汽轮机(汽机)运行负荷调节与暖机技术方法

合集下载

300MW、600MW热电厂汽轮机调节系统相关知识讲解

300MW、600MW热电厂汽轮机调节系统相关知识讲解

汽轮机调节系统的静态特性曲线
调节系统的静态特性曲线即在稳定状态下 其负荷与转速之间的关系曲线。
调节系统静态特性曲线应该是一条平滑下 降的曲线,中间不应有水平部分,曲线两端 应较陡。如果中间有水平部分,运行时会引 起负荷的自发摆动或不稳定现象。曲线左端 较陡,主要是使汽轮机容易稳定在一定的转 速下进行发电机的并列和解列,同时在并网 后的低负荷下还可减少外界负荷波动对机组 的影响。右端较陡是为使机组稳定经济负荷, 当电网频率下降时,使汽轮机带上的负荷较 小,防止汽轮机发生过负荷现象。
汽轮机调节系统的静态特性和动态特性
调节系统的工作特性有两种:即动态 特性和静态特性。在稳定工况下,汽 轮机的功率和转速之间的关系即为调 节系统的静态特性。从一个稳定工况 过渡到另一个稳定工况的过渡过程的 特性叫做调节系统的动态特性,是指 在过渡过程中机组的功率、转速、调 节汽门的开度等参数随时间的变化规 律。
何谓汽轮机调节系统的动态特性试验
调节系统的动态特性是指从一个稳定工况 过渡到另一个稳定工况的过渡过程的特性, 即过程中汽轮机组的功率、转速、调节汽门 开度等参数随时间的变化规律。汽轮机满负 荷运行时,突然甩去全负荷是最大的工况变 化,这时汽轮机的功率、转速、调节汽门开 度变化最大。只要这一工况变动时,调节系 统的动态性能指标满足要求,其他工况变动 也就能满足要求,所以动态特性试验是以汽 轮机甩全负荷为试验工况。即甩全负荷试验 就是动态特性试验。
欢迎关注,带给大家不一样的电力知识!
你学会了吗?
共同探讨,共同学习!
300MW、600MW
热电厂
汽轮机调节系统
知识讲解
汽轮机调节系统的任务
汽轮机调节系统的基本任务 是:在外界负荷变化时,及 时地调节汽轮机的功率以满 足用户用电量变化的需要, 同时保证汽轮机发电机组的 工作转速在正常允许范围之 内。

