5.汽轮机变工况特性_(1)

合集下载

汽轮机的变工况

汽轮机的变工况

* Gcr1 p01 * Gcr p0
二、缩放喷管的变工况 设计背压p1:保持蒸汽在斜切部分不膨胀 的最低背压。 特征背压p1a:喷嘴喉部保持临界状态的 最高背压。 极限背压p1d:在斜切部分膨胀达到极限 时对应的压力。
膨胀度
图3-5 速度系数随压力比的变化曲线
第二节
级与级组的变工况
亚临界工况下,按弗留格尔公式计算。末级p0
沿双曲线变化。
倒数第三级之前的各级pg1<<p01 ,pz <<p0
2 p01 p z21 T0 G1 G p02 p z2 T01
=
p z1 2 p 1 ( ) p01 T0 p z 2 T01 2 p0 1 ( ) p0
1 m1 1 m

前提条件: 亚临界工况下比容变化较小;
近似计算中,对上式近似假定: (1)工况变动时,反动级的反动度基本不变,冲
动级的速比变化不大时,反动度的变化较小, (2)亚临界级的较大
m m1 m 0 p2
p0
p 较大, 0 p2 较小,
忽略大根号内分子、分母的第二项。
四、压力与流量关系式的应用
1. 应用条件
1) 通汽面积不变;
若因结垢或腐蚀等使变工况下通汽面积有了改 变,应进行修正。即:
Gc1 p 01 Gc p0 T0 T01
G1 G
2 2 p01 p g1 2 2 p0 p g
T0 T01
A1 a A
——面积变化之比。
对于调节级,只有当第一调节汽门开大或关小
§3.1 喷嘴的变工况特性 分析:喷嘴前后参数与流量之间的变化关系 激波:缩放喷嘴背压逐渐高于设计值时,将先 再喷嘴出口处,后在喷嘴段渐放段内产生冲波,超 音速汽流经过冲波,流速大大降低,损失很大,

