3.3汽轮机的调节方式及调节级变工况解析
汽轮机的调节方式要点

二、喷嘴调节及调节级变工况
喷嘴调节:将汽轮机的第一级喷嘴分成若干组,每 组各有一个调节阀控制,当汽轮机的负荷改变时, 依次开启或关闭各调节阀,以调节汽轮机的进汽。
调节级:采用喷嘴调节的汽轮机第一级,其通流面 积随负荷的改变而改变,故称该级为调节级假设: a、调节级的反动度m=0,且工况变动时反动 度保持不变。 b、各阀门之间无重叠度。 此外各组喷嘴后压力p1均相等,凝汽式汽轮机 调节级后p2与流量成正比。 全开阀后的压力不随流量的增加而降低
DH trim g
图3-13
节流调节示意图
节流调节的调节过程: 结论:节流调节第一级的变工况特性与中间级 完全相同。 节流调节的热力过程:
节流后汽轮机的相对内效率:
H i H i H t th ri ri Ht H t H t
H t th-节流效率 th H t
第三节
汽轮机的调节方式及调 节级变工况
汽轮机的功率方程 Pel 3600 汽轮机常用的调节方式: 由上式可知,要改变汽轮机的功率,可改变 流量D或焓降Ht,与此对应的调节方式从结构上 看有:喷嘴调节、节流调节,从运行方式上看有: 定压调节和滑压调节。 一、节流调节 定义:所有进入汽轮机的蒸汽都经过一个或几个 同时启闭的调节阀,然后进入第一级喷嘴。
D D D h0 hi hi D D
h0 h2 D D hi D hi D D D ri ri ri D D ht D ht D ht
从图中可见,调节级效率曲线具有明显 的波折状。这是因为阀全开时,节流损失小, 效率较高。在其它工况下,通过部分开启阀 的汽流受到较大的节流,使效率下降。
3.喷嘴调节的特点: (1)喷嘴调节的结构较复杂、制造成本 高; (2)工况变动时,调节级汽室温度变化 大,从而增加了由温度变化而引起的热变 形与热应力,限制了机组的运行可靠性和 机动性; (3)在部分负荷下的效率高于节流调 节。 喷嘴调节的应用:大容量机组和背压机组
汽轮机速度级和调节级-概述说明以及解释

汽轮机速度级和调节级-概述说明以及解释1.引言1.1 概述概述部分的内容可以介绍汽轮机速度级和调节级的基本概念和作用。
概述:汽轮机是一种将热能转化为机械能的装置,它广泛应用于发电、航空和工业生产等领域。
而汽轮机的性能和运行稳定性受到许多因素的影响,其中速度级和调节级是关键的组成部分。
速度级是汽轮机中的涡轮工作段,是由转子与定子组成的一对一对的装置。
在速度级中热能被转化为动能,从而推动涡轮转动。
每个速度级都具有不同的压力和温度工况,其设计和运行状态对汽轮机的性能和效率有着重要影响。
调节级是汽轮机中的一种调节机构,用于控制和调节汽轮机的工作状态。
通过调节级的控制,可以使汽轮机在不同负载和工况下保持稳定的运行。
调节级具有不同的分类和功能,根据需要可以选用不同的调节级来实现优化的控制。
速度级和调节级在汽轮机中发挥着重要的作用。
速度级的设计和选取关系到汽轮机的性能和效率,而调节级则保障了汽轮机在不同工况下的稳定运行。
对于汽轮机的设计和运行来说,合理地选择和优化速度级和调节级是非常重要的。
本文将详细介绍汽轮机速度级和调节级的定义、原理、作用和影响因素,并探讨汽轮机速度级的重要性以及调节级的作用和优化方法。
通过深入了解和研究汽轮机的速度级和调节级,可以为汽轮机的性能提升和运行的稳定性提供有益的参考和指导。
1.2 文章结构文章结构部分的内容:本文主要分为引言、正文和结论三个部分。
引言部分概述了本文的内容,并介绍了文章的目的和结构。
正文部分分为两个小节,分别是汽轮机速度级和汽轮机调节级。
在汽轮机速度级部分,我们将详细阐述了其定义和原理,并探讨了它的作用和影响因素。
在汽轮机调节级部分,我们将介绍了调节级的定义和原理,同时对调节级进行了分类和功能的讨论。
最后,在结论部分,我们将强调了汽轮机速度级的重要性,并探讨了汽轮机调节级的作用和优化方法。
通过对这些内容的深入研究和讨论,读者将对汽轮机速度级和调节级有更深入的理解和认识。