汽轮机负载调节系统调试方法说明书

汽轮机负载调节系统调试方法说明书

汽轮机负载调节系统调试方法说明书引言:汽轮机负载调节系统是保证汽轮机运行稳定和输出功率可调的关键组成部分。

正确调试负载调节系统对于汽轮机的安全性和效率至关重要。

本文将对汽轮机负载调节系统调试方法进行详细说明,以便操作人员能够正确、高效地进行调试。

一、调试准备在开始进行汽轮机负载调节系统的调试之前,操作人员需要做一些准备工作,确保调试过程顺利进行。

以下是调试准备的主要内容:1.检查设备和工具:确保所使用的设备和工具齐全且正常工作,例如测量仪器、调节阀控制系统等。

2.检查电气连接:仔细检查汽轮机负载调节系统的电气连接,确保连接正确并牢固。

检查各电气元件是否存在损坏或老化的情况,必要时进行更换。

3.检查传感器和执行机构:检查传感器和执行机构的安装情况,确保传感器能够准确感知汽轮机的负载情况,执行机构能够正确响应调节命令。

二、调试步骤1.调试主控制系统主控制系统是汽轮机负载调节系统的核心,其正确性和稳定性对整个系统的调试至关重要。

在调试主控制系统时,可按以下步骤进行:(1)检查传感器信号:使用合适的测量仪器检测传感器输出的信号是否准确。

如发现信号异常,及时进行故障排除。

(2)命令响应检查:通过向控制系统发送负载指令,检查执行机构是否能够根据指令正确调整汽轮机输出功率。

如发现执行机构响应不正常,需要进行调整或更换。

(3)稳定性测试:通过逐渐调整负载指令,观察汽轮机输出功率的稳定性。

在不同负载条件下,检查系统是否能够保持稳定的控制。

2.调试辅助控制系统汽轮机负载调节系统通常还包括一些辅助控制系统,如防过负荷保护系统、自动切负载系统等。

调试这些辅助控制系统时,可采取以下方法:(1)检查设定值:检查设定值是否合理,根据实际需求进行调整。

(2)模拟测试:通过模拟负载情况,观察辅助控制系统的响应情况。

如发现故障或不正常情况,需要进行相应的调整或修复。

(3)系统联动测试:检查辅助控制系统与主控制系统之间的联动关系。

确保辅助控制系统能够正确响应主控制系统的调节指令。

燃气—蒸气联合循环汽轮机调试技术要点问题探析

燃气—蒸气联合循环汽轮机调试技术要点问题探析

燃气—蒸气联合循环汽轮机调试技术要点问题探析【摘要】燃气-蒸汽联合循环汽轮机被引入到热电厂中以后,燃煤污染问题得到了大大的缓解,发电效率也有所提升。

我国从日本、德国引进了多种型号的燃气-蒸汽联合循环汽轮机,想要将汽轮机实际应用到我国的热电厂中,安装好之后要进行调试工作。

本文就我国从西门子集团引进的T3000系统在汽轮机控制中的实际应用、上海首台汽轮机启动调试中遇到的问题展开了探讨。

【关键词】燃气-蒸汽联合循环;汽轮机;控制系统;调试随着时代的发展科技的进步,动力工业也在飞速向前发展,燃气-蒸汽联合循环就是其中主要的发展方向之一。

将燃气-蒸汽联合循环汽轮机应用到热电站后可以得到较高的热效率和良好的调峰性能,在我国乃至世界的热电厂中都得到了广泛的应用。

最开始,我国是从发达国家引进一批燃气-蒸汽联合循环汽轮机组,后来也开始自主研发具备中国特色的专用机组,只在外国购买精密度过高的控制系统。

北京草桥的热电厂应用的就是上海出产的蒸汽轮机,控制系统采用的是西门子集团生产的T3000系统,由数字电液控制系统DEH来控制。

一、DEH控制系统(一)硬件配置DEH控制系统的核心是西门子集团出品的T3000,其中有两对冗余处理器,分别是S7414以及FM458,用于切换双控制器,FM458可以控制处理超高速汽轮机,控制精度及分辨率都比较高;通信协议采用的是Profibus-DP,用于AS414和ET200M,此外还包括FM458和ADDFEM接口之间的通信;I/O则是采用专用的ADDFEM和通用ET200M;阀位控制卡采用的是ADDFEM,通过FM458控制处理,有一个专门应用于阀门控制的模块,接收来自DEH的信号指令,计算之后输送指令给ADDFEM卡,进而有效控制电液转换器。

(二)机组结构汽轮机中的液压系统设置了两套独立的供油装置,分别为高中压和低压缸控制油系统。

进气阀门有专用的执行机构控制,包括多个气阀、调节阀和执行机构,都可以接收来自DEH系统的阀位信号,控制开关。

3.3汽轮机的调节方式及调节级变工况

3.3汽轮机的调节方式及调节级变工况

(3)过负荷时,通过旁通阀部分的蒸汽有
节流损失,旁通阀不能全开,效率有所降低;
(4)当开旁通阀时,旁通室压力升高,旁
通级焓降减小,速度比增大,功率减小,效率 降低。
3、旁通调节汽轮机的变 工况曲线压力与流量的关系。
OA为调节阀后(第一级前)
的压力随流量的变化情况。 全开时,流量为 G 0 ,压力
分进汽的,带有部分进汽损失且调节级的余速不
能被利用(调节级后为汽室,蒸汽速度为0),
因此在额定功率下,喷嘴配汽汽轮机的效率比节
流配汽稍低。
主要缺点:定压运行时,调节级和各高压级在
变工况下温度变化大,热应力较大,负荷适应
性差;
应用:定压运行、滑压运行——承担基本负荷、
调峰 定压运行的背压式和调节抽汽式汽轮机宜 采用喷嘴配汽,减少节流损失。
一、节流配汽
1、节流调节:这种调节方式就是用一个或几
个调节阀对进入汽轮机的全部进汽量 D 0 进行调
节,然后流向第一级喷嘴。 进入汽轮机的全部进汽量都受到节流作用。 当机组功率变化时,流量和焓降都要变化。
2、节流调节的热力过程曲线
特点:各级通流面积不变,变工况时各 级级前压力与流量成正比,δht几乎不变,

ht

G G G
i

G G
i

G , G , G
—分别为第一、二、三阀的流量;G——
总流量;
hi

、h i 、 —分别为两全开阀调节级有效焓降、
i
焓值、内效率;
h
i
、 h 、 i
i

—分别为部分开启阀调节级有效焓降、
Dx
h0

汽轮机运行调节方式优化策略探析

汽轮机运行调节方式优化策略探析

汽轮机运行调节方式优化策略探析摘要:现如今,随着我国经济的加快发展,传统化石能源的大规模开采和普遍利用,能在一定程度上为人类文明进一步发展提供积极的动力,但同时也对环境、气候、资源造成了严重破坏。