《单元机组运行》试题

《单元机组运行》试题

单元机组运行问答题一.填空:1. 电厂热能有效利用程度低的原因是热能在转换过程中存在着热量损失、做功能力损失、功率损耗、工质流失、厂用电消耗等五项损失。

2. 提高火电厂经济性有提高蒸汽初参数,降低蒸汽终参数;增大汽轮机的机容量;改进热力循环和回热系统连接方式;提高单元机组运行的经济性等四大途径。

3. 火电厂经济运行的最终目的是使全厂总的发电成本最低,衡量全厂经济性好坏的综合性指标是发电的单位成本。

4. 火电厂经济运行的关键是减少燃料消耗量,此外,节电、节水、加强对设备的改造、保养及提高检修质量也是火电厂经济运行的重要方面。

5. 单元机组经济运行的目的是节省燃料、减少电力消耗,提高单元机组的净效率。

6. 单元机组经济运行的主要经济指标是厂用电率、发电标准煤耗率、供电标准煤耗率。

其中考核指标为:供电煤耗率;参考指标为发电煤耗率、厂用电率。

7.影响单元机组经济运行的主要因素是锅炉效率、管道效率、循环热效率、汽轮机相对内效率、汽轮机机械效率、发电机效率。

其中影响最大的是:循环热效率、锅炉效率、汽轮机相对内效率。

8. 锅炉方面影响全厂经济性的主要因素是:蒸汽参数、锅炉各项热损失、辅机电耗、全厂各台锅炉的负荷分配、点火和助燃用油。

9. 火电厂最基本的循环是朗肯循环,影响朗肯循环热效率的因素是:过仍霍汽的初、终参数。

10. 冷源损失是火电厂效率不高的主要原因,降低冷源损失,是提高火电厂热效率的主要途径。

11.汽轮机的绝对内效率等于循环热效率和相对内效率的乘积,采用给水回热循环使汽轮机的绝对内效率显著提高的原因是:提高了循环热效率、提高了汽轮机的相对内效率。

12. 采用中间再热循环的目的是降低终湿度、提高循环热效率。

13. 并列运行锅炉之间负荷的经济分配是按燃料消耗微增率相等的原则;锅炉稳定运行的最低负荷值。

14. 为提高机组运行经济性,要提高自动装置和加热器的投入率。

15. 提高机组运行经济性的四种方式是:压红线运行、合理的启停方式、合理的运行方式、经济调度。

汽轮机的变工况

汽轮机的变工况
5)机组低负荷运行时,给水的压力和流量同时降低,所以与定 压相比,能耗明显降低。
二、缺点:
1)负荷变动时,汽包内压力和温度随着变化,汽包的应力问题 比定压运行严重,成为限制机组负荷变动速度的主要因素 2)机组负荷变动,是靠锅炉调整燃烧和给水进行的,而锅炉是 热惯性大的设备,所以,负荷响应的速度慢 3)低负荷时降低了主蒸汽压力,从而降低了机组的循环热效率
G01 G0
p021
p
2 g1
T0
p02 pg2 T01
G01、P01、T01 、Pg1 变工况下级组流量、初压、初温、背压 G0、P0、T0、Pg1 设计工况下级组流量、初压、初温、背压
若不考虑温度变化(滑压运行):
G01 G0
p021 pg21
p02
p
2 g
1.级组的临界工况
• 某级处于临界状态,或者级后压力很低:
一、与定压运行相比,滑压运行的效益主要表现在: 1)由于压力随负荷降低,蒸汽的比热减小,过热热减小。所以 过热蒸汽温度在较宽的负荷范围内都维持了稳定(例如:在40100%MCR内可维持额定温度); 2)由于汽轮机节流损失小,高压缸排汽温度稳定(亚临界机组, 负荷从100%降低到50%MCR,高缸排汽温度只降低了60度左右, 所以再热气温也容易维持稳定);
变工况
汽轮机的设计值:效率最高
设计工况:经济工况
设计功率:经济功率
运行中参数不可能始终保持设计值→变工况→汽机热力 过程变化(流量、压力、温度、比焓降、效率等)、零 部件受力变化、热应力/热膨胀/热变形情况变化 典型变工况:启动、停机、故障
一、级组的变工况
一、定压运行与滑压运行
定压运行:汽轮机在不同工况运行时,依靠改变调节汽门的开 度来改变级组的功率。而汽轮机前的新奇压力和新汽温度维持 不变。(汽机主调锅炉跟随,汽轮机通过改变调门位置改变电 负荷,锅炉维持主蒸汽压力——炉跟机)

第三章 汽轮机的变工况特性-第一节 喷嘴的变工况特性

第三章 汽轮机的变工况特性-第一节  喷嘴的变工况特性

第三章 汽轮机的变工况特性汽轮机的热力设计就是在已经确定初终参数、功率和转速的条件下,计算和确定蒸汽流量,级数,各级尺寸、参数和效率,得出各级和全机的热力过程线等。

汽轮机在设计参数下运行称为汽轮机的设计工况。

由于汽轮机各级的主要尺寸基本上是按照设计工况的要求确定的,所以一般在设计工况下汽轮机的内效率达最高值,因此设计工况也称为经济工况。

汽轮机运行时所发出的功率,将根据外界的需要而变化,汽轮机的初终参数和转速也有可能变化,从而引起汽轮机的蒸汽流量和各级参数、效率等变化。

汽轮机在偏离设计参数的条件下运行,称为汽轮机的变工况。

,汽轮机工况变动时,各级蒸汽流量、压力、温度、比焓降和效率等都可能发生变化,零、部件的受力、热膨胀和热变形也都有可能变化。

为了保证汽轮机安全、经济地运行,就必须弄清汽轮机的变工况特性。

电站汽轮机是固定转速汽轮机,限于篇幅,这里仅讨论等转速汽轮机的变工况。

主要讨论蒸汽流量变化和初终参数变化时的变工况,其中也就包含了功率变化问题。

汽轮机变工况是以级的交工况和喷嘲、动叶的变工况为基础的,因此,必须首先介绍喷嘴、动叶的变工况。

第一节 喷嘴的变工况特性缩放嘴嘴的交工况已由流体力学介绍道了,其中一个重要概念,就是缩放喷嘴背压逐渐高于设计值时,将先在喷嘴出口处,后在喷嘴渐放段内产生冲波(或称激波)。

