表示的数.(3)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发.以3个单位长度/秒向右运动,问经过多少秒时,P,Q两点相距8个单位长度?15.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧有点P,使点P到点A、点B的距离之和为8.请直接写出x的值.x=;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?16.如图,动点A从原点出发向数轴负方向运动,同时动点B也从原点出发向数轴正方向运动.3秒后,两点相距12个单位长度.已知动点A、B的速度比是1:3(速度单位:1个单位长度/秒).(1)求两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点分别从(1)中标出的位置同时向数轴负方向运动,①问经过几秒钟,原点恰好处于两个动点的正中间;①再经过多长时间,OB=2OA?17.如图,已知点A ,B ,C 是数轴上三点,点C 对应的数为6,4BC =,12AB =.(1)求点A ,B 对应的数;(2)动点P ,Q 同时从A ,C 出发,分别以每秒6个单位和3个单位的速度沿数轴正方向运动,M 为AP 的中点,N 在CQ 上,且13CN CQ =,设运动时间为(0)t t >。

人教版七年级上册数学期末数轴动点问题压轴题

人教版七年级上册数学期末数轴动点问题压轴题

人教版七年级上册数学期末数轴动点问题压轴题1.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1) 设运动时间为t(t>0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2) 若点P,Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?2.阅读下列材料:根据绝对值的定义,∣x∣表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P,Q 表示的数为x1,x2时,点P与点Q之间的距离为PQ=∣x1−x2∣.根据上述材料,解决下列问题:如图,在数轴上,点A,B表示的数分别是−4,8(A,B两点的距离用AB表示),点M,N 是数轴上两个动点,分别表示数m,n.(1) AB=个单位长度;若点M在A,B之间,则∣m+4∣+∣m−8∣=;(2) 若∣m+4∣+∣m−8∣=20,求m的值;(3) 若点M、点N既满足∣m+4∣+n=6,也满足∣n−8∣+m=28,则m=;n=.3.已知M,N在数轴上,M对应的数是−3,点N在M的右边,且距M点4个单位长度,点P,Q是数轴上两个动点;(1) 直接写出点N所对应的数;(2) 当点P到点M,N的距离之和是5个单位时,点P所对应的数是多少?(3) 如果P,Q分别从点M,N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P,Q两点相距2个单位长度时,点P,Q 对应的数各是多少?4.点A,B在数轴上分别表示有理数a,b,在数轴上A,B两点之间的距离AB=∣a−b∣.如图,已知数轴上两点A,B对应的数分别为−1,3,点P为数轴上一动点,其对应的数为x.(1) A,B两点之间的距离是.(2) 设点P在数轴上表示的数为x,则x与−4之间的距离表示为.(3) 若点P到点A、点B的距离相等,求点P对应的数.(4) 数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,请说明理由.(5) 现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少.5.如图,在数轴上,点A,B表示的数分别是−4,8(A,B两点间的距离用AB表示),点M,N是数轴上两个动点,分别表示数m,n.(1) AB=个单位长度;若点M在A,B之间,则∣m+4∣+∣m−8∣=.(2) 若∣m+4∣+∣m−8∣=20,求m的值.6.已知数轴上A,B,C三个点表示的数分别是a,b,c,且满足∣a+24∣+∣b+10∣+(c−10)2=0;动点P从点A出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t s.(1) 求a,b,c的值.(2) 若点P到点A的距离是点P到点B的距离的2倍,求点P表示的数.(3) 当点P运动到点B时,点Q从点A出发,以每秒3个单位长度的速度向点C运动,点Q到达点C后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P,Q两点之间的距离为2?请说明理由.7.如图,在一条不完整的数轴上,一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1) 若点A表示的数为0,求点B、点C表示的数;(2) 如果点A,C表示的数互为相反数,求点B表示的数;(3) 在(1)的条件下,若小虫P从点B出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q恰好从点C出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两支小虫在数轴上的点D处相遇,则点D表示的数是什么?8.已知数轴上A,B两点表示的数分别为−1,3,点P为数轴上一动点,其表示的数为x.(1) 若点P到点A,点B的距离相等,求点P表示的数;(2) 数轴上是否存在点P,使点P到点A,点B的距离之和为5?若存在,直接写出x的值;若不存在,说明理由.9.已知A,B两点在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=∣a−b∣,已知数轴上A,B两点对应的数分别为−1,3,P为数轴上一动点,A,B两点之间的距离是.设点P在数轴上表示的数为x,则点P与−4表示的点之间的距离表示为.若点P到A,B两点的距离相等,则点P对应的数为.若点P到A,B两点的距离之和为8,则点P对应的数为.现在点A以2个单位长度/秒的速度向右运动,同时点B以0.5个单位长度/秒的速度向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?10.已知数轴上两点A,B对应的数分别为−1,3,点P为数轴上一动点.(1) 若点P到点A、点B的距离相等,写出点P对应的数;(2) 若点P到点A,B的距离之和为6,那么点P对应的数;(3) 点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时P点以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立刻以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?11.如图,已知数轴上有A,B,C三点,分别表示有理数−26,−10,10,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,(1) Q点出发3秒后所到的点表示的数为;此时P,Q两点的距离为.(2) 问当点Q从A点出发几秒钟时,能追上点P?(3) 问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.12.如图,已知数轴上有A,B两点(点A在点B的左侧),且两点距离为6个单位长度.动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1) 图中如果点A,B表示的数是互为相反数,那么点P表示的数是.(2) 当t=2秒时,点A与点P之间的距离是个长度单位.(3) 当点A为原点时,点P表示的数是.(用含t的代数式表示)(4) 求当t为何值时,点P到点A的距离是点P到点B的距离的2倍.13.已知A,B在数轴上对应的数分别用a,b表示,且(12ab+10)2+∣a−2∣=0,点P是数轴上的一个动点.(1) 求出A,B之间的距离.(2) 若P到点A和点B的距离相等,求出此时点P所对应的数.(3) 数轴上一点C距A点3√6个单位长度,其对应的数c满足∣ac∣=−ac.当P点满足PB=2PC时,求P点对应的数.14.如图,数轴上点A,B表示的有理数分别为−6,3,点P是射线AB上一个动点(不与点A,B重合).M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1) 若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是6,那么MN的长为;(2) 点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.15.已知A,B两点在同一条数轴上运动,点A从原点出发向数轴负方向运动,同时点B也从原点出发向数轴正方向运动,2秒后,两点相距16个单位长度.已知动点A,B的速度比为1:3.(1) 问点A,B每秒分别运动多少个单位长度?(2) 画出数轴并在数轴上标出A,B两点从原点出发运动2秒时的位置.(3) 若原点记为O,A,B两点分别从(2)中标出的位置同时向数轴负方向运动,再经过多长时间,满足OB=2OA?16.如图,线段AB上有三个点C,D,E,AB=18,AC=2BC,D,E为动点(点D在点E的左侧),并且始终保持DE=8.(1) 当E为BC的中点时,求AD的长;(2) 若点D从点A出发向右运动(当点E到达点B时立即停止),运动的速度为每秒2个单位长度,经过t秒后,在AD,BE两条线段中,其中一条的长度恰好是另一条的两倍,求t的值.17.如图,已知数轴上两点A,B表示的数分别为−1,3,点P为数轴上一动点,其表示的数为x.(1) 若点P为AB的中点,则点P表示的数为;(2) 若点P在原点的右侧,且到点A,B的距离之和为8,则x的值为.(3) 某时刻点A,B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时沿数轴向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当运动到点A,B之间的距离为3个单位长度时,求此时点P表示的数.18.已知数轴上A,B两点表示的数分别为−1,3,点P为数轴上一动点,其表示的数为x.(1) 若点P到点A,点B的距离相等,求点P表示的数;(2) 数轴上是否存在点P,使点P到点A,点B的距离之和为5?若存在,直接写出x的值;若不存在,说明理由.19.如图,已知数轴上有A,B,C三点,分别表示有理数−26,−10,10,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动.(1) A,B两点的距离为;Q点出发3秒后所到的点表示的数为.(2) 当点Q从点A出发几秒钟时,能追上点P?(3) 当点Q从点A出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.20.如图,数轴上A,B,C三点对应的数分别是a,b,14,满足BC=6,AC=3BC.动点P从A点出发,沿数轴以每秒2个单位长度匀速向右运动,同时动点Q从C点出发,沿数轴以每秒1个单位长度匀速向左运动,设运动时间为t.(1) 则a=,b=.(2) 当P点运动到数2的位置时.Q点对应的数是多少?(3) 是否存在t的值使CP=CQ,若存在求出t值,若不存在说明理由.答案1. 【答案】(1) −4;6−5t(2) ①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a−5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】(1) 6−10=−4;t秒后,P点表示的数为6−5t.2. 