汽轮机调节级的工作原理

汽轮机调节级的工作原理汽轮机,听起来是不是有点高大上?其实,咱们生活中很多地方都能看到它的身影,比如发电厂、船舶等等。
今天,我们就来聊聊汽轮机调节级的工作原理。
别担心,咱们用最简单的语言,把这看似复杂的东西说得明明白白。
1. 汽轮机的基本结构1.1 汽轮机的组成首先,汽轮机的结构其实并不复杂。
它主要由定子和转子构成,定子就像是一个“大房子”,而转子就是里面的“旋转小精灵”。
当蒸汽从锅炉里出来,流过汽轮机时,转子就会像电风扇一样开始转动。
简单说,就是蒸汽的能量转化为机械能,带动发电机发电,简直就是“风生水起”。
1.2 调节级的作用好啦,说完了基本结构,接下来咱们来看看调节级的作用。
调节级,顾名思义,就是用来调节蒸汽流量的。
想象一下,你在喝饮料,刚开始一口气喝下去,结果不小心呛到了。
调节级的作用就像是一个小小的阀门,它可以控制蒸汽的流量,确保汽轮机不会“呛着”。
调节流量,让汽轮机在不同的负荷下都能保持良好的工作状态,这可真是个“贴心小棉袄”呢!2. 调节级的工作原理2.1 如何控制蒸汽流量那么,调节级到底是怎么控制蒸汽流量的呢?其实很简单。
当汽轮机需要更多的能量时,调节级就会打开,让更多的蒸汽流进来;反之,如果需要减少能量,调节级就会缩小,减少蒸汽的流入。
这个过程就像你在调节水龙头的开关,轻轻一转,水流的大小就能随心所欲。
2.2 反馈机制的重要性而且,调节级还有一个非常重要的反馈机制,确保蒸汽流量的变化是精确的。
当汽轮机的负荷发生变化时,调节级会迅速感知到,并根据实际情况调整流量。
这就像是一个“聪明的管家”,随时注意着家里的水电使用情况,确保一切都在掌控之中。
3. 调节级的工作状态3.1 工作状态的稳定性调节级的工作状态稳定与否,直接关系到汽轮机的效率和安全。
就像我们骑自行车,如果不把握好平衡,很可能就会摔倒。
因此,调节级需要时刻保持灵敏,确保蒸汽流量的精准控制。
如果出现问题,就会导致汽轮机的负荷不稳定,甚至会影响到整个发电系统,简直是“祸不单行”。
3.3汽轮机的调节方式及调节级变工况

(3)过负荷时,通过旁通阀部分的蒸汽有
节流损失,旁通阀不能全开,效率有所降低;
(4)当开旁通阀时,旁通室压力升高,旁
通级焓降减小,速度比增大,功率减小,效率 降低。
3、旁通调节汽轮机的变 工况曲线压力与流量的关系。
OA为调节阀后(第一级前)
的压力随流量的变化情况。 全开时,流量为 G 0 ,压力
分进汽的,带有部分进汽损失且调节级的余速不
能被利用(调节级后为汽室,蒸汽速度为0),
因此在额定功率下,喷嘴配汽汽轮机的效率比节
流配汽稍低。
主要缺点:定压运行时,调节级和各高压级在
变工况下温度变化大,热应力较大,负荷适应
性差;
应用:定压运行、滑压运行——承担基本负荷、
调峰 定压运行的背压式和调节抽汽式汽轮机宜 采用喷嘴配汽,减少节流损失。
一、节流配汽
1、节流调节:这种调节方式就是用一个或几
个调节阀对进入汽轮机的全部进汽量 D 0 进行调
节,然后流向第一级喷嘴。 进入汽轮机的全部进汽量都受到节流作用。 当机组功率变化时,流量和焓降都要变化。
2、节流调节的热力过程曲线
特点:各级通流面积不变,变工况时各 级级前压力与流量成正比,δht几乎不变,
ht
G G G
i
G G
i
G , G , G
—分别为第一、二、三阀的流量;G——
总流量;
hi
、h i 、 —分别为两全开阀调节级有效焓降、
i
焓值、内效率;
h
i
、 h 、 i
i
—分别为部分开启阀调节级有效焓降、
Dx
h0
汽轮机调节原理 pdf

汽轮机调节原理 pdf1. 汽轮机调节原理简介汽轮机是现代化工厂、发电厂等能源行业的重要设备之一,其作用是将热能转换成动能,实现能源的有效利用。
汽轮机调节原理是汽轮机稳定工作的关键,调节原理是否正确,直接影响汽轮机的工作效率和寿命。
2. 汽轮机调节控制系统汽轮机的调节控制系统由调速系统和调负荷系统两大部分组成。
调速系统主要负责控制汽轮机的转速,保证汽轮机在额定负荷的工作条件下,转速能够稳定在某一个值。
