激光焊接与超声波焊接对比表
常见的焊接方法

常见焊接方法埋弧焊--是以连续送时的焊丝作为电极和填充金属.优点:1熔敷速度高,生产效率高;2焊接质量好,容易实现机械化、自动化;3无辐射和噪音,是一种安全、绿色的焊接方法.缺点:1受焊接位置限制,常用于平焊和平角焊位置的焊接,不适合焊小、薄件;2不便观察,需要焊缝自动跟踪装置,对装配精度要求高;3设备一次性投资大.应用:埋弧焊已广泛用于碳钢、低合金结构钢和不锈钢的焊接.由于熔渣可降低接头冷却速度,故某些高强度结构钢、高碳钢等也可采用埋弧焊焊接.钨极气体保护电弧焊TIG--是一种不熔化极气体保护电弧焊,是利用钨极和工件之间的电弧使金属熔化而形成焊缝的.优点:a、惰性气体不与金属发生任何化学反应,也不溶于金属,为获得高质量的焊缝提供了良好条件.b、焊接工艺性能好,明弧,能观察电弧及熔池,即使在小的电流下电弧仍然燃烧稳定,焊接过程无飞溅,焊缝成型美观.c、容易调节和控制焊接热输入,适合于薄板或对热敏感材料的焊接.d、电弧具有阴极清理作用.e、适用于全位置焊,是实现单面焊双面成型的理想方法.缺点:a、熔深较浅,焊接速度较慢,焊接生产率较低.b、钨极载流能力有限,过大的电流会使焊接接头的力学性能降低,特别是塑性和冲击韧度降低.c、对工件的表面要求较高.d、焊接时气体的保护效果受周围气流的影响较大,需采取防护措施.f、生产成本较高.应用:这种方法几乎可以用于所有金属的连接,尤其适用于焊接铝、镁这些能形成难熔氧化物的金属以及象钛和锆这些活泼金属.这种焊接方法的焊缝质量高,但与其它电弧焊相比,其焊接速度较慢.等离子弧焊--是一种不熔化极电弧焊.应用:钨极气体保护电弧焊可焊接的绝大多数金属,均可采用等离子弧焊接.与之相比,对于1mm以下的极薄的金属的焊接,用等离子弧焊可较易进行.熔化极气体保护电弧焊MIG--是利用连续送进的焊丝与工件之间燃烧的电弧作热源,由焊炬喷嘴喷出的气体保护电弧来进行焊接的.优点:a、GMAW法可以焊接所有的金属和合金.b、克服了焊条电弧焊法条长度的限制.c、能进行全位置焊.d、电弧的熔敷率高.e、焊接速度高.f、焊丝能连续送进,所以得到长焊缝没有中间接头.g、由于产生的熔渣少,可以降低焊后清理工作量.h、它是低氢焊方法.i、焊接操作简单,容易操作和使用.局限:a、焊接设备复杂,价格较贵又不便于携带.b、因焊枪较大,在狭窄处的可达性不好,因此影响保护效果.c、室外风速应小于1.5m/s,否则易产生气孔,所以室外焊接应采取主风措施.d、GMAW是明弧焊,应注意预防辐射和弧光.应用:熔化极活性气体保护电弧焊可适用于大部分主要金属,包括碳钢、合金钢.熔化极惰性气体保护焊适用于不锈钢、铝、镁、铜、钛、锆及镍合金.利用这种焊接方法还可以进行电弧点焊.电阻焊--是以电阻热为能源的一类焊接方法,包括以熔渣电阻热为能源的电渣焊和以固体电阻热为能源的电阻焊.管状焊丝电弧焊--管状焊丝电弧焊也是利用连续送进的焊丝与工件之间燃烧的电弧为热源来进行焊接的,可以认为是熔化极气体保护焊的一种类型.电子束焊--是以集中的高速电子束轰击工件表面时所产生的热能进行焊接的方法.应用:主要用于要求高质量的产品的焊接.还能解决异种金属、易氧化金属及难熔金属的焊接.但不适于大批量产品.激光焊--是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接.优点:不需要在真空中进行缺点:穿透力不如电子束焊强.钎焊--钎焊的能源可以是化学反应热,也可以是间接热能.钎料的液相线湿度高于450℃而低于母材金属的熔点时,称为硬钎焊;低于450℃时,称为软钎焊.