【答案】(1) 12;12(2) 由(1)知,点M在A,B之间时,∣m+4∣+∣m−8∣=12,不符合题意;当点M在点A左边,即m<−4时,−m−4−m+8=20,解得m=−8;当点M在点B右边,即m>8时,m+4+m−8=20,解得m=12.综上所述,m的值为−8或12.(3) 11;−9【解析】(1) ∵点A,B表示的数分别是−4,8,∴AB=∣8−(−4)∣=12,∵点M在A,B之间,∴∣m+4∣+∣m−8∣=AM+BM=AB=12.(3) ∵∣m+4∣+n=6,∴∣m+4∣=6−n≥0,∴n≤6,∴∣n−8∣=8−n,∴8−n+m=28,∴n=m−20,∵∣m+4∣+n=6,∴∣m+4∣+m−20=6,即∣m+4∣+m−26=0,当m+4≥0,即m≥−4时,m+4+m−26=0,解得:m=11,此时n=−9;当m+4<0,即m<−4时,−m−4+m−26=0,此时m的值不存在.综上,m=11,n=−9.3. 【答案】(1) 1.(2) (5−4)÷2=0.5,① −3−0.5=−3.5,② 1+0.5=1.5.故点P所对应的数是−3.5或1.5.(3) ①(4+2×5−2)÷(3−2)=12÷1=12(秒),点P对应的数是−3−5×2−12×2=−37,点Q对应的数是−37+2=−35;②(4+2×5+2)÷(3−2)=16÷1=16(秒);点P对应的数是−3−5×2−16×2=−45,点Q对应的数是−45−2=−47.【解析】(1) −3+4=1.故点N所对应的数是1.4. 【答案】(1) 4(2) ∣x+4∣(3) (−1+3)÷2=1.故点P对应的数是1.(4) 存在.点P在点A的左边时,x的值是−1−(8−4)÷2=−3;点P在点B的右边时,x的值是3+(8−4)÷2=5.故x的值是−3或5.(5) 点A在点B的左边时,(4−3)÷(2−0.5)×2+(−1)=13,点A所对应的数是13;点A在点B的右边时,(4+3)÷(2−0.5)×2+(−1)=813,点A所对应的数是813,故点A所对应的数是13或813.5. 【答案】(1) 12;12(2) 当m<−4时,−m−4−m+8=20,解得m=−8;当m>8时,m+4+m−8=20,解得m=12;当−4≤m≤8时,不合题意.综上所述,m的值为−8或12.【解析】(1) 因为点A,B表示的数分别是−4,8,所以AB=8−(−4)=12,因为点M在A,B之间,所以∣m+4∣+∣m−8∣=AM+BM=AB=12.6. 【答案】(1) a,b,c分别为−24,−10和10.(2) 4或−443(3) 经过6s,8s,13s或14s都满足,理由略.7. 【答案】(1) 若点A表示的数为0,因为0−4=−4,所以点B表示的数为−4.因为−4+7=3,所以点C表示的数为3.(2) 若点A,C表示的数互为相反数,因为AC=7−4=3,所以原点距离点A,C各1.5个单位长度,结合数轴可得点A表示的数为−1.5.因为−1.5−4=−5.5,所以点B表示的数为−5.5.(3) 7÷(0.5+0.2)=10(秒),故小虫P与小虫Q出发10秒后相遇,则点D表示的数是3−0.2×10=1.8. 【答案】(1) 1.(2) 3.5或−1.5.9. 【答案】4;∣x+4∣;1;−3或5,若点A在点B的左边,则(4−3)÷(2−0.5)×2+(−1)=13所以点A所对应的数是1;3若点A在点B的右边,则(4+3)÷(2−0.5)×2+(−1)=81,3所以点A所对应的数是81.3综上,点A所对应的数是13或813.【解析】由题意,得A,B两点之间的距离是3−(−1)=4;点P与−4表示的点之间的距离表示为∣x−(−4)∣=∣x+4∣.又(−1+3)÷2=1,所以点P对应的数是1.若点P在点A 的左边,则x的值是−1−(8−4)÷2=−3;若点P在点B的右边,则x的值是3+ (8−4)÷2=5.综上,点P对应的数为−3或5.10. 【答案】(1) 1(2) −2或4(3) 设经过x分钟点A与点B重合,根据题意得:2x=4+x,解得x=4,∴6x=24.答:点P所经过的总路程是24个单位长度.【解析】(1) ∵1−(−1)=2,2的绝对值是2,1−3=−2,−2的绝对值是2,∴点P对应的数是1.(2) 当P在AB之间,PA+PB=4(不可能有),当P在A的左侧,PA+PB=−1−x+3−x=6,得x=−2;当P在B的右侧,PA+PB=x−(−1)+x−3=6,得x=4.故点P对应的数为−2或4.11. 【答案】(1) −17;10(2) Q点出发时,PQ两点距离为(−10)−(−26)=16,Q点速度比P点速度快(3−1)=2个单位/秒,162=8秒,∴当Q从A出发8秒钟时,能追上点P.(3) 设A点出发t秒,点P和Q相距2个单位长度,当Q点还没追上P点时,Q,P速度差为2,∴2t=−10−(−26)−2=14,解得t=7,Q点在数轴上表示的数为−26+3×7=−5,当Q点超过P点时,Q,P速度差为2,∴2t=−10−(−26)+2=18,解得:t=9,−26+3×9=1.故Q点在数轴上表示的有理数为1.综上所得,当Q从A出发7或9秒时,点P和点Q相距2个单位长度,此时Q表示数轴的有理数为−5或1.【解析】(1) P 到 B 点时,Q 从 A 出发,Q 点速度为每秒 3 个单位长度,3 秒运动距离为 3×3=9,−26+9=−17,∴Q 点出发 3 秒后所到的点表示为 −17,3 秒钟 P 点运动距离为 3×1=3,又 −10+3=−7,PQ 两点距离为 −7−(−17)=10,∴Q 点出发 3 秒后所到点表示数为 −17,此时 P ,Q 两点的距离为 10.12. 【答案】(1) −3+2t(2) 4(3) 2t(4) 2 或 6.【解析】(1) 当 A ,B 互为相反数,A =−3,B =3,故 P =−3+2t .故答案为:−3+2t .(2) 当运动 2 s ,P 运动了 4 个单位,故距起点 4 个单位.故答案为:4.(3) 当 A 为原点,即 A =0,故 P =0+2t =2t .故答案为:2t .(4) 当 P 在 AB 之间,则 AB =3PB ,PB =2,PA =4,故 t =42=2 s ,当 P 在 B 的右侧时, PA =2PB ,BA =PB ,故 PA =12,故 t =122=6.13. 【答案】(1) ∵(12ab +10)2≥0,∣a −2∣≥0, 又 (12ab +10)2+∣a −2∣=0,∴{12ab +10=0,a −2=0,∴{a =2,b =−10,∴A 点代表的数为 2,B 点对应的数为 −10,∴AB 的距离 =2−(−10)=12.(2) ∵P 到 A ,B 的距离相等.∴P 为 AB 中点,∴P 点对应的数为:2+(−10)2=−4.(3) ∵c距离A3√6个单位长度,∴c代表的数为:2±3√6,又∵∣ac∣=−ac,∴ac<0,即a⋅c异号,∴c对应的数为:2−3√6,设P点对应的数为m,则PB=∣m−(−10)∣=∣m+10∣,PC=∣∣m−(2−3√6)∣∣=∣∣m−2+3√6∣∣,∵PB=2PC,∴∣m+10∣=2∣∣m−2+3√6∣∣,①当点P在c点右侧时,即m>2−3√6时,∣(m+10)∣=m+10,∣∣m−2+3√6∣∣=m−2+3√6,∴m+10=2(m−2+3√6),m=14−6√6(满足题意).②当点P在c点左侧,B点右侧时,即−10<m<2−3√6时∣m+10∣=m+10,∣∣m−2+3√6∣∣=−m+2−3√6,∴m+10=2(−m+2−3√6),m=−2−2√6(满足题意).③当点P在B点左侧时,即m<−10时,∣m+10∣=−m−10,∣∣m−2+3√6∣∣=−m+2−3√6,∣∣m−2+3√6∣∣=m−2+3√6,∴−(m+10)=(−m+2−3√6)×2,m=14−6√6(舍去).∴综上P点对应的数为:14−6√6或−2−2√6.14. 【答案】(1) 6;6(2) MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>−6且a≠3)当−6<a<3时,如图,AP=a+6,BP=3−a,因为M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点,所以MP=23AP=23(a+6),NP=23BP=23(3−a),所以MN=MP+NP=6;当a>3时,如图,AP=a+6,BP=a−3,因为M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.所以MP=23AP=23(a+6),NP=23BP=23(a−3),所以MN=MP−NP=6.综上所述,点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.15. 【答案】(1) 设点A每秒运动x个单位长度,则点B每秒运动3x单位个长度.根据题意,得2(x+3x)=16.解得x=2.所以3x=3×2=6.所以点A,B每秒分别运动2个单位长度、6个单位长度.(2) A,B两点从原点出发运动2秒时的位置如图所示.(3) 设再经过t秒,OB=2OA.分两种情况:当点B在点O的右边时,根据题意,得12−6t=2(4+2t),解得t=0.4,当点B在点O的左边时,根据题意,得6t−12=2(4+2t.),解得t=10,综上,再经过0.4秒或10秒,满足OB=2OA.16. 【答案】(1) 因为AB=AC+BC=18,AC=2BC,所以AC=23AB=12,BC=13AB=6.因为E为BC的中点,所以BE=12BC=3.因为DE=8.所以AD=AB−BE−DE=18−3−8=7.(2) 根据题意,得AD=2t,BE=AB−AD−DE=10−2t,其中0<t<5.当BE=2AD时,10−2t=4t.解得t=53;当AD=2BE时,2t=2(10−2t).解得t=103.综上,t的值为53或103.17. 【答案】(1) 1(2) 5(3) 设运动的时间为t秒,则此时点A,B,P表示的数分别为−1+2t,3+0.5t,1−6t,分以下两种情况:①当点A在点B的左边时,根据题意,得(3+0.5t)−(−1+2t)=3,解得t=23,所以1−6t=1−6×23=−3.②当点A在点B的右边时,根据题意,得(−1+2t)−(3+0.5t)=3,解得t=14,3=−27.所以1−6t=1−6×143综上,此时点P表示的数为−3或−27.18. 【答案】(1) 1(2) 3.5或−1.519. 【答案】(1) 16;−17(2) Q点出发时,PQ两点距离为(−10)−(−26)=16,Q点速度比P点速度快(3−1)=2=8秒,个单位/秒,162∴当Q从A出发8秒钟时,能追上点P.(3) 设A点出发t秒,点P和Q相距2个单位长度,当Q点还没追上P点时,Q,P速度差为2,∴2t=−10−(−26)−2=14,解得t=7,Q点在数轴上表示的数为−26+3×7=−5,当Q点超过P点时,Q,P速度差为2,∴2t=−10−(−26)+2=18,解得:t=9,−26+3×9=1.故Q点在数轴上表示的有理数为1.综上所得,当Q从A出发7或9秒时,点P和点Q相距2个单位长度,此时Q表示数轴的有理数为−5或1.【解析】(1) P到B点时,Q从A出发,Q点速度为每秒3个单位长度,3秒运动距离为3×3=9,−26+9=−17,∴Q点出发3秒后所的点表示为−17,A,B两点在数轴上表示的数分别为−26,−10,则A,B两点之间的距离为∣−26+10∣=16.20. 【答案】(1) −4;8(2) [2−(−4)]÷2=3(秒),14−1×3=11,故Q点对应的数是11.(3) P在C点的左边,则18−2t=t,解得t=6;P在C点的右边,则2t−18=t,解得t=18.综上所述,t的值为6或18.【解析】(1) ∵c=14,BC=6,∴b=14−6=8,∴AC=18,∴a=14−18=−4.。