调负荷系统则负责根据负荷变化情况,调整汽轮机的出力,确保汽轮机在保持转速不变的情况下,能够适时地实现负荷要求。
3. 调速系统汽轮机的调速系统一般采用电子控制调速系统,其控制原理是通过改变汽轮机进气和出气的截面积,来控制汽轮机的进出气流量。
制动电机驱动调速阀门的位置,控制汽轮机进气和出气的截面积,从而调整汽轮机的转速。
如果转速太高,控制系统会向制动电机发送信号,使得调速阀门关闭一部分,进而减小汽轮机的进出气流量,降低转速。
如果转速太低,调速系统则会向制动电机发送信号,使得调速阀门打开一部分,增加汽轮机的进出气流量,提高转速。
4. 调负荷系统调负荷系统分为调节汽门、调节燃料供给和调节加热制冷等三个部分。
调节汽门是指通过改变汽门的截面积,来调整汽轮机的出力。
调节燃料供给是指通过改变燃料供给量,来控制燃烧效率和功率输出。
调节加热制冷是指根据进出口蒸汽的温度和压力,调整加热制冷水的供应量,从而使汽轮机出力保持在目标值。
5. 汽轮机调节系统的参数控制汽轮机调节系统是一个复杂的控制系统,其控制参数的优化是实现高效、稳定运行的关键。
目前,优化控制方法主要有基于经验公式、统计学方法、神经网络方法和模糊控制方法等。
这些方法可以通过电脑控制汽轮机调节系统,研发出更加智能化、高效化的汽轮机调节系统。
6. 结论汽轮机调节控制系统是保证汽轮机高效、稳定运行的关键。
正确认识汽轮机调节原理,掌握汽轮机调节原理与汽轮机工作效率的关系,能够有效地保证汽轮机的运行效能和寿命。
汽轮机的调节方式及调节级变工况

(2)工况变动时,各级焓降(除最末级外)变 化不大,故各级前的温度变化很小,从而减小了 由温度变化而引起的热变形与热应力,提高了机 组的运行可靠性和机动性;
(3)在部分负荷下由于节流损失,机组经 济性下降。
节流调节的应用:节流调节一般用在小机 组以及承担基本负荷的大型机组上。
D D
ri
从图中可见,调节级效率曲线具有明显的 波折状。这是因为阀全开时,节流损失小,效率 较高。在其它工况下,通过部分开启阀的汽流受 到较大的节流,使效率下降。
3.喷嘴调节的特点:
(1)喷嘴调节的结构较复杂、制造成 本高;
(2)工况变动时,调节级汽室温度变 化大,从而增加了由温度变化而引起的热 变形与热应力,限制了机组的运行可靠性 和机动性;
第二组喷嘴将从非临界状态过渡到临界状态。
在喷嘴达临界之前,喷嘴压力比随流量的增 加而减小,喷嘴达临界后压力比则保持不变。
图3--17 调节级变工况曲线
第三调节阀开启过程中: 第三组喷嘴中一直达不到临界状态;喷嘴压力比随
流量的增大而减小。 第四调节阀开启过程中: 第四调节阀为过负荷阀,第四组喷嘴的变工况特
1.调节级的变工况分析
第一调节阀开启过程中:
阀后压力(即喷嘴前压力)与流量成正比,当 阀门全开时, 达最大。
焓降的变化:由于压力比保持不变,所以焓 降也保持不变。但随着第二、第三调节阀的开启, 焓降将逐渐减小。
调节级后压力一直小于临界压力,故通过该 组喷嘴的流量为临界流量。
第二调节阀开启过程中:
第三节 汽轮机的调节方式及调 节级变工况
汽轮机的功率方程 汽轮机常用的调节方式:
Pel
DH trim g
3600
【2019年整理】18汽轮机的调节方式及调节级变工况

从图中可见,调节级效率曲线具有明显 的波折状。这是因为阀全开时,节流损失小, 效率较高。在其它工况下,通过部分开启阀 的汽流受到较大的节流,使效率下降。
3.喷嘴调节的特点:
(1)喷嘴调节的结构较复杂、制造成本 高;
(2)工况变动时,调节级汽室温度变化 大,从而增加了由温度变化而引起的热变 形与热应力,限制了机组的运行可靠性和 机动性;
图3--17 调节级变工况曲线
第三调节阀开启过程中: 第三组喷嘴中一直达不到临界状态;喷嘴压力比随
流量的增大而减小。 第四调节阀开启过程中:
第四调节阀为过负荷阀,第四组喷嘴的变工况特 性与第三组喷嘴相同。
综上所述,调节级焓降是随汽轮机流量的变化而改 变的。