应用:钎焊可以用于焊接碳钢、不锈钢、高温合金、铝、铜等金属材料,还可以连接异种金属、金属与非金属.适于焊接受载不大或常温下工作的接头,对于精密的、微型的以及复杂的多钎缝的焊件尤其适用.高频焊--是以固体电阻热为能源.焊接时利用高频电流在工件内产生的电阻热使工件焊接区表层加热到熔化或接近的塑性状态,随即施加或不施加顶锻力而实现金属的结合.因此它是一种固相电阻焊方法.应用:主要用于制造管子时纵缝或螺旋缝的焊接气焊--是用气体火焰为热源的一种焊接方法.应用最多的是以乙炔气作燃料的氧-乙炔火焰.应用:可用于很多黑色金属、有色金属及合金的焊接.一般适用于维修及单件薄板焊接.4气压焊气压焊和气焊一样,气压焊也是以气体火焰为热源.焊接时将两对接的工件的端部加热到一定温度,后再施加足够的压力以获得牢固的接头.是一种固相焊接.气压焊时不加填充金属,常用于铁轨焊接和钢筋焊接.应用:气压焊时不加填充金属,常用于铁轨焊接和钢筋焊接.爆炸焊--是以化学反应热为能源的另一种固相焊接方法.但它是利用炸药爆炸所产生的能量来实现金属连接的.应用:爆炸焊多用于表面积相当大的平板包覆,是制造复合板的高效方法.摩擦焊--是以机械能为能源的固相焊接.它是利用两表面间机械摩擦所产生的热来实现金属的连接的.摩擦焊示意图应用:摩擦焊还可以用于异种金属的焊接.要适用于横断面为圆形的最大直径为100mm 的工件.超声波焊--是一种以机械能为能源的固相焊接方法.超声波金属焊接优点:1焊接材料不熔融,不脆弱金属特性.2焊接后导电性好,电阻系数极低或近乎零.3对焊接金属表面要求低,氧化或电镀均可焊接.4焊接时间短,不需任何助焊剂、气体、焊料.5焊接无火花,环保安全.应用:超声波焊可以用于大多数金属材料之间的焊接,能实现金属、异种金属及金属与非金属间的焊接.可适用于金属丝、箔或2~3mm以下的薄板金属接头的重复生产.扩散焊--是以间接热能为能源的固相焊接方法应用:可以焊接很多同种和异种金属以及一些非金属材料,如陶瓷等.扩散焊可以焊接复杂的结构及厚度相差很大的工件.不同材料连接适用的胶黏剂财务分析图表制作方法财务分析和经营分析中经常要用到图表,因为图表比表格更直观、也显得更专业.作为财务人员,尤其是财务分析岗位和财务经理,Excel图表的制作是其必须掌握的一项技能.本篇文章介绍财务分析常用图表的制作方法,按由易到难的顺序介绍五个常用图表的制作.一、显示最高、最低、平均价格的价格走势图.制作步骤:1:D2=IFORB2=MAX$B$2:$B$11,B2=MIN$B$2:$B$11,B2,N/A,下拉填充到D3:D13;2、选定A1:D13区域,插入菜单--图表,图表类型选“折线图”;3、选定“最大最小值”系列,右键,图表类型,将图表类型改成散点图;4、选定“平均价格”系列,右键,图表类型,将图表类型改成散点图;5、选定“平均价格”系列,右键,数据系列格式--误差线X,将误差设成负偏差,误差量设成自定义:正的为12,负的为1;6、选定“销售价格”系列,右键,数据系列格式,将图案选项卡中的线型的“平滑线”打上勾;7、再根据个人的偏好将图表美化一下.二、业绩完成情况对比图;制作步骤:1、选定A1:C6区域,插入菜单--图表,图表类型选“柱型图”;2、选定“预算收入”系列,数据系列格式,在“图案”选项卡将其内部填充色设为无、在“系列次序”选项卡将预算收入下移排在实际收入后、在“选项”选项卡,将重叠比例设为100%;3、根据个人偏好进行美化.三、完成进度对比分析图;制作步骤:1、选定A1:A7,E1:F7区域,插入菜单--图表,图表类型选“柱型图”;2、制作步骤参见“业绩达成比率”图的制作;3、选定“目标”数据系列,右键,数据系列格式.