人教版初一上册数学期末数轴类动点压轴题带答案

人教版初一上册数学期末数轴类动点压轴题带答案

人教版七年级上册数学数轴类动点压轴题1.已知数轴上有A,B,C三点,分别代表﹣24,﹣10,10,两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,若甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后,甲到B的距离为6个单位?(3)若甲到B的距离为6个单位时,甲掉头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点,若不能,请说明理由.2.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10,动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数;当t=3时,OP=.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?3.如图,数轴上有A,B两点,A在B的左侧,表示的有理数分别为a,b,已知AB=12,原点O是线段AB上的一点,且OA=2OB.(1)a=,b=;(2)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P,Q两点停止运动,当t为何值时,2OP﹣OQ=4.(3)在(2)的条件下,若当点P开始运动时,动点M从点A出发,以每秒3个单位长度的速度也向右运动,当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后再立即返回,以同样的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动,求在此过程中点M行驶的总路程和点M停止运动时在数轴上所对应的有理数.4.数轴上两个质点A.B所对应的数为﹣8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒.(1)点A.B两点同时出发相向而行,在4秒后相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CA=2CB,若干秒钟后,C停留在﹣10处,求此时B点的位置?5.已知数轴上有A,B,C三点,分别代表﹣36,﹣10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A,B,C的距离和为60个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A、B、C的距离和为60个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.6.在同一直线上的三点A、B、C,若满足点C到另两个点A、B的距离之比是2,则我们就称点C是其余两点的亮点(或暗点).具体地,(1)当点C在线段AB上时,若=2,则称点C是【A,B】的亮点;若=2,则称点C是【B,A】的亮点;(2)当点C在线段AB的延长线上时,若=2,称点C是【A,B】的暗点.例如:如图1,数轴上,点A、B、C、D分别表示数﹣1、2、1、0,则点C是【A,B】的亮点,又是【A,D】的暗点;点D是【B,A】的亮点,又是【B,C】的暗点.(1)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.【M,N】的亮点表示的数是;【N,M】的亮点表示的数是;【M,N】的暗点表示的数是;【N,M】的暗点表示的数是.(2)如图3,数轴上,点A所表示的数为﹣20,点B所表示的数为40.一只电子蚂蚁P 从点B出发,以2个单位每秒的速度沿数轴向左运动,设运动时间为t秒.①求当t为何值时,P是【B,A】的暗点.②求当t为何值时,P、A、B三个点中恰有一个点为其余两点的亮点.(友情提醒:注意P是【A,B】的亮点与P是【B,A】的亮点不一样哦!)7.如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP=,AQ=;(2)当t=2时,求PQ的值;(3)当PQ=时,求t的值.8.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有处相遇,相遇时t=秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)9.已知数轴上三点A,O,B对应的数分别为﹣5,0,1,点M为数轴上任意一点,其对应的数为x.请回答问题:(1)A、B两点间的距离是,若点M到点A、点B的距离相等,那么x的值是;(2)若点A先沿着数轴向右移动6个单位长度,再向左移动4个单位长度后所对应的数字是;。