超音速汽流经过冲波,流速大为降低,损失很大。

所以,缩放喷嘴处于背压高于设计值的工况下运行时效率很低。

缩放喷嘴的速度系数ϕ与压比n ε、膨胀度f 的关系如图3.1.1所示。

膨胀度cn A Af =,表示缩放喷嘴出口而积n A ,与喉部临界截面而积c A 之比。

每条曲线上ϕ最高的点(图示a,b,c,d)是该缩放喷嘴的设计工况点。

由图可见,缩放喷嘴设计压比n ε越小,膨胀度f 越大,而f 越大的缩放喷嘴在实际压比1n ε增大时,ϕ降得越多,因而喷嘴效率也降得越多。

渐缩喷嘴背压高于设计值时不会出现冲波,速度系数ϕ仍然较高,如图3.1.1中最上面一根虚线所示,因而变工况效率仍然较高,仅在n ε小于临界压比时,ϕ与效率才下降。

汽轮机原理思考题1

汽轮机原理思考题1

汽轮机原理思考题11.汽轮机有那些⽤途,我国的汽轮机是如何进⾏分类的,其型号和型式如何表⽰?汽轮机的⽤途:把蒸汽的热能转化为机械能⽤于发电;除此之外,还⽤于⼤型舰船的动⼒装备,并⼴泛作为⼯业动⼒源,⽤于驱动⿎风机、泵、压缩机等设备。

汽轮机的分类:A、按做功原理分类:冲动式汽轮机、反动式汽轮机。

B、按热⼒过程特性分类:凝汽式汽轮机、背压式汽轮机、调整抽汽式汽轮机、中间再热式汽轮机。

C、按蒸汽压⼒分类:低压汽轮机,新汽压⼒1.2~2MPa中压汽轮机,新汽压⼒2.1~4.0MPa⾼压汽轮机,新汽压⼒8.1~12.5MPa超⾼压汽轮机,新汽压⼒12.6~15.0MPa亚临界压⼒汽轮机,新汽压⼒15.1~22.5MPa超临界压⼒汽轮机,新汽压⼒⼤于22.1MPa超超临界压⼒汽轮机,新汽压⼒27MPa以上或蒸汽温度超过600/620℃汽轮机的型号表⽰:我国制造的汽轮机的型号有三部分。

第⼀部分:由汉语拼⾳表⽰汽轮机的形式(如表⼀),由数字表⽰汽轮机的容量(MW);第⼆部分:⽤⼏组由斜线分隔的数字分别表⽰新蒸汽参数、再热蒸汽参数、供热蒸汽参数等;第三部分:⼚家设计序号。

2.汽轮机课程研究的主要内容有那些,如何从科学研究及⼯程应⽤的不同⾓度学习该课程?研究内容:(1)绪论:本课程的主要内容及在⽣产实践中的应⽤;国内外汽轮机的展及应⽤;汽轮机的型式、分类及型号;汽轮机装置及现代⼤型单元制机组的概念;本课程的学习要求及学习⽅法。

(2)汽轮机级的⼯作原理:⼀元流动的⼏个主要⽅程及应⽤;蒸汽在喷嘴及动叶中的流动、速度三⾓形及计算;级的轮周功率和轮周效率;级内损失和级的相对内效率;级的热⼒设计原理。

(3)多级汽轮机:多级汽轮机的⼯作过程及其特点;进、排汽机构的流动阻⼒损失;汽轮机及其装置的经济性评价指标;轴封及其系统;轴向推⼒及平衡;汽轮机的极限功率及其影响因素。

(4)汽轮机变⼯况特性:喷嘴变⼯况时流量与压⼒的关系;级与级组的变⼯况特性;配汽⽅式对汽轮机变⼯况运⾏经济性和安全性的影响;滑压运⾏经(5)汽轮机的凝汽设备:凝汽设备的⼯作原理及任务;凝汽器的真空与传热;凝汽器的结构布置;抽⽓器;凝汽器变⼯况。

汽轮机变工况

汽轮机变工况

第三章第三章汽轮机的变工况chapter 3 The changing condition of Steam turbine设计工况:运行时各种参数都保持设计值。