在“数据标志”选项卡将数据标签包含值勾选上;4、两次单击不是双击部门A的进度数据标签,在工作表公式编辑栏输入=后,点选B2单元格,回车.即可看到部门A的进度数据标签公式为“=完成进度$B$2”;5、同理,依次将其他部门的进度数据标签和目标数据标签链接到相应单元格;6、选定C1:C7单元格,将其拖入到图表绘图区或复制粘贴,7、再选定“时间进度”数据系列,右键,图表类型,将其设为散点图.8、选定时间进度数据系列,右键,数据系列格式,在“误差线X”选项卡将设置成正负偏差,偏差值为1.8、根据个人偏好美化图表.四、更复杂的完成进度对比分析图子弹图;制作步骤:1、选定A1:F6单元格区域,插入菜单--图表,图表类型选“堆积条型图”;注意数据系列产生在列;2、分别选定“实际”、“预算”数据系列,右键,将图表类型更改为散点图.3、右键点击左边竖的分类轴“部门”,坐标轴格式,“刻度”选项卡,将“分类次序反转”勾选上;4、右键点击右边的次数值轴Y轴,坐标轴格式,“刻度”选项卡,最大值设为5,最小值为0,主要刻度单位为1;5、右键点击数据系列,源数据,在“系列”选项卡,将“实际”数据系列的X值改为“=子弹图$B$2:$B$6”,Y值改为“=子弹图$G$2:$G$6”;6、同理,将“预算”数据系列的X值改为“=子弹图$C$2:$C$6”,Y值改为“=子弹图$G$2:$G$6”;7、选定“实际”数据系列,右键,数据系列格式,在“误差线X”选项卡将设置成负偏差,误差量的负偏差值设置为自定义“=子弹图$B$2:$B$6”.8、选定“预算”数据系列,右键,数据系列格式,在“误差线Y”选项卡将设置成正负偏差,误差量设置为定值.9、根据个人偏好美化图表.五、影响因素分析图.制作步骤:1、选定A1:B9,D1:F9单元格区域,插入菜单--图表,图表类型选“折线图”;注意数据系列产生在列;2、右键点击任一数据系列,数据系列格式,在“图案”选项卡将线型设置为无.在“选项”选项卡中将涨跌柱张勾选上;3、依次将其他数据系列的线型设置为无.4、将F2:F8拖入图表区域,添加一新的数据系列ABC.5、选定数据系列ABC,将其设置为散点图.6、选定数据系列ABC,右键,数据系列格式,在“误差线X”设置为正偏差,误差量为定值1.7、选定“末点”数据系列,右键,数据系列格式,在数据标志选项卡,将数据标签的“值”勾选上.再将数据标签链接到相应单元格;8、根据个人偏好美化图表.。
激光焊接VS超声波焊接

激光焊接VS超声波焊接激光焊接VS超声波焊接激光技术是用一个偏振镜反射激光产生的光束将其集中在一个聚焦装置中,产生能量巨大的光束。
脉冲发出的激光焦点瞬间达到上千摄氏度,会在几毫秒内将金属材料熔化蒸发。
利用这种效应将太阳能集热板芯的流道与高选择性吸热涂层焊接起来,焊点在太阳能吸热涂层上间隔3~5毫米。
属于非接触式焊接,可以远距离输送,然后高度集中供给焊接、切割、热处理等功能。
其优点是不需要在焊接部位加压,整体变形小,吸热涂层表面损伤小。
这也是业内认为激光焊接优于超声波焊接,但激光焊接会更改焊接物体的物理结构,恶化机械强度,对导热性能有肯定影响的紧要原因。
目前,国内激光焊接代表厂商有:汉祖激光、连赢激光、楚天激光等企业。
超声波焊接超声波焊接是利用超声波高频机械振动产生的高密度能量,使工件表面产生塑性变形,在压力作用下破坏表层,使被焊金属在室温下发生物理连接。
超声波焊接虽然会破坏3%左右的膜层,但由于连续的非熔化焊接,导热效率相对较好。
同时超声波焊接在材料成本上有肯定优势,超声波焊接适合薄的产品。