为了有效解决资源匮乏、气候恶化、环境污染等问题,使人类可持续发展目标有效实现,必须采取多样化有效措施,促进全球能源结构朝着低碳、绿色、环保方向发展。

为了使新能源在电量规模化并网过程中存在的波动性和不确定性等问题得到有效解决,必须加强对电网调控能力的不断强化,从而创建足够的空间容量为新能源的消纳提供有有利环境。

在电力能源结构体系中,燃煤火电机组占据60%以上,因此,积极开发燃煤火电机组对电网峰谷差异进行调节的方式势在必行。

关键词:汽轮机运行;调节方式;优化策略引言汽轮机调节系统是由电子控制器、操作系统、执行系统、保护机构、以及油系统这五个部分组成的。

其整体系统结构是在先进的网络技术与控制技术推动下实现的。

可以为汽轮机系统提供强大的技术支持与保护功能,不但提高了汽轮机系统运行的可靠性,也提高了汽轮机功率、频率等运行参数的精度,是汽轮机发电安全的保障。

1汽轮机调节系统的设计技术汽轮机调节系统的设计技术应用是保证机组高质量运行的关键。

只有当汽轮机调节系统处于正常运行状态的时候,调节系统才能够正常地发挥功能。

从汽轮机调节系统的设计结构来看。

(1)电液调节系统。

随着科学技术的发展,汽轮机调节系统设计中不断地渗入高端科技因子,使得系统的设计技术不断提高。

电液调节系统在这样的技术环境下应运而生。

单机容量不断增加,机组运行中主要采用了两种方式,即滑式压方式和单元制运行方式,在热机组的带动下,包括机组启动次数和停止次数相应地也会增加,此时,就会导致机组电网运行中产生集中调度问题,电液调节由此而产生。

电液调节系统执行器的主要构成是液压元件,机构元件为控制器的主要元件,发挥着调节运转速度功能,如果运转速度过大,就会引起跳闸。

由于汽轮机调节系统的静态特性,就会由于汽轮机的间隙而导致静态特性无法改变。

汽轮机运行及调整

汽轮机运行及调整
的发电机转子振动。
机组振动的原因
• 4. 振动系统的刚度不足与共振 强迫振动的振幅与系统的静刚度成正比,
系统的静刚度不足又会引起共振频率降低。 如果工作转速接近共振频率,就可能发生 共振。
系统刚度不足除了设计上的原因外,还有 轴承座与台板,轴承座与汽缸,台板与基 础之间连接不够牢固等原因。
机组振动的原因
汽轮机主要特点
• 本汽轮机为纯冲动式汽轮机,级数相对较 少,高中压缸采用合缸,减小了轴向长度 和轴承数量。端汽封和轴承箱均处在温度 较低的高、中压排汽口区域。
• 汽轮机的汽封采用椭圆汽封。
• 汽轮机各个转子与发电机各转子采用刚性 连接方式,轴系为挠性轴系。叶片采用弯 曲/弯扭静叶和弯扭动叶,末级叶片为 1016mm长叶片。
胀差
• 当某一区段的胀差值超过了在这个方向的动静 部件轴向间隙时,就会发生动静部件的摩擦或 碰撞,造成启动时间的延误或引起机组振动、 大轴弯曲等严重事故。
• 胀差指示器只能指示测点处的胀差值,而并不 能准确地反映汽轮机各截面处的胀差情况,有 时胀差指示器指示数值在允许的范围之内,转 子与汽缸的某些地方还会出现摩擦现象。
机组振动的原因
机组振动的原因
• 1.转子质量不平衡 由于转子的质心不在旋转中心线上,转子旋转时
就产生了不平衡的离心力。 ➢ 汽轮机运行时出现动叶片和拉金断裂,动叶
不均匀磨损,蒸汽中携带的盐分在叶片上不均匀 沉积等使转子产生静不平衡。 ➢ 汽轮机检修时拆装叶轮,连轴节,动叶等转子 上的零部件也会造成不平衡。
• c. 油膜振荡一旦发生以后,涡动速度将始 终保持等于第一临界转速,而不再随转速 的升高而升高。所以,油膜振荡是不能用 提高转速的办法来消除。
机组振动的原因