流量增加时,部分开启阀门所控制的喷嘴组焓降增 大,全开阀门所控制的喷嘴组焓降减小。
(1)节流调节的结构较简单、制造成本低;
(2)工况变动时,各级焓降(除最末级外)变化 不大,故各级前的温度变化很小,从而减小了由 温度变化而引起的热变形与热应力,提高了机组 的运行可靠性和机动性;
(3)在部分负荷下由于节流损失,机组经济 性下降。
节流调节的应用:节流调节一般用在小机组 以及承担基本负荷的大型机组上。
(3)在部分负荷下的效率高于节流调 节。
喷嘴调节的应用:大容量机组和背压机组
焓降的变化:由于压力比保持不变,所以焓降 也保持不变。但随着第二、第三调节阀的开启,焓 降将逐渐减小。
调节级后压力一直小于临界压力,故通过该组 喷嘴的流量为临界流量。
第二调节阀开启过程中:
第二组喷嘴将从非临界状态过渡到临界状态。
在喷嘴达临界之前,喷嘴压力比随流量的增 加而减小,喷嘴达临界后压力比则保持不变。
第三节 汽轮机的调节方式及调 节级变工况
汽轮机在变工况下工作

d1 tan( )
26
2、喷嘴调节凝汽式汽轮机的工况图 (1)工况图:如下图所示。由于喷嘴调节汽轮机的效率曲线呈波折形, 所以汽耗率和电效率曲线也呈波折形。试验证明,汽耗量与功率的关系 近似为一直线(ABC)。其中B点对应额定负荷,BC为过负荷。
27
(2)汽耗特性方程: 当功率小于经济功率时,
分析:式(3-28)符合调节级的各项假设,μi具有通用性
式(3-29)中μi取决于不同工况下级内反动度
17
三、滑压调节
1,滑压调节:
定义:汽轮机所有调节阀全开,随负荷的改变,调整锅炉燃烧量和给水 量,改变锅炉出口蒸汽压力(汽温不变),以适应汽轮机负荷的变化。
峰谷差问题;电网调峰:抽水蓄能,火电。 而火电调峰办法: (1)低负荷运行; (2)两班制启停。
如“2-4”,因为喷嘴相通。
7
(2)阀2的临界压力:pcIIr / p0 如 r-s-b 所示;
(3)喷嘴组2 后的压力p2 / p0如 2-s-7 所示;
其中,点s之前, p2> pcr ,流量为亚临界, 点s之后,p2 < pcr ,流量为临界。
(4)通过喷嘴组的流量:如BB’C’D’所示。
10
D 3600 Pel 3600 Pi
Htriaxg Htri
而汽轮机的功率可分为两部分
m
Pe Pi
Pi
Pm
Pi
1 Pm
Pi
g
Pel Pe
Pi Pe Pm=Pel g Pm
(3-30)
24
而汽轮机的内效率ri 等于汽轮机通流部分的内效率ri 与节流效率th 的乘积, 式(3-30)可写成:
Gi 0.648Ani1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)过负荷时,通过旁通阀部分的蒸汽有
节流损失,旁通阀不能全开,效率有所降低;
(4)当开旁通阀时,旁通室压力升高,旁
通级焓降减小,速度比增大,功率减小,效率 降低。
优点:无调节级,结构简单,成本低;流量 变化时,各级温度变化小,负荷适应性较好; 应用: 滑压运行 —— 承担基本负荷,还可用于调峰;
定压运行——承担基本负荷。
★旁通调节
1、旁通调节有外旁通调节和内旁通调节
外旁通调节
内旁通调节
2、旁通调节的工作原理:
( 1 )当经济功率时,调节阀 2 全开,旁通
mac '' i mac t
i' th
式中, i' ——通流部分的相对内效率;
th —— 调节阀的节流效率,其大小
与通流部分结构无关,它是蒸汽初终参数和流量 的函数。
节流效率曲线
同一背压下,流 量比设计值小得 越多,调节汽门 中的节流越大, 节流效率越低。 同一流量下,背 压越高,节流效 率越低,
因此在额定功率下,喷嘴配汽汽轮机的效率比节
流配汽稍低。
主要缺点:定压运行时,调节级和各高压级在
变工况下温度变化大,热应力较大,负荷适应
性差;
应用:定压运行、滑压运行——承担基本负荷、
调峰 定压运行的背压式和调节抽汽式汽轮机宜 采用喷嘴配汽,减少节流损失。
调节级的变工况 先假定:(1)调节级的反动 度 m 0 , p11 p21 ; 各阀无重叠度。 调节级的热力过程曲线