国际上主流平板产品的铜板一般在0.12mm到0.2mm之间,现在有些企业为了考虑材料成本,选择铝板,超声波焊接只能选择0.2到0.3mm。
但是,激光焊接适用于较厚的材料。
比如铝板厚度一般为0.4mm,导致材料成本较高。
实际上,这两种焊接技术各有优缺点。
使用哪种焊接设备的企业应当依据自身的实际情况选择更合适的,而不是笼统地评价两种焊接技术的优劣。
1 / 1。
塑料焊接(超声波 摩擦焊)

聚 聚苯 PET 聚乙 聚氯 聚甲 丙 乙烯 +PC 烯 乙烯 尼龙 醛 烯
PBT
14
材料因素
二、材料融化的温度: 塑料的融化温度越高、所需的焊接能量越大 不同软化温度的材料会影响其结合性能,两种材料软化温度相差小于22度。 三、刚度: 材料的刚度 零件的刚度 四、材料吸水性 材料吸湿性会显著影响焊接性能。 五、脱模剂、润滑剂 六、材料改性添加剂 增塑剂、冲击改性剂、阻燃剂、发泡剂、填料 七、表面处理 喷漆、电镀、皮纹 八、回料 不能大于10%,如焊接要求较高,禁止添加回料
34
影响震动焊接因素
三、材料改性添加剂 增塑剂、冲击改性剂、阻燃剂、发泡剂、填料
100P – 没有填充的聚甲醛 300AS – 碳纤维填充聚甲醛 35 35
影响震动焊接因素
四、脱模剂、润滑剂 、喷漆、电镀、皮纹 五、回料:如焊接要求较高,禁止添加回料 六、焊接深度对强度影响不大
Effect of MeltdBiblioteka wn15结构设计因素
为了得到稳定的高性能的焊接: 焊接筋初始接触面尽量小 被零件有合理的定位 焊头接触面要合理 零件结构有利于超声波的传播
16
焊接设计
1、直接结合 有效、快速 能量消耗少 对零件尺寸精度要求低 溢料较少 焊接强度取决于横向结合面积
17
焊接设计
设计时的注意事项: 焊接筋为正三角形或等边三角形,前段角度一般无定型材料为 90°,半晶体材料为60 ° ,视具体情况可在60~90变化。焊接量 的高度方向尺寸与设定角度有关,一般在以0.5mm左右。 挡料边的一般为1/3壁厚,焊接完成后应有0.25到0.6m的间隙。 产品设置防止融化引起的飞边外露的沟槽。沟槽必须大于焊接 时被软化的三角形凸起部分的体积。此时,三角形的凸起的高度 为沟槽深度+焊接深度。
超声波焊接和激光焊接工艺

超声波焊接和激光焊接工艺1. 引言1.1 背景介绍超声波焊接和激光焊接是两种常见的金属焊接工艺,都是利用能量进行熔化和连接金属材料的方式。
超声波焊接是指利用高周波振动产生的超声波能量,在焊缝处产生高温高压,从而实现金属的焊接。
而激光焊接则是利用激光束产生的热能,将金属迅速加热到熔点并实现连接的过程。
随着工业的发展和对制造品质的要求不断提高,金属材料的焊接工艺也在不断创新和发展。
传统的焊接方式存在一些缺陷,比如热影响区广、变形大等问题。
超声波焊接和激光焊接作为新兴的焊接技术受到了越来越多的重视。
超声波焊接和激光焊接通过其高效的焊接速度、精准的焊接控制和对环境的友好性等优势,逐渐成为金属制造领域中重要的焊接工艺。
它们不仅可以提高焊接质量和生产效率,还能减少能源消耗和环境污染。
研究超声波焊接和激光焊接工艺的优势、应用领域和发展趋势,对于提高金属制造工艺水平、推动工业升级具有重要的意义。
本文将针对超声波焊接和激光焊接进行深入探讨,以期为相关领域的研究和实践提供参考。
1.2 研究意义超声波焊接和激光焊接作为现代工艺技术中广泛应用的焊接方法,具有独特的优势和应用前景。
研究这两种焊接工艺的意义主要体现在以下几个方面:超声波焊接和激光焊接作为高效、高精度的焊接工艺,可以在不加入外部金属材料的情况下完成焊接过程,避免了金属材料污染和材料浪费的问题。