人教版2024—2025学年七年级上册数学期末复习压轴题训练

人教版2024—2025学年七年级上册数学期末复习压轴题训练

人教版2024—2025学年七年级上册数学期末复习压轴题训练一、选择题1.一个动点P从数轴上的原点O出发开始移动,第1次向右移动1个单位长度到达点P1,第2次向右移动2个单位长度到达点P2,第3次向左移动3个单位长度到达点P3,第4次向左移动4个单位长度到达点P4,第5次向右移动5个单位长度到达点P5…,点P按此规律移动,则移动第158次后到达的点在数轴上表示的数为()A.159B.﹣156C.158D.12.一列数a1,a2,a3,…a n,其中a1=﹣1,,,…,,则a1+a2+a3+⋯+a2024的值是()A.﹣1B.C.1010D.3.“坎宁安数”是以英国数学家坎宁安的名字命名的,能写成a n±1形式的数字,2024是一个坎宁安数,因为2024=452﹣1.下列各数中均含有“2024”,其中最小的是()A.2024B.|﹣2024|C.D.4.当x=1时,代数式ax5+bx3+cx+1值为2023,则当x=﹣1时,代数式ax5+bx3+cx+1值为()A.﹣2021B.﹣2020C.2023D.﹣20235.关于x的方程ax+b=0的解的情况如下:当a≠0时,方程有唯一解x=﹣;当a=0,b≠0时,方程无解;当a=0,b=0时,方程有无数解.若关于x的方程mx+=﹣x 有无数解,则m+n的值为()A.﹣1B.1C.2D.以上答案都不对6.若方程(m2﹣1)x2﹣mx﹣x+2=0是关于x的一元一次方程,则代数式|m﹣1|的值为()A.0B.2C.0或2D.﹣27.若abc<0,则的值为()A.﹣4B.4C.0或4D.0或﹣48.如图,两个正方形的面积分别为32,25,两阴影部分的面积分别为a,b(a>b),则a﹣b的值等于()A.5B.7C.10D.无法确定9.a、b、c是有理数且abc<0,则++的值是()A.﹣3B.3或﹣1C.﹣3或1D.﹣3或﹣1 10.有理数a,b在数轴上对应的位置如图所示,那么代数式﹣+﹣的值是()A.﹣1B.0C.1D.211.已知x1,x2,x3,…x18都是不等于0的有理数,若,则y1等于1或﹣1;若,则y2等于2或﹣2或0;若,则y18所有可能等于的值的绝对值之和等于()A.0B.90C.180D.22012.如图,是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,按此规律排列下去,若第n个图案由1234个基础图形组成,则n的值为()A.411B.412C.413D.41413.如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总共的点数是S,当n=45时,S的值是()A.126B.129C.132D.13514.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.,由0.可知,10x=7.777⋯,所以10x﹣x=7,解方程,得x=.于是,得0.,将0.写成分数的形式是()A.B.C.D.15.如图,长为y(cm),宽为x(cm)的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm,下列说法中正确的有()①小长方形的较长边为(y﹣12)cm;②阴影A的较短边和阴影B的较短边之和为(x﹣y+4)cm;③若x为定值,则阴影A和阴影B的周长和为定值;④当x=20时,阴影A和阴影B的面积和为定值.A.1个B.2个C.3个D.4个16.七(1)班联欢会上有同学表演了一个魔术,魔术师背对小聪,让小聪拿着扑克牌按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于4张,且各堆牌的张数相同;第二步:从左边一堆拿出4张,从右边一堆拿出2张,放入中间一堆;第三步:右边一堆现在有几张牌,就从中间一堆拿几张牌放入右边一堆.这时,魔术师准确说出了中间一堆牌现有的张数,则他说出的张数是()A.8B.9C.10D.1117.如图,把五个长为b,宽为a的小长方形,按图①和图②两种方式放在同一个大长方形内(相邻的小长方形既无重叠,又不留空隙),设图①中两块阴影部分的周长和为C1,图②中阴影部分的周长为C2,若大长方形的长比宽多(b﹣2a),图①中两块阴影部分的面积分别为S1和S2,则以下结论正确的是()A.大长方形的宽为B.周长C1=12aC.C2﹣C1=2a﹣2bD.若3b=10a,则=二、填空题1.某数学小组在观察等式ax3+bx2+cx+d=(x+1)3时发现:当x=1时,a+b+c+d=(1+1)3=8.现在请你计算:8a+4b+2c=.2.已知M=2a2﹣ab+b﹣1,M﹣3N=a2+3ab+2b+1.若计算M﹣[2N﹣(M﹣N)]的结果与字母b无关,则a的值是.3.如图是一个三角形点阵,从上到下有无数行,其中第一行有1个点,第二行有2个点,第三行有3个,…,则前n行的点数之和为.4.用黑白两种颜色的正六边形地砖按如图所示的规律拼成若干图案:(1)第4个图中白砖有块;(2)第n个图中白砖有块.5.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,那么a1+a2+…+a100的值是6.若关于x的方程有无数解,则2a+3b的值为.7.如果a,b为定值,关于x的一次方程,无论k为何值时,它的解总是1,则6a+b=.8.做一个数字游戏:第一步:取一个自然数n1=3,计算得a1;第二步:算出a1的各位数字之和得n2,计算得a2;第三步:算出a2的各位数字之和得n3,计算得a3;以此类推,a3=,a2023=.9.用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要根火柴棒(用含n的代数式表示).10.定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算可以重复进行,例如,取n=26,则:若n=49,则第2024次“F运算”的结果是.11.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出五张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为.12.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.三、解答题1.若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式2a ﹣b的值.2.有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a﹣c0,a+b0,a0;(直接填写“>”“<”或“=”)(2)化简:|a|﹣|b﹣a|+|a﹣c|+|2a|.3.已知有理数a,b,c在数轴上的位置如图所示且|a|=|b|,(1)求值:a+b=;(2)分别判断以下式子的符号(填“>”或“<”或“=”):b+c0;a﹣c0;ac0;(3)化简:﹣|2c|+|﹣b|+|c﹣a|+|b﹣c|.4.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是,﹣1的差倒数是.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,解答下列问题:(1)计算:a2=,a3=,a4=;(2)求a1+a2+a3+⋯+a100的值.5.定义,D(a,b)=|a﹣b|例如:,D(4,﹣2)=|4﹣(﹣2)|=6.请完成下列问题:(1)M(3,5)=,D(3,5)=.(2)已知M(﹣3,x)+D(8,10)=5,求M(x,11)的值.(3)当M(﹣1,5)+D(x,2)=7时,求的值.6.理解与思考:整体代换是数学的一种思想方法.例如:若x2+x=0,则x2+x+1186=;我们将x2+x作为一个整体代入,则原式=0+1186=1186.仿照上面的解题方法,完成下面的问题:(1)如果a+b=3,求2(a+b)﹣4a﹣4b+21的值;(2)若a2+2ab=20,b2+2ab=8,求a2+2b2+6ab的值.(3)当x=2022时,代数式ax5+bx3+cx﹣5的值为m,求当x=﹣2022时,代数式ax5+bx3+cx ﹣5的值.7.已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若,xy=1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求此时2A﹣3B的值.8.(1)若(x﹣1)2+|y+2|=0,求(x+y)2023的值;(2)已知|a+3|+|b2+2023|=2023,求b﹣a的值;(3)已知(a+1)2+|b+5|=b+5,且|2a﹣b﹣1|=1,求ab的值.9.如图线段AB和线段CD都在数轴上,已知AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是a,点C在数轴上表示的数b.(1)若|a+8|与(b﹣16)2互为相反数,求此时点A与点C之间相距多少单位长度?(2)在(1)条件下线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.从开始算起,运动时间用t表示(单位:秒).①数轴上A表示的数是;C表示的数是.(用含t的代数式表示),若点A与点C相距8个单位长度,求t的值;②已知点Q是BC的中点,点P是AD的中点,在运动过程中,线段PQ长是不变化的,请说明理由,并指出PQ的运动方向和速度.10.如图,A,B两点在数轴上分别表示有理数a,b,且满足|a+3|+(b﹣9)2=0,点O为原点.(1)请直接写出a=,b=;(2)一动点P从A出发,以每秒2个单位长度向左运动,一动点Q从B出发,以每秒3个单位长度向左运动,设运动时间为t(秒).①试探究:P、Q两点到原点的距离可能相等吗?若能,请直接写出t的值;若不能,请说明理由;②若动点Q从B出发后,到达原点O后保持原来的速度向右运动,当点Q在线段OB上运动时,分别取OB和AQ的中点E,F,试判断的值是否为定值?若是,请求出该定值;若不是,请说明理由.11.如图,在数轴上点A表示数a,点B表示数b,且(a+5)2+|b﹣16|=0.(1)填空:a=,b=;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,已知点C为数轴上一动点,且满足AC+BC=29,求出点C表示的数;(3)若点A以每秒3个单位长度的速度向左运动,同时点B以每秒2个单位长度的速度向右运动,动点D从原点开始以每秒m个单位长度运动,运动时间为t秒,运动过程中,点D始终在A,B两点之间上,且BD﹣5AD的值始终是一个定值,求此时m的值.12.如图所示,点A、B、C、D在数轴上对应的数分别为a、b、c、d,其中a是最大的负整数,b、c满足(b﹣9)2+|c﹣12|=0,且BC=CD.