汽轮机的调节方式

汽轮机的调节方式
第三节 汽轮机的调节方式及调 节级变工况
汽轮机的功率方程 汽轮机常用的调节方式:
Pel

DH trim g
3600
由上式可知,要改变汽轮机的功率,可改变
流量D或焓降Ht,与此对应的调节方式从结构上 看有:喷嘴调节、节流调节,从运行方式上看有: 定压调节和滑压调节。
一、节流调节
定义:所有进入汽轮机的蒸汽都经过一个或几个 同时启闭的调节阀,然后进入第一级喷嘴。
(D D )h2 D h2 (D D D )h2
h2

(D

D )h2 D

D h2
(D D )(h0 hi ) D (h0 hi ) D

h0

D
D D
在第一调节阀全开而第二调节阀尚未开启时,①调 节级焓降达最大值;②级前后的压差最大,③流过该喷 嘴的流量亦最大;④级的部分进汽度则最小,致使调节 级叶片处于最大的应力状态。所以当进行调节级强度核 算时,最危险工况不是汽轮机的最大负荷,而是第一调 节阀刚全开时的运行工况。
2.调节级的热力过程及效率曲线
二、喷嘴调节及调节级变工况
喷嘴调节:将汽轮机的第一级喷嘴分成若干组,每 组各有一个调节阀控制,当汽轮机的负荷改变时, 依次开启或关闭各调节阀,以调节汽轮机的进汽。
调节级:采用喷嘴调节的汽轮机第一级,其通流面 积随负荷的改变而改变,故称该级为调节级。该级 后的汽室常称为调节级汽室。
为了研究调节级,做以下假设:
图3-13 节流调节示意图
节流调节的调节过程: 结论:节流调节第一级的变工况特性与中间级 完全相同。
节流调节的热力过程:
节流后汽轮机的相对内效率:
ri

汽轮机负荷控制

汽轮机负荷控制

f(x)
Add
Y + 11:110
负荷给定值与 TPL限值差
TPLDELTA Cmp
X1 D 0.0 X2 12:120 >=
Z D 37:370
Not
Qor8
Z1 Y Z2 D Z3 36:360 Num=8
行指令以及相应的快速减负荷(RUNBACK)速率,其工作原理 如下图所示:
发电机功率 RB1极限 RB1速率 RB1 RB2极限 RB2速率 RB2 RB3极限 RB3速率 RB3 并网
6 5 4 12 4 18 1 17 4 14 4 20 1 18 4 16 4 22 1 19 8 10 X1 Y 300.0 X2 17:170 X1 Y 300.0 X2 15:150 X1 Y 300.0 X2 13:130
+1.0 Y +1.0 47:355
Add
SFT
X1 Y X2 Z
32:320
SFT
X1 Y X2 Z
33:330
SFT
X1 Y X2 Z
43:538
SFT
X1 Y X2 Z
36:360
SFT
X1 Y X2 Z
37:370
SFT
0.0 X1 Y
REFTMP15
X2 Z
38:380
X1 Y X2 Z
31:310
X Y 12:120
Z1 D 36:360
Not
Div
X1 Y X2 45:450
SFT
X1 Y X2 Z 46:460
TwoSel
X1 Y X2 48:480
f(x)
X Y 83:830
修正后的流 量指令
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽轮机(汽机)
运行负荷调节与暖机技术方法
一、汽轮机负荷的调节
1、汽轮机负荷调节的方式:
(1)节流调节:主蒸汽通过一个或几个同时开闭的阀门然后进入汽轮机。

(2)喷嘴调节:负荷变化时,依次开启或关闭若干个调节阀,改变调节级的通流面积控制进入汽轮机的蒸汽流量。

(3)滑压调节:汽轮机的调门开度保持不变,通过调节主蒸汽的压力以调节进入汽轮机的蒸汽流量和汽轮机的负荷。

2、各调节的方式的优缺点:
(1)节流调节:调节装置的结构比较简单,没有调节级结构简单,制造成本低,但在部分负荷下因有节流损失,效率较低。

(2)喷嘴调节:喷嘴调节的调门控制机构比较复杂,不利于维修,但在部分负荷下只有部分调门存在节流损失,其他调门全开,因此经济效率较高。

(3)滑压调节:一般滑压运行时,调门开度为全开位置,不存在节流损失,但由于主蒸汽压力下降,使蒸汽的做功能力下降,降低了汽轮机的效率,但有利于汽轮机的快速加减负荷。