这对于精密仪器制造、电子产品组装等领域具有重要意义。
超声波焊接和激光焊接的焊接速度快、热影响区小、焊接质量高,能够提高生产效率,降低能源消耗,减少生产成本,提高产品的整体质量和可靠性。
通过对超声波焊接和激光焊接工艺的研究,可以不断优化工艺参数,提高焊接质量和稳定性,拓展其在不同材料和结构的应用领域,推动材料加工和制造领域技术的进步。
研究超声波焊接和激光焊接工艺的意义在于不断提升焊接技术水平,推动工业制造的现代化和智能化发展,为构建绿色、高效、可持续的制造业发展模式提供技术支持和保障。
焊接基础知识—常用焊接方法及其特点

焊接基础知识—常用焊接方法及其特点焊接是一种将两个或多个金属或非金属材料加热至熔融状态,通过冷却后达到连接的方法。
焊接是工程和制造中广泛应用的一项技术,可以用于制造和修复各种产品和设备。
常用的焊接方法包括电弧焊、气焊、激光焊、摩擦焊和超声波焊等。
每种焊接方法有各自的特点和适用范围,下面将详细介绍几种常用的焊接方法及其特点。
1.电弧焊电弧焊是通过电弧产生的高温将工件熔化,并利用熔化的金属填充连接部分的焊接方法。
电弧焊有手工电弧焊、气体保护电弧焊、自动埋弧焊等多种形式。
电弧焊的优点是适用范围广,可以焊接各种金属材料,焊接速度快,成本相对低。
缺点是焊接过程受环境条件限制,如气体保护电弧焊需在保护气氛下进行,而且产生大量的烟尘和热辐射。
2.气焊气焊是利用可燃气体和氧气的燃烧产生高温,使金属达到熔化状态,然后填充连接部分的焊接方法。
气焊常用于大型工件和钢结构的焊接。
气焊的优点是焊接速度快,温度控制精度高,尤其适用于焊接重型工件。
缺点是焊接过程中产生大量的气体烟尘,对环境有一定的污染。
3.激光焊激光焊是利用高能激光束对工件进行局部加热,使其熔化并形成焊缝的焊接方法。
激光焊具有高能量密度,焊接速度快,热影响区小等特点。
激光焊的优点是可以焊接高反射率和高熔点金属,如铜、铝和钛等,焊缝质量高,焊接变形小。
缺点是设备价格昂贵,操作要求高,对工件的夹持和配准有较高要求。
4.摩擦焊摩擦焊是通过材料之间的摩擦产生的热量,使工件的接触面达到熔化温度,并在一定的压力下连接的焊接方法。
摩擦焊适用于焊接相似或不同材料的连接。
摩擦焊的优点是焊接速度快,焊缝质量好,不需要填充材料。
缺点是设备复杂,成本较高,对工件形状和尺寸有一定的限制。
5.超声波焊超声波焊是利用超声波的震动产生的摩擦热,使工件接触面达到熔化温度,并在一定的压力下连接的焊接方法。
超声波焊适用于焊接塑料、橡胶等非金属材料。
超声波焊的优点是焊接速度快,焊缝强度高,焊接过程中不产生污染。
特种焊接技术

特种焊接技术焊接是一种将材料熔化并连接在一起的加工方法。
在工业领域,焊接技术被广泛应用于工件的制造和修复。
特种焊接技术是一种针对特定材料或特殊工艺需求而开发的焊接技术,它具有高度的专业性和复杂性。
本文将介绍几种常见的特种焊接技术及其应用。
一、激光焊接激光焊接是一种利用激光束的高能量浓缩进行焊接的技术。
激光束的热量能够快速将工件表面熔化,并形成稳定的焊缝。
激光焊接具有焊接速度快、焊接质量高、热影响区小等优点,因此广泛应用于航空航天、汽车制造等高端领域。
二、超声波焊接超声波焊接是一种利用超声波振动的能量将工件连接在一起的焊接技术。
通过超声波的高频振动,工件表面的材料迅速熔化并形成焊缝。
超声波焊接具有焊接速度快、焊接强度高、无需额外焊接材料等优点,因此广泛应用于电子、塑料制品等领域。
三、电阻焊接电阻焊接是一种利用工件在电流的作用下产生热量并瞬间熔化连接的焊接技术。