(1)a=;d=;线段BC=;(2)若点A以每秒3个单位长度的速度向左运动,同时点C以每秒5个单位长度的速度向左运动,设运动的时间为t秒,当A、C两点之间的距离为11个单位长度时,求运动时间t的值;(3)若线段AB和CD同时开始向右运动,且线段AB的速度小于线段CD的速度.在点A和点C之间有一点M,始终满足AM=CM,在点B和点D之间有一点N,始终满足BN=DN,此时线段MN为定值吗?若是,请求出这个定值,若不是,请说明理由.13.如图,1个单位长度表示1cm,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动5cm到达B点,然后向右移动10cm到达C点.(1)请你直接写出A、B、C三点所表示的数,点A表示的数为,点B表示的数为,点C表示的数为;(2)若动点P、Q分别从B、C两点同时向左移动,点P、Q的速度分别为每秒3cm和每秒6cm,设移动时间为t(t>0)秒.①当PQ=7时,求t的值;②运动过程中,点M到P、Q两点的距离始终保持相等,试探究QC﹣AM的值是否会随着t的变化而改变?请说明理由.14.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.(1)求线段AB的长|AB|;(2)设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,求x的值;(3)若点P在A的左侧,M、N分别是P A、PB的中点,当P在A的左侧移动时,下列两个结论:①|PM|+|PN|的值不变;②|PN|﹣|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.15.如图,在数轴上有三点A、B、C,所对应的数分别是a、b、c,且满足a﹣6是最大的负整数,b+9是绝对值最小的有理数.点C在点A左侧,到点A的距离是2个单位长度.(1)a=,b=,c=.(2)点P、Q为数轴上两个动点,点P从A点出发速度为每秒2个单位长度,点Q从B 点出发速度为每秒3个单位长度.若P、Q两点同时出发,相向而行,运动时间为t秒.求当t为何值时,点P与点Q之间的距离是4个单位长度?(3)在(2)的条件下,在点P、Q运动的过程中,是否存在t值,使点Q到点A、点B、点C的距离之和为19,若存在,请求出此时点P在数轴上所表示的数;若不存在,请说明理由.16.已知数轴上有A、B两个点对应的数分别是a,b,且满足|a+3|+|b﹣9|=0.(1)求a,b的值;(2)点C是数轴上A,B之间的一个点,使得AC+OC=BC,求出点C所对应的数;(3)在(2)的条件下,点P、Q为数轴上的两个动点,点P从A点以1个单位长度/秒的速度向右运动,点Q同时从B点以2个单位长度/秒的速度向左运动,点P运动到点C 时,P、Q两点同时停止运动,设P的运动时间为t秒,当OP+BQ=3PQ时,求t的值.17.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.18.已知点A在数轴上表示的数为a,点B表示的数为b.(1)若a,b满足(a+4)2+|b﹣3|=0,求线段AB的长;(2)在(1)的条件下,若动点P从点A出发,以每秒2个单位长度的速度向右匀速运动,同时动点Q从点B出发,以每秒1个单位长度的速度向左匀速运动,运动时间为t 秒,当点P与点Q相距4个单位长度时,求t的值;(3)若动点P从点A出发,以每秒4个单位长度的速度向右匀速运动,同时动点Q从点B出发,以每秒b个单位长度的速度也向右匀速运动,设运动t秒后,点P表示的数为m,点Q表示的数为n.是否存在有理数a和b,使得无论t为何值,代数式3m﹣4n为定值3,若存在,求a,b的值;若不存在,请说明理由.19.小兵喜欢研究数学问题,在学习一元一次方程后,他给出一个新定义:若x0是关于x的一元一次方程ax+b=0(a≠0)的解,y0是关于y的方程的所有解的其中一个解,且x0,y0满足x0+y0=10,则称关于y的方程为关于x的一元一次方程的“十全十美方程”.例如:一元一次方程3x﹣2x﹣9=0的解是x0=9,方程y2+1=2的所有解是y=1或y=﹣1,当y0=1时,x0+y0=10,所以y2+1=2为一元一次方程3x﹣2x﹣9=0的“十全十美方程”.(1)判断下列关于y的方程是否是一元一次方程3x﹣2x﹣8=0的“十全十美方程”,在后面的横线上写“是”或“否”:①2y﹣2=4 ;②|y|=2 ;(2)若关于y的方程|y﹣1|+3=6是关于x的一元一次方程x﹣=a+1的“十全十美方程”,请求出a的值;(3)若关于y的方程2m|y+2|+=4m+n是关于x的一元一次方程mx+2n=3m的“十全十美方程”,请直接写出的值.20.阅读与理解已知ax2+bx+c是关于x的多项式,记为P(x).我们规定:P(x)的导出多项式为2ax+b,记为Q(x).例如:若P(x)=3x2﹣2x+1,则P(x)的导出多项式Q(x)=2•3x﹣2=6x﹣2.根据以上信息,回答问题:(1)若P(x)=x2﹣2x,则它的导出多项式Q(x)=;(2)设Q(x)是P(x)的导出多项式.①若P(x)=2x2+4(2x﹣1),求关于x的方程Q(x)=0的解;②已知P(x)=(a﹣2)x2﹣6x+2是关于x的二次多项式,且关于x的方程Q(x)=﹣x的解为整数,求正整数a的值.21.已知数轴上的有理数﹣2,2,4,10所对应的点,分别用A,B,C,D四个点表示.动点Q从点A出发,以每秒3个单位长度的速度沿数轴向数轴负方向运动,动点P从点D 出发,以每秒4个单位长度的速度沿数轴向数轴负方向运动,到达点A后立即以每秒2个单位长度的速度沿数轴返回到点C,返回到点C后,点P和点Q停止运动.点P和点Q同时出发,设运动时间为t秒.(1)当0<t<3时,用含t的代数式表示:点P对应的数是,点Q对应的数是:;(2)中点:在数轴上M点表示m,N点表示n,则点M与点N的中点表示的数是.在点P、点Q运动过程中,若点E始终是线段PQ中点,当点E与点B重合时,求t的值.(3)在点P的运动过程中,若P A+PB+PC+PD=16个单位长度,求出t的值.22.综合与实践:定义:我们称关于x的方程ax+b=0与方程bx+a=0(a、b均为不等于0的常数)互为“轮换方程”,如:方程2x+4=0与方程4x+2=0互为“轮换方程”.(1)判断:①3x+7=0与7x+3=0;②﹣6x+3=0与3x﹣6=0;③﹣11x﹣1=0与x﹣11=0;其中互为“轮换方程”的有;(填写序号)(2)若关于x的方程5x+m+3=0与方程4x+n﹣2=0互为“轮换方程”,求m n的值;(3)若关于x的方程5x﹣p=0与其“轮换方程”的解都是整数,p也为整数,对于多项式A=6x2﹣2kx+8和,不论x取多少,A与B的和始终等于整数p,求常数p的值.23.在数轴上,点M和点N分别表示数x1和x2,可以用绝对值表示点M、N两点间的距离d(M,N),即d(M,N)=|x1﹣x2|.(1)在数轴上,点A、B、C分别表示数﹣1、3、x,解答下列问题:①d(A,B)=;②若d(B,C)=2,求x的值;(2)在数轴上,点D、E、F分别表示数﹣4、3、12.动点P沿数轴从点D开始向右以每秒1个单位长度的速度运动到点E,然后提速,以每秒3个单位长度的速度运动到达F 点后立刻以每秒2个单位长度的速度返回,回到D点时停止运动.在整个运动过程中,若d(D,P)=8,求点P的运动时间t的值.24.对于整数a,b,定义一种新的运算“⊙”:当a+b为偶数时,规定a⊙b=2|a+b|+|a﹣b|;当a+b为奇数时,规定a⊙b=2|a+b|﹣|a﹣b|.(1)当a=4,b=﹣2时,求a⊙b的值.(2)已知x>y>0且为整数,(x﹣y)⊙(x+y﹣1)=5,请用含x的代数式表示y.(3)已知(a⊙a)⊙a=180﹣5a,直接写出a的值.25.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角与这个角互余,那么这两条射线所成的角叫做这个角的内余角,如图1,若射线OC,OD在∠AOB的内部,且∠COD+∠AOB=90°,则∠COD是∠AOB的内余角.根据以上信息,解决下面的问题:(1)如图1,∠AOB=72°,∠AOC=20°,若∠COD是∠AOB的内余角,则∠BOD =;(2)如图2.已知∠AOB=60°将OA绕点O顺时针方向旋转一个角度α(0°<α<60°)得到OC.同时将OB绕点O顺时针方向旋转一个角度得到OD.若∠COB是∠AOD 的内余角,求α的值;(3)把一块含有30°角的三角板COD按图3方式放置,使OC边与OA边重合,OD 边与OB边重合,如图4将三角板COD绕顶点O以6度/秒的速度按顺时针方向旋转,旋转时间为t秒,在旋转一周的时间内,当射线OA,OB,OC,OD构成内余角时,请求出t的值.26.已知,如图1,点O为直线MNC上一点,将直角三角板的直角顶点放在点O处,其中∠AOB=90°,然后将直角三角板绕点O顺时针旋转,过点O作射线OC.使得OC平分∠BON,设∠AOM=α.(1)当∠CON=30°时,α=;(2)过点O作射线OD,使得∠MOB=3∠BOD.①如图2,当α为锐角时,求∠COD的度数;(用含α的代数式表示)②如图3,当α为钝角时,以下两个判断:(Ⅰ)是定值;(Ⅱ)是定值,其中只有一个结论正确,请判断出正确结论,并求出该定值.27.O为直线AB上一点、过点O作射线OC,使∠AOC=120°,一直角三角板的直角顶点放在点O处.(1)如图①,将三角板DOE的一边OD与射线OB重合时,∠COE=;(2)如图②,将图①中的三角板DOE绕点O逆时针旋转一定角度,当OC恰好是∠BOE 的平分线时.求∠COD的度数;(3)将图①中的三角尺DOE绕点O逆时针旋转180°,设旋转的角度为α,在旋转的过程中,能否使∠AOE=3∠COD?若能,求出α的度数;若不能,请说明理由.28.已知O为直线AB上一点,射线OD,OC,OE位于直线AB的下方且互不重合,OD在OE的右侧,∠BOC=120°,∠DOE=α.(1)如图1,α=80°,当OD平分∠BOC时,求∠AOE的度数;(2)如图2,若∠DOC=2∠BOD,且α<80°,求∠BOE的度数;(用含α的代数式表示)(3)如图3,点M在射线OA上,把射线OM绕点O从OA开始以5度/秒的速度逆时针旋转至OB结束,在旋转过程中,设运动时间为t,射线ON是∠MOC的四等分线,且3∠CON=∠MON,请求出在运动过程中4∠AON+∠BOM的值.29.钟表是我们日常生活中常用的计时工具.在圆形钟面上,把一周等分成12个大格,每个大格等分成5个小格.如图,设在4:00时,分针的位置为OB,时针的位置为OA,运动后的分针为OP,时针为OQ(本题中的角均指小于180°的角).(1)求4:00开始几分钟后分针第一次追上时针;(2)若在4:00至5:00之间,OM在∠AOP内,ON在∠AOQ内,∠POM=∠AOP,∠NOQ=∠AOQ.①当OP在∠AOB内时,求∠POM和∠AON之间的数量关系;②从4:00开始几分钟后,∠MON=111°.。