变工况:偏离设计值的工况。

经济功率:汽轮机在设计条件下所发出的功率。

额定功率:汽轮机长期运行所能连续发出的最大功率。

研究目的:不同工况下热力过程,蒸汽流量、蒸汽参数的变化,不同调节方式对汽轮机工作的影响;保证机组安全、经济运行。

第一节喷嘴的变工况The changing condition of a nozzle分析:喷嘴前后参数与流量之间的变化关系一、渐缩喷嘴的变工况The changing condition of a contracting nozzle试验:调整喷嘴前后阀门,改变初压和背压,测取流量的变化。

(一)(一)初压P*0不变而背压P1变化(1)(1)εn=1,P1= P*0,G=0,a-b,d(2)(2)0<εn<εcr,G<G cr,a-b1-c1,1(3)(3)εn=εcr,G=G cr,a-b2-c2,e(4)(4)ε1d<εn<εcr,G=G cr,a-b3-c3,3(5)(5)εn=ε1d,G=G cr,a-c4,4(6)(6)εn<ε1d,G=G cr,a-c4-c5,5列椭圆方程:(二)(二)流量网图改变p*0可得出一系列曲线,即流量网图横坐标:ε1= p1/p*0m;纵坐标:βm=G/G 0m;参变量:ε0= p*01 /p*0mp*0m、G*0m:分别为初压最大值和与之相应的临界流量的最大值。

例1:已知:p0 =9MPa ,p01 =7.2MPa,p1 =6.3MPa,p11 =4.5MPa求:流量的变化。

解:取=9Mpa原工况:ε0= p0 /p0m =1,ε1=p1 /p0m=0.7查出:βm =G/G0m=0.94新工况:ε01= p01 /p0m =0.8,ε11=p11 /p0m=0.5查出:βm1 =0.78则:例2:已知:p0 =1MPa ,p01 =0.9MPa,p1 =0.7 MPa,p11 =0.8Mpa,t0 =320℃,t01 =305℃求:流量的变化。

汽轮机原理 第五章 汽轮机的变工况特性

汽轮机原理 第五章 汽轮机的变工况特性
0 0 0 01
k 1 k
0 p0 p 0 0 p01 p01
第一节 喷嘴的变工况特性
近似认为
T00 T0 ,有 0 T01 T01
Gc1 p01 Gc p0
忽略温度变化则有:
T0 T01
Gc1 p01 Gc p0
结论:喷嘴的临界流量正比于初压或滞止初压,反比于喷嘴前热力 学温度的平方根或滞止热力学温度的平方根。
第二节 级与级组的变工况特性 1.2 动叶为临界 如级变工况前后喷嘴均为亚临界,动叶均为临界,则仿照喷嘴的变 工况公式,以动叶的相对热力参数带入,得到变工况前后动叶临界流量 的比值:
0 G c1 p11 0 Gc p1
T10 p11 0 T11 p1
T1 T11
略去温度影响,得
0 G c1 p11 p11 0 Gc p1 p1
第一节 喷嘴的变工况特性
虚线BO, 虽然对于渐缩喷嘴没有实际 意义,但对于缩放喷嘴是有实际意义的。 CBO曲线上各点,表示蒸汽初参数、物性 和喷嘴出口面积给定时,不同背压时,各 缩放喷嘴的设计工况点。 喷嘴入口蒸汽参数不变,背压越低, 喷嘴的膨胀度f=An/Ac就会越大,出口截面 积An维持不变,喷嘴喉部截面Ac也就越小。 当P1→0时,f→∞, Ac →0,Gc→0。

n
2 k
n
k 1 k

2
以椭圆公式代替精确公式计算流量比的误差(‰)
压比 误差 0.600 -0.35 0.700 -2.26 0.750 -3.34 0.800 -4.36 0.850 -5.96 0.875 -6.64 0.900 -7.56 0.925 -7.99 0.950 -8.66 0.975 -9.33 0.985 -9.60 0.990 -11.2 1.000 0