通过在工件接触点施加电流,将工件表面加热到熔点,然后快速压合,使工件连接在一起。
电阻焊接具有焊接速度快、焊接强度高、适用于大面积焊接等优点,因此广泛应用于汽车制造、金属制品等领域。
四、摩擦焊接摩擦焊接是一种利用两个工件之间的摩擦产生的热量进行连接的焊接技术。
通过使工件在较高的压力下相对运动,引起工件表面的摩擦,产生足够的热量将工件连接在一起。
摩擦焊接具有焊接速度快、焊接强度高、无需额外焊接材料等优点,因此广泛应用于铁路、船舶制造等领域。
五、搅拌摩擦焊接搅拌摩擦焊接是一种利用旋转工具在工件接触面上施加搅拌力并产生热量进行连接的焊接技术。
通过在两个工件之间施加搅拌力,使工件表面熔化并形成焊缝。
搅拌摩擦焊接具有焊接速度快、焊接强度高、无需额外焊接材料等优点,因此广泛应用于航空航天、装备制造等领域。
特种焊接技术的应用可以解决传统焊接技术无法满足的复杂和特殊需求。
通过不断推进技术的创新和应用,特种焊接技术在各个领域都取得了显著的成果。
然而,特种焊接技术的发展仍面临着一些挑战,例如设备成本高、操作技能要求高等。
各种焊接方法介绍

各种焊接方法介绍一、概述焊接是指通过加热或施加压力等方式将两个或多个金属部件连接在一起的工艺。
焊接是一种常用的金属连接方法,广泛应用于制造业和建筑业等领域。
本文将介绍几种常见的焊接方法。
二、电弧焊电弧焊是利用电弧产生高温熔化金属并在熔池中形成连接的一种焊接方法。
电弧焊可分为手工电弧焊和自动化电弧焊两种。
手工电弧焊主要用于小批量生产和维修作业,而自动化电弧焊则适用于大批量生产。
三、气体保护焊气体保护焊是利用惰性气体(如氩气)或活性气体(如二氧化碳)来保护熔池不受空气中氮、氧等元素的影响,从而实现高质量的金属连接。
常见的气体保护焊有TIG(钨极惰性气体保护焊)、MIG(金属惰性气体保护焊)和MAG(金属活性气体保护焊)等。
四、激光焊激光焊是利用高能量密度的激光束来熔化金属并实现连接的一种焊接方法。
激光焊具有高精度、高速度、无需填充材料等优点,适用于微小零件的制造和高精度连接。
五、电子束焊电子束焊是利用电子束来加热和熔化金属并实现连接的一种焊接方法。
电子束焊具有高能量密度、高深度、高质量等优点,适用于大型构件的制造和航空航天领域。
六、摩擦焊摩擦焊是利用摩擦产生的热量将金属加热并实现连接的一种特殊的焊接方法。
摩擦焊具有无需填充材料、无气体保护等优点,适用于铝合金等难以传统方式连接的材料。
七、超声波焊超声波焊是利用超声波振动将两个部件在接触面上产生相对运动,并通过局部加热实现连接的一种特殊的焊接方法。
超声波焊具有无需填充材料、环保等优点,适用于塑料、橡胶等材料的连接。
八、总结以上是几种常见的焊接方法,每种焊接方法都有其特点和适用范围。
在实际应用中,需要根据具体情况选择合适的焊接方法,以确保连接质量和生产效率。
常见焊接工艺比较

常见旳焊接工艺比较前常用旳焊接工艺有:→电弧焊(氩弧焊、手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、气体保护焊)→电阻焊→高能束焊(电子束焊、激光焊)→钎焊→以电阻热为能源:电渣焊、高频焊;→以化学能为焊接能源:气焊、气压焊、爆炸焊;→以机械能为焊接能源:摩擦焊、冷压焊、超声波焊、扩散焊1.电弧焊电弧焊是目前应用最广泛旳焊接措施。
它包括有:手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。
绝大部分电弧焊是以电极与工件之间燃烧旳电弧作热源。
在形成接头时,可以采用也可以不采用填充金属。