七年级上册数轴上的动点压轴题专练

七年级上册数轴上的动点压轴题专练

七年级上册数轴上的动点压轴题专练一、数轴上动点问题相关知识点回顾1. 数轴的三要素原点、正方向和单位长度。

在数轴上,数与点是一一对应的关系。

2. 两点间的距离公式设数轴上两点公式、公式所表示的数分别为公式、公式,则公式和公式两点间的距离公式。

例如,若公式表示公式,公式表示公式,则公式;若公式表示公式,公式表示公式,则公式。

3. 动点在数轴上的表示设动点公式从数轴上表示数公式的点出发,以速度公式沿数轴正方向运动,经过时间公式后,点公式所表示的数为公式;若沿数轴负方向运动,则点公式所表示的数为公式。

二、典型例题及解析1. 已知数轴上公式、公式两点对应的数分别为公式和公式,点公式为数轴上一动点,其对应的数为公式。

(1)若点公式到点公式、点公式的距离相等,求点公式对应的数。

解析:因为点公式到点公式、点公式的距离相等,根据两点间距离公式公式,公式。

又因为公式,所以公式。

当公式时,方程无解。

当公式时,公式,公式,解得公式。

所以点公式对应的数为公式。

(2)若点公式在点公式、点公式之间,且公式,求点公式对应的数。

解析:因为公式,公式,且公式,所以公式。

因为点公式在公式、公式之间,即公式,所以公式。

去括号得公式。

移项得公式。

合并同类项得公式,解得公式。

所以点公式对应的数为公式。

(3)点公式以每分钟公式个单位长度的速度从原点公式向左运动,同时点公式以每分钟公式个单位长度的速度向左运动,点公式以每分钟公式个单位长度的速度向左运动,设运动时间为公式分钟。

问公式为何值时,点公式到点公式、点公式的距离相等?解析:公式分钟后,点公式表示的数为公式,点公式表示的数为公式,点公式表示的数为公式。

根据公式,公式。

当公式时,即公式。

当公式时,公式,公式,解得公式。

当公式时,公式,公式,公式,解得公式。

2. 数轴上点公式表示的数为公式,点公式表示的数为公式。

(1)求线段公式的长。

解析:根据两点间距离公式公式。

(2)若点公式是线段公式的中点,则点公式表示的数为多少?解析:设点公式表示的数为公式,因为公式是公式中点,所以公式。

人教版七年级上册数学期末动点问题压轴题(含答案)

人教版七年级上册数学期末动点问题压轴题(含答案)