第三章 汽轮机的变工况特性-第二节 级与级组的变工况特性

第三章 汽轮机的变工况特性-第二节  级与级组的变工况特性

第二节 级与级组的变工况特性在了解喷嘴与动叶的变工况特性后,就可分析级与级组的变工况特性。

一、级内压力与流量的关系分级内为临界工况与亚临界工况两种情况来讨论。

1.级内为临界工况级内的喷嘴叶栅或动叶栅两者之一的流速达到或超过临界速度,就称该工况为级的临界工况。

1)级的工况变化前后喷嘴流速均达到或超过临界值时,不论动叶中流速是否达到临界值,此级的流量与滞止初压或初压成正比,与滞止初温或初温的平方根成反比,即01001010000011T T P P T T P P G G c == (3.2.1) 若不考虑温度变化,则00100011p pp p G G C c == (3.2.2)2)级的工况变化前后喷嘴流速均未达到临界值而动叶内流速均达到或超过临界值时,只要采用动叶的相对热力参数,喷嘴变工况的结论都可用在动叶上,故1111111101010111T T P P T T p p G G c c == (3.2.3) 若不考虑温度变化,则11101111p pp p G G c c == (3.2.4)若冲动级动叶顶部采用曲径汽封,则叶顶漏汽量极小,漏汽效率近于[]491,其他情况下叶顶漏汽也不大。

为了简化,可以认为喷嘴流量等于动叶流量,这时喷嘴在设计工况和变工况下的连续方程可写成c n n G p A μ=1c n n G p A μ=由于喷嘴在设计工况和变工况下处于亚临界工况,故斜切部分没有偏转,喷嘴出口面积n A 不变。

将上两式相比后代入式(3.2.3)得1c c G G==≈对于动叶处于临界工况的凝汽式汽轮机末级是可行的,例如流量增大20%时,其误差小于0.24%。

则上式变为01010010000011T T P P T T p p G G c c == (3.2.5) 若不考虑温度变化的影响,则00100011p pp p G G c c == (3.2.6)可见级处于临界工况时,级的流量与滞止初压或初压成正比,与滞止初温或初温的平方根成反比;若不考虑温度变化,则流量只与滞止初压或初压成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


背压式汽轮机除调节级比焓降变化外,最后几级的比焓降也 发生变化,负荷变化越大,则受影响的级数越多。

级的反动度变化规律

固定转速汽轮机反动度变化主要由级的比焓降变 化引起;
级的比焓降减小,即速比 xa 增大时,反动度增大; 级的比焓降增大,即速比 xa 减小时,反动度减小; 设计反动度较小的级,比焓降变化时,反动度变 化较大;反之,变化较小;反动级的反动度基本 不变; 凝汽式汽轮机末级(临界工况),流量不变, pc 降低,反动度增大;pc 升高,反动度减小。
(a)比焓降减小;(b)比焓降增大
第四节 配汽方式及其对定压运行机组变工况的影响



配汽方式概述 节流配汽 喷嘴配汽 调节级压力与流量关系 配汽方式对定压运行级组变工况的影响 轴向推力的变化规律
ห้องสมุดไป่ตู้
变工况前
k 1 k 1 k p p k k 2 2 k ht p0 v0 1 RT0 1 ( ) k 1 p0 p0 k 1
变工况后
k 1 k 1 k k p k p 21 21 k ht1 p01v011 RT0 1 ( ) k 1 p01 p01 k 1
G G Gc 0 G0 m Gc G0 m m 0
2
1 c 0 n c 1 c 0 0
m、1、 0之间关系的三维显示为流量锥,二维表
示为流量网图。(oad为等腰直角三角形)
m
d
c
0
n 1d 1 1 1d

2
1、当初压不变时
G 0.648 d An cr
* * p0 0
2、初终参数同时改变时
* d 1 p 01 G1 * G 1 p0
T0* * T01 T0* * T01
p1 在0 ~ p1d 时, d 1 d 1

几个概念
级组:一些流量相等,通流面积不随工况而变化(或变化 程度相同)的依次串联排列的若干级的组合; 亚临界级组:级组各级的汽流速度均小于临界速度的级组; 临界工况级组:级组内至少有一列叶栅的出口速度达到或 超过临界速度; 级组临界压比:临界工况机组中某一级(一般是最末级) 的喷嘴或动叶)流速刚达到临界速度时,级组前后压比称 为 ~。
三、渐缩喷嘴 初压、背压与流量的关系