所用旳电极是在焊接过程中熔化旳焊丝时,叫作熔化极电弧焊,诸如手弧焊、埋弧焊、气体保护电弧焊、管状焊丝电弧焊等;所用旳电极是在焊接过程中不熔化旳碳棒或钨棒时,叫作不熔化极电弧焊,诸如钨极氩弧焊、等离子弧焊等。
(1)手弧焊手弧焊是多种电弧焊措施中发展最早、目前仍然应用最广旳一种焊接措施。
它是以外部涂有涂料旳焊条作电极和填充金属,电弧是在焊条旳端部和被焊工件表面之间燃烧。
涂料在电弧热作用下首先可以产生气体以保护电弧,另首先可以产生熔渣覆盖在熔池表面,防止熔化金属与周围气体旳互相作用。
熔渣旳更重要作用是与熔化金属产生物理化学反应或添加合金元素,改善焊缝金属性能。
手弧焊设备简朴、轻便,操作灵活。
可以应用于维修及装配中旳短缝旳焊接,尤其是可以用于难以到达旳部位旳焊接。
手弧焊配用对应旳焊条可合用于大多数工业用碳钢、不锈钢、铸铁、铜、铝、镍及其合金。
(2)埋弧焊埋弧焊是以持续送时旳焊丝作为电极和填充金属。
焊接时,在焊接区旳上面覆盖一层颗粒状焊剂,电弧在焊剂层下燃烧,将焊丝端部和局部母材熔化,形成焊缝。
在电弧热旳作用下,上部分焊剂熔化熔渣并与液态金属发生冶金反应。
熔渣浮在金属熔池旳表面,首先可以保护焊缝金属,防止空气旳污染,并与熔化金属产生物理化学反应,改善焊缝金属旳万分及性能;另首先还可以使焊缝金属缓慢泠却。
埋弧焊可以采用较大旳焊接电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成点状直接熔接,导热快
压制而成,易成假焊,传热慢,在焊接时要破坏吸热膜4-5mm,如是9条管焊路明显吸热效果少百分之四以上。
(7)易于以自动化进行高速焊接,亦可以数位或电脑控制。
(8)焊接薄材或细径线材时,不会像电弧焊接般易有回熔的困扰。
(9)可焊接不同物行(如不同电阻)的两种金属。
(10)若以穿孔式焊接,焊道深宽比可达10:1等等。
不是针对性行业,已是过去的代替设备
缺点
可将入热量降到最低的需要量,热影响区金相变化范围小,且因热传导所导致的变形亦最低。
超声波金属焊接时利用高频振动波传递到两个需焊接的金属表面,在加压的情况下,使两个金属表面相互摩擦而形成分子层之间的熔合。
优势
(1)激光是辐射的受激发射光放大的简称,由于其独有的高亮度、高方向性、高单色性、高相干性,自诞生以来,其在工业加工中,没有电极污染或受损的顾虑。且因不属于接触式焊接制程,机具的耗损及变形皆可降至最低。
(3)激光束易于聚焦、对准及受光学仪器所引导,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。
(4)工件可放置在封闭的空间(经抽真空或内部气体环境在控制下)。
(5)激光束可聚焦在很小的区域,可焊接小型且间隔相近的部件。
(6)可焊材质种类范围大,亦可相互接合各种异质材料。
激光焊接与超声波焊接对比表
优势与缺点
激光焊接
超声波焊接
原理
用激光焊接加工是利用高辐射强度的激光束,激光束经过光学系统聚焦后,其激光焦点功率密度为104~107W/cm2,加工工件置于激光焦点附近进行加热熔化,熔化现象能否产生和产生的强弱程度主要取决于激光作用材料表面的时间、功率密度和峰值功率。控制上述各参数就可利用激光进行各种不同的焊接加工。
在超声波焊接过程中的初始阶段,切向振动出去金属表面的氧化物,并使粗糙表面的突出部分产生反复的微焊和破坏的过程而使接触面积增大,同时使焊区温度升高,在焊件交界面产生变形。这样再接触压力的左右下,相互接近的原子引力能够发生作用的距离时,即形成表面压制焊点。焊接时间过长,或超声波振幅过大会使焊接强度下降,甚至破坏。