人教版七年级上册数学期末动点问题压轴题(含答案)1.如图,已知在原点为O 的数轴上三个点A 、B 、C ,20cm OA AB BC ===,动点P 从点O 出发向右以每秒2cm 的速度匀速运动;同时,动点Q 从点C 出发向左以每秒cm a 的速度匀速运动.设运动时间为t 秒.(1)当点P 从点O 运动到点C 时,求t 的值;(2)若3a =,那么经过多长时间P ,Q 两点相距20cm ? (3)当40cm PA PB +=,10cm QB QC -=时,求a 的值.2.如图,数轴上两个动点A ,B 起始位置所表示的数分别为8-,4,A ,B 两点各自以一定的速度在数轴上运动,已知A 点的运动速度为2个单位/秒.(1)若A ,B 两点同时出发相向而行,正好在原点处相遇,请直接写出B 点的运动速度. (2)若A ,B 两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒时两点相距8个单位长度?(3)若A ,B 两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,如果在运动过程中,始终有2CA CB =,求C 点的运动速度.3.如图,已知数轴上的点A 对应的数是a ,点B 对应的数是b ,满足()2510a b ++-=.(1)=a __________,b =__________.(2)直接写出数轴上到点A 、点B 距离相等的点C 对应的数__________.(3)动点P 从点A 出发,以2个单位/秒的速度向右运动,设运动时间为秒,问:是否存在某个时刻t ,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍?若存在,请直接写出的值;若不存在,请说明理由.4.如图1,A ,B 两点在数轴上对应的数分别为-12和 4.(1)A ,B 两点之间的距离为 ;(2)若在数轴上存在一点P ,使得 3BP AP =,求点P 表示的数.(3)如图2,现有动点P ,Q ,若点P 从点A 出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左运动,当点Q 到达原点O 后立即以每秒3个单位长度的速度沿数轴向右运动,设运动时间为t 秒.求:当2OP OQ =时t 的值.5.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a 、b 满足()220100a b ++-=.(1)求线段AB 的长.(2)在数轴上是否存在点C ,使得2AC BC =,若存在,求出C 点对应的数;若不存在,请说明理由;(3)动点P 、Q 两点分别从点A 、B 同时出发朝数轴正方向运动,速度分别是3个单位长度/秒,2个单位长度/秒,问经过多少秒时,12PQ AB =6.如图,点A 、B 、C 是数轴上三点,点A 、B 、C 表示的数分别为一10、2、6.我们规定:数轴上两点之间的距离用字母表示.例如:点A 与点B 之间的距离,可记为A B .(1)写出AB = ,BC = ,AC = (2)点P 是A 、C 之间的点,点P 在数轴上对应的数为x . ①若PB = 5时,则x =①P A = ,PC = (用含x 的式子表示);(3)动点M 、N 同时从点A 、C 出发,点M 以每秒2个单位长度的速度沿数轴向右运动,点N 以每秒2个单位长度的速度沿数向左运动,设运动时间为t (t >0)秒.求当t 为何值时,点M 、N 之间相距2个单位长度?7.如图,已知数轴上三点A ,B ,C 对应的数分别为1-,3,5,点P 为数轴上一动点,其对应的数为x .(1)若点P 是线段AC 的中点,则x =________,BP =________; (2)若8AP CP +=,求x 的值;(3)若点P ,点Q 两个动点分别以2个单位长度/秒和1个单位长度/秒的速度同时从点A ,点B 出发,沿数轴的正方向运动,运动时间为t 秒.当t 的值是多少时2PQ =?8.如图,点O 为数轴的原点,A ,B 在数轴上按顺序从左到右依次排列,点B 表示的数为8,AB =12.(1)直接写出数轴上点A 表示的数.(2)动点P 、Q 分别从A 、B 同时出发,点P 以每秒3个单位长度的速度沿数轴向右匀速运动,点Q 以每秒2个单位长度的速度沿数轴向右匀速运动.①经过多少秒,点P是线段OQ的中点?①在P、Q两点相遇之前,点M为PO的中点,点N在线段OQ上,且QN=2OQ.问:3经过多少秒,在P、M、N三个点中其中一个点为以另外两个点为端点的线段的三等分点(把一条线段分成1:2的两条线段的点叫做这条线段的三等分点)?9.已知数轴上两点A,B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x,(1)若点P到点A、点B的距离相等,则点P对应的数是.(2)数轴上存在点P到点A、点B的距离之和为8,则x=.(3)若将数轴折叠,使﹣1与3表示的点重合,则点P与数表示的点重合(用含x代数式表示);(4)若点P从A点出发沿数轴的正方向移动,速度为每秒2个单位长度,设运动时间为t,在移动过程中,是否存在某一时刻t,使得点P到点A距离等于点P到点B距离的2倍,若存在,请求出t的值;若不存在,请说明理由.10.定义:数轴上有两点A,B,如果存在一点C,使得线段AC的长度是线段BC的长度的2倍,那么称点C为线段AB的“友好点”.(1)如图①,若数轴上A,B两点所表示的数分别是2,4,点C为线段AB上一点,且点C为线段AB的“友好点”,则点C表示的数为______;(2)如图①,若数轴上A,B两点所表示的数分别是4-,1-,点C为数轴上一点,若点C为线段AB的“友好点”,则点C表示的数为_______;(3)如图①,若数轴上点A表示的数是1-,点C表示的数是2,若点C为线段AB的“友好点”,则点B表示的数为________;(4)如图①,若数轴上点A表示的数是1-,点B表示的数是3,动点P从点A出发以每秒2个单位的速度向右匀速运动,设运动的时间为t秒. 当t为何值时,点P是线段AB的“友好点”.11.已知在纸面上有一个数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-4表示的点与______表示的点重合;(2)若8表示的点与-2表示的点重合,回答下列问题:①12表示的点与______表示的点重合;①数轴上A,B两点间的距离为2022(A在B的左侧),且A,B两点经折叠后重合,则A,B两点表示数分别为______,______.①在①的条件下,点C为数轴上的一个动点,从点O出发,以2个单位每秒的速度向右运动,求当时间t为多少秒时,AC之间的距离恰好是BC之间距离的2倍.12.数轴上点A表示数﹣6,点B表示数18,动点P在数轴上从点A出发以每秒4个单位长度的速度向右运动,点P出发1秒钟后,动点Q以每秒6个单位长度的速度也从点A出发向右运动.设点P的运动时间为t(0≤t≤6).(1)在运动过程中,点P表示的数为,点Q表示的数为;(用含t 的代数式表示)(2)当t的值为时,点Q追上点P,此时点P对应的数是;(3)动点Q出发后,求t为何值时,点P,Q,B三点中有一点到其余两点的距离相等.a-是最大的负整13.如图,在数轴上有两点A、B,所对应的数分别是a、b,且满足6数,9b +是绝对值最小的有理数.点C 在点A 左侧,到点A 的距离是2个单位长度.(1)AB 两点间的距离是 .(2)点P 、Q 为数轴上两个动点,点P 从A 点出发速度为每秒2个单位长度,点Q 从B 点出发速度为每秒3个单位长度.若P 、Q 两点同时出发,相向而行,运动时间为t 秒.求当t 为何值时,点P 与点Q 之间的距离是6个单位长度?(3)在(2)的条件下,在点P 、Q 运动的过程中,是否存在t 值,使点Q 到点A 、点B 、点C 的距离之和为15,若存在,直接写出此时点P 在数轴上所表示的数;若不存在,请说明理由.14.知识准备:数轴上A 、B 两点对应的数分别为a 、b ,则A 、B 两点之间的距离就是线段AB 的长,且||AB a b =-,AB 的中点C 对应的数为:()12a b +. 问题探究:在数轴上,已知点A 所对应的数是4-,点B 对应的数是10. (1)求线段AB 的长为________;线段AB 的中点对应的数是________.(2)数轴上表示x 和5-的两点之间的距离是________;若该距离是8,则x =________. (3)若动点P 从点A 出发以每秒6个单位长度的速度向右运动,同时动点Q 从点B 出发以每秒2个单位长度的速度向左运动.经过多少秒,P 、Q 两点相距6个单位长度?15.定义:点O 与点A 之间的距离表示为OA ,点O 与点B 之间的距离表示为OB .若点A 、点B 分别在原点的两侧,OA :OB =4:5,点A 对应的数是-16 (1)求点B 对应的数及AB 的长 ;(2)点P 为A 、B 之间的动点,其对应的数为x ,是否存在点P ,使得AP =2OP ,若存在,请求出x 的值,若不存在,请说明理由(3)在(1)的条件下,若点N 、M 分别从A 、O 同时向右出发,速度分别3个单位长度/秒,1个单位长度/秒,N 点到达B 点后,再立即以同样的速度返回点A 后停止,M 点到达B 点立即停止,设它们的移动时间为t 秒,请用含t 的代数式直接表示M 、N 两点之间的距离16.已知数轴上两点A ,B 对应的数分别为﹣8和4,点P 为数轴上一动点,若规定:点P 到A 的距离是点P 到B 的距离的3倍时,我们就称点P 是关于A →B 的“好点”.(1)若点P 到点A 的距离等于点P 到点B 的距离时,求点P 表示的数是多少; (2)①若点P 运动到原点O 时,此时点P 关于A →B 的“好点”(填是或者不是); ①若点P 以每秒1个单位的速度从原点O 开始向右运动,当点P 是关于A →B 的“好点”时,求点P 的运动时间;(3)若点P 在原点的左边(即点P 对应的数为负数),且点P ,A ,B 中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P 表示的数.17.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且14AB =.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒.(1)写出数轴上点B 表示的数_____,点P 表示的数_________(用含t 的代数式表示); (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点,P Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若点D 是数轴上一点,点D 表示的数是x ,请你探索式子||68x x ++-是否有最小值?如果有,直接写出最小值;如果没有,说明理由18.已知数轴上有A 、B 、C 三点,分别表示有理数:﹣18,﹣3,7,动点M 从A 点出发,以每秒1个单位长度的速度向右运动,设点M 运动时间为t 秒. (1)填空:AB = ,MA = .(可用含t 的代数式表示) (2)当t 为何值,点M 到点A 、C 的距离相等.(3)当点M 运动到B 点时,点N 从A 点出发,以每秒5个单位长度的速度向右运动.当t 为何值,2MC =NC .19.如图,在数轴上的A 点表示数a ,B 点表示数b ,a 、b 满足930a b ++-=.(1)分别求出点A 表示的数a 和点B 表示的数b . (2)在数轴上的C 点表示的数c 为最大的负整数. ①求C 点分别到A 点和B 点的距离.①若有动点P 从点A 出发,以每秒3个单位长度的速度向右移动,动点Q 从点C 出发,以每秒1个单位长度的速度向左移动,运动时间为()0t t >,当时间t 为多少时,P 、Q 两点相距4个单位长度?20.已知数轴上A ,B 两点对应的数分别为a ,b ,且a ,b 满足|a +9|=﹣(b ﹣5)2,动点P 从点A 出发,以2cm/s 的速度向右运动,同时点Q 从点B 出发以1cm/s 的速度向左运动,设运动时间为t s .(1)直接写出a ,b 的值,并在下面的数轴上画出点A 和点B ;(2)分别用含t 的式子表示OP 和OQ 的长; (3)当t 为何值时,OP=OQ ? (4)当t 为何值时,OP=2OQ ?参考答案:1.(1)30t = (2)8t =和16(3)1或3或15或352.(1)1个单位/秒 (2)4秒和20秒(3)43个单位/秒3.(1)5-;1 (2)2-(3)2 秒或6秒; 4.(1)16 (2)-8和-20(3)43或207或125.(1)30(2)存在,10-或50-(3)经过45秒或15秒时,12PQ AB =6.(1)12;4;16 (2)①-3;①10,6x x +- (3)t =3.5或t =4.57.(1)2,1 (2)-2或6 (3)2或68.(1)-4(2)①4秒;①2秒或9237秒或4秒或3611秒9.(1)1 (2)3-或5 (3)2x - (4)43t =或410.(1)2;(2)-2或2;(3)0.5或3.5;(4)t 的值是43或4,点P 是线段AB 的“友好点”.11.(1)4;(2)①-6;①-1008;1014;①170秒或1518秒12.(1)64(06)t t -+≤≤,126(16)t t -+≤≤;(2)3,6;(3)t =3或t =92时,P ,Q ,B三点中有一点到其余两点的距离相等13.(1)14;(2)t 为85或4;(3)存在,73-或113-14.(1)14;3;(2)5x +,3或-13;(3)经过1秒或2.5秒时,P 、Q 两点相距6个单位长度.15.(1)20,36;(2)163-或16;(3)当08t <时,162t -;当812t <时,216t -;当1214t <时,564t -;当1420t <时,456t -;当2024t <时,336t -.16.(1)-2;(2)①不是;①1秒或10秒;(3)﹣4,﹣5,﹣12,﹣14,﹣32,﹣44 17.(1)6-;85t -;(2)7秒;(3)有,14 18.(1)15;t ;(2)t =12.5,(3)当t 为503或1507,2MC =NC . 19.(1)点A 表示的数-9和点B 表示的数3;(2)①AC =8,BC =4;①当时间t =1或3时,P 、Q 两点相距4个单位长度.20.(1)9,5a b =-=,数轴见解析;(2)29,5OP t OQ t =-=-;(3)143或4;(4)194.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七上数学数轴动点压轴题
数轴上动点问题常常出现在压轴题中,结合初一的数轴、绝对值、方程等知识。