3、汽轮机负荷低于30%时为什么不得投入协调控制:
由于我厂1、2U机组的DEH对汽轮机的负荷控制有调节级压
力控制和功率控制两路反馈调节方式。

当汽轮机负荷低于30%负荷时,由于调节级压力不能准确的反映汽轮机的进汽量,因此不能作为汽轮机负荷调节的反馈。

这时,1、2U的DEH采用功率控制的模式,由于MCS也以汽轮机的功率作为对汽轮机调节的反馈,而MCS和DEH的功率仪表的偏差会造成汽轮机调节指令的频繁晃动,并造成汽轮机的调节不稳,因此应在DEH投入调节级压力控制,切除功率控制后,投入MCS控制。

4、汽轮机负荷低于30%时为什么不得投入协调控制:
由于我厂1、2U机组的DEH对汽轮机的负荷控制有调节级压力控制和功率控制两路反馈调节方式。

当汽轮机负荷低于30%负荷时,由于调节级压力不能准确的反映汽轮机的进汽量,因此不能作为汽轮机负荷调节的反馈。

这时,1、2U的DEH采用功率控制的模式,由于MCS也以汽轮机的功率作为对汽轮机调节的反馈,而MCS和DEH的功率仪表的偏差会造成汽轮机调节指令的频繁晃动,并造成汽轮机的调节不稳,因此应在DEH投入调节级压力控制,切除功率控制后,投入MCS控制。

5、汽轮机负荷低于30%时为什么不得投入协调控制:
由于我厂2U机组的DEH对汽轮机的负荷控制有调节级压力控制和功率控制两路反馈调节方式。

当汽轮机负荷低于30%负荷时,由于调节级压力不能准确的反映汽轮机的进汽量,因此不能作为汽轮机负荷调节的反馈。

这时, 2U的DEH采用功率控制的模式,由于MCS也以汽轮机的功率作为对汽轮机调节的反馈,
而MCS和DEH的功率仪表的偏差会造成汽轮机调节指令的频繁晃动,并造成汽轮机的调节不稳,因此应在DEH投入调节级压力控制,切除功率控制后,投入MCS控制。

二、汽轮机的暖机
1、汽轮机启动暖机的目的:
汽轮机维持在一定转速下运行,蒸汽通过汽轮机对转子和汽缸均匀受热膨胀,使转子由于停机后微量弯曲得到缓缓伸直。

同时通过汽轮机暖机,使汽缸充分膨胀,防止因转子膨胀过快,造成汽轮机转子和汽缸差胀加大,使汽轮机动静之间发生摩擦,造成汽轮机振动。

通过汽轮机的中速暖机使汽轮机转子中心孔的内部金属温度高于脆性转变温度。

2、中速暖机时为什么要注意机组振动情况:
大型机组起动时,发生振动多在中速暖机及其前后升速阶段,特别是通过临界转速的过程中,机组振动将大幅度的增加。

在此阶段中,如果振动较大,最易导致动静部分摩擦,汽封磨损,转子弯曲,转子一旦弯曲,振动越来越大,振动越大摩擦就越厉害。

这样恶性循环,易使转于产生永久性变形弯曲,使设备严重损坏。

因此要求暖机或升速过程中,如果发生较大的振动,应该立即脱扣停机,进行盘车直轴,消除引起振动的原因后,再重新起动机组。

3、启动时,汽缸为什么要放疏水:
汽轮机在起动过程中,汽缸金属温度较低,进入汽轮机的主
蒸汽温度及再热蒸汽温度虽然选择较低,但均超过汽缸内壁温度较多。

蒸汽与汽缸温度相差超过200℃。

暖机的最初阶段,蒸汽对汽缸进行凝结放热,产生大量的凝结水直到汽缸和蒸汽管道内壁温度达到该压力下的饱和温度时凝结故热过程结束,凝结疏水量才大幅减少。

在停机过程中,蒸汽参数逐渐降低,特别是滑参数停机,蒸汽在前几级做功后.蒸汽内合有湿蒸汽,在离心力的作用下甩向汽缸四周,负荷越低,蒸汽含水量越大。

另外汽轮机打闸停机后,汽缸及蒸汽管道内仍有较多的余汽凝结成水。

由于死水的存在,会造成汽轮机叶片水蚀,机组振动下缸产生温差及腐蚀汽缸内部,因此汽轮机起动或停机时须加强汽轮机本体及蒸汽管道的疏水。

4、高和低压加热器随机启动的优点:
高、低压加热器随机起动,能使加热器受热均匀,有利于防止铜管胀口漏水有利于防止法兰因热应力大造成的变形:对于汽轮机来讲,由于连接加热器的抽汽管道是从下汽缸接出的,加热器随机起动,也就等于增加了汽缸疏水点,能减少上下汽缸的温差。

此外,还能简化机组并列后的操作。

相关文档
最新文档