在一工况下,第一、二阀全
开 p0 ,阀后压力为 p 0 ' ; p0
第三阀部分开启,阀后压力
' 为 p0 (因有节流) p"0 p0
• 两全开阀的调节级热力过程曲线如 0’2’ ,理想焓
降
ht ht ht ,有效焓降
' h2
hi ,终焓为 hi
Ω、 x1 、ηi 基本不变(凝汽式汽轮机),
但整机效率降低。
缺点:低负荷节流损失大,理想焓降减
小很多。
3、节流调节的效率
蒸汽经节流之后,蒸汽焓值不变,压力降
低( p0 降到
i
'' p0
),节流后的内效率为:
mac '' i mac '' t mac '' t mac t
h h h h h h
h0 混 合 后 的 焓 值 ,而
,
hx 。
D1h1 Dx h0 D1 (h0 hi1 ) Dx h0 D1 hx h0 hi1 D1 Dx D D
注意:( 1 ) Dx 不能太小,因旁通阀开
启后,压力 p x 升高,温度 t 升高。为了 x 冷却旁通级,必需有一定流量通过旁通级组, 以带走热量;
主汽门,依次开启和关闭调节阀以调节汽轮机的
进汽量。
在部分负荷下,只有一个调节阀部分开启,其 它全开阀门节流减到最小,效率较高。
喷嘴调节的特点: 优点:定压运行时,喷嘴配汽比节流配汽节 流损失小,效率较高。 缺点:喷嘴组间存在间壁,使调节级总是部
分进汽的,带有部分进汽损失且调节级的余速不
能被利用(调节级后为汽室,蒸汽速度为0),
§3.3
配汽方式及其 对定压运行机组变工况的影响
汽轮机的内功率为 P i D0 hti B D0 当初参数不变或变化不大时,汽轮机的内
功率就取决于进汽量 D0 的大小。
因此,对汽轮机的功率进行调节,主要是
对进汽量 D0 进行调节。
常用的配汽方式有:节流配汽、喷嘴配汽、 旁通配汽、热力
过 程 曲 线 如 0”2” , 理 想 焓
降
ht ,有效焓降为 hi ,
'' 终焓为 h2
。 .
• 调节级后压力为 P2 ,混 合后的焓值为 h2
'' h2
调节级的内效率和流量计算: 根据热力过程曲线,有热平衡:
(G G )h G h (G G G )h2 Gh2
1、调节级的内效率:
hi h0 h2 G G hi G hi G G G i i i ht ht G ht G ht G G
' 2 " 2
混合后的焓值
' " (G G )h2 G h2 1 h2 (G G )(h0 hi ) G (h0 hi ) G G
G G G h0 hi hi G G
流量为oa,在 G0 时达a;
过负荷时,旁通级流
量呈双曲线减少。
4、旁通调节的热力过程曲线
当旁通阀投入后,其热力过程
曲线如图所示:其中,D1 为通过调
节阀进入旁通级的流量,过程线为
01 线 , 终 焓 为 h1 , 有 效 焓 降 为 hi1 h0 h1 ;Dx 为通过旁通 阀进入旁通室的流量,压力为 终焓 px 为 为
3 、旁通调节汽轮机的变 工况曲线压力与流量的关系。
OA为调节阀后(第一级前)
的压力随流量的变化情况。 全开时,流量为 G0 ,压力
为
' p0 ;
OB为旁通室的压力变化情 况。当流量为 为
p x0 ;
p x 升高
G0 , 压 力
过负荷时,流量增加,压
力
。
图b为流量的变化曲线: 当流量从0- G0 时,
一、节流配汽
1、节流调节:这种调节方式就是用一个或几
个调节阀对进入汽轮机的全部进汽量 D0 进行调 节,然后流向第一级喷嘴。
进入汽轮机的全部进汽量都受到节流作用。 当机组功率变化时,流量和焓降都要变化。
2、节流调节的热力过程曲线
特点:各级通流面积不变,变工况时各 级级前压力与流量成正比,δht几乎不变,
( 2 )旁通调节不能独立使用,只 能联合使用。
5、内旁通
这种调节方式和喷嘴调节联合使用。
需要过负荷时,打开内旁通阀,使调节级
后的蒸汽进入某中间作功。
二、喷嘴调节
全开自动主汽门
第一级为调节级,调节级分为几个喷嘴组(3~ 6),一个调节汽门控制一个喷嘴组。
当汽轮机负荷变化时,汽流先经过全开的自动