解决这类问题需要分类讨论,利用中点公式和绝对值方程。

以下是一道精选题:
题目:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上的一个动点,其对应的数为x。

当PA+PB=5时,求x的值。

解析:最基本的思路是列绝对值方程。

即利用PA+PB=5列绝对值方程|x+1|+|x-3|=5,然后解绝对值方程即可。

数轴上动点问题的难点在于其结合了多种数学知识,需要灵活运用各种公式和方法。

题目:在数轴上,点A表示的数是-3,点B表示的数是5,点C 是数轴上的一个动点,对应的数为x。

当AC+BC=10时,求x的值。

解析:
首先,我们可以根据题目条件列出绝对值方程。

在这个例子中,方程是|x+3|+|x-5|=10。

然后我们需要解这个绝对值方程。

由于绝对值方程可能有两个解,我们需要分情况讨论。

情况一:当x+3≥0且x-5≤0时,即-3≤x≤5时,原方程可以转化为(x+3)+(5-x)=10,这个方程的解是x在-3和5之间的所有实数。

情况二:当x+3<0且x-5>0时,即x<-3或x>5时,原方程可以转化为-(x+3)+(x-5)=10,但这个方程没有解。

综合两种情况,我们得出当AC+BC=10时,x的取值范围是-3≤x
≤5。

这个例子展示了解决数轴上动点问题的一般步骤:首先根据题目条件列出绝对值方程,然后分情况讨论解绝对值方程。

在实际解题过程中,可能需要更复杂的分析和计算。

希望这个例子能帮助你更好地理解数轴上动点问题的解法。

解决数轴上动点问题,可以采用以下解题方法:
观察法:首先观察题目给出的条件和要求,明确需要解决的问题。

列绝对值方程:根据题目条件,列出含有动点坐标x的绝对值方程。

这是解决数轴上动点问题的关键步骤。

分情况讨论:由于绝对值方程可能有两个解,需要根据x的取值范围分情况讨论。

这通常涉及到数轴上的区间划分和不同区间的处理方式。

解析法:从已知数量和未知数量的关联入手,逐渐剖析出它们之间的关系,最终找到解决问题的方法。

这种方法适用于已知标准较少,数量关联较简单的情况。

分析法:从求解的问题出发,恰当选择需要的两个标准,通过逐步推理,直到问题解决。

这种方法更注重问题的目标导向,有助于快速找到解决方案。

在解题过程中,需要灵活运用这些方法,并注意验证解的合理性。

同时,多做相关练习,积累解题经验,也是提高解题能力的重要途径。

相关文档
最新文档