函数 G f ( p0 , p1 ) 关系曲线(流量网图)
流量网图

流量锥
在实际计算中,大都采用图解法计算流量,即使用流 量锥或是流量网图。
假设最大初压为p0m,相应的最大临界流量为G0m
0 p0 0 0 p0 m
相对初压 相对背压
1 m
p1 0 p0 m
N i Ghti
= BG
这就说明:在计算汽轮机各中间级的变动工况时,不需要逐级进行详细计算, 只需求得各级前的压力,然后将热力过程曲线平移即可。而调节级和末级的 变动工况,则要进行详细计算。
结论:

凝汽式汽轮机初压、背压均与流量成正比的非调节级,
流量变化时级的理想比焓降基本不变; 对凝汽式汽轮机的末级,G G c min 处,虽p0正比于 G,但背压 pc不与G成正比,若pc不变,则流量增大, 比焓降增大;反之,流量减小,比焓降减小; 对凝汽式汽轮机的末级, G G c min 处,虽p0与G的 关系为双曲线关系,流量下降时,比焓降减得稍慢。
p01 G1 a p0 G


用于运行分析
监视汽轮机通流部分运行是否正常; 可以推算不同流量(功率)时各级的压差和比焓降,从而计 算出相应的功率、效率及零部件的受力情况,也可以由压力 推算出通过各级的流量。
五、级的比焓降和反动度变化规律
ca 2ht*
k 1 k p2 2k * * p0 v0 1 * p k 1 0
汽轮机原理
Steam Turbine Theory
第三章 汽轮机的变工况特性
主要内容




概述 喷嘴的变工况特性 级与级组的变工况特性 配汽方式及其对定压运行机组变工况的影响 滑压运行的经济性与安全性 初终参数变化对汽轮机工作的影响 汽轮机的工况图
第一节 概 述

设计工况:指汽轮机在设计参数下运行的工况,也
一、渐缩喷嘴初压不变时背压与流量的关系
其初压及出口面积不变时,通过喷嘴的流量为:
n c时 G n An
2 k 1 0 k 2k p0 k n 0 n k 1 v0 0 0 p0 / v0
n c时 G Gc 0.648An
一,凝汽式汽轮机
根据前面的讨论可知,当工况变动时,通过级的流量与级前压力成 正比,即
G1 p01 p 21 p2 G p0
所以
p 2 p 21 p0 p01
上式表明,当工况变动时,凝汽式汽轮机各中间级前后压力比不变。这样,
代入式焓降表达式后,级的理想焓降不变。当然,级的速度比和级效率也不 变。 而级的内功率为:
* Gcr1 p 01 G1 * G Gcr p0
第三节、级与级组的变工况特性

级内压力与流量的关系 级组压力与流量的关系 各级的p0-G曲线 压力与流量关系式的应用 级的比焓降和反动度变化规律 撞击损失
一、级内压力与流量的关系

级内为临界工况
级内的喷嘴或动叶栅两者之一的流速达到或超过临界速度。


二,背压式汽轮机
1,如果背压式汽轮机最后一级达临界,则各级前的压力与流量成正比。其 焓降、效率、反动度、功率的变化规律和凝汽式汽轮机各中间级一样。 2,但是,背压式汽轮机的末级一般不会达临界,其压力与流量的关系应按 弗留格尔公式进行计算
2 2 p01 pz G1 1 a 2 2 p0 pz G


总结:
采用喷嘴调节的凝汽式汽轮机,当流量改变时,比焓降的变
化主要发生在调节级和最后一级中;所有中间级在流量变化 时,比焓降近乎不变;但在低负荷时,中间级比焓降也会变 小。

当流量增加时,调节级焓降减小,末级焓降增加,各中间级
焓降近乎不变;

当流量减小时,调节级焓降增大,末级焓降减小,各中间级 焓降近乎不变;
将BC段用椭圆曲线近似
G G c p1 pc p0 p c 0
2
G Gcr A G1 B
1
2
2
n c G 1 1 Gc c
C pc p1 p1=p0 p
二、渐缩喷嘴前后参数都变化时的流量变化

设计工况和变工况下喷嘴均为临界工况
0 Gc1 p01 0 Gc p0
T00 p01 0 T01 p0
T0 T01
0 Gc1 p01 p01 0 忽略温度变化: Gc p0 p0
结论: 1、不同工况下喷嘴临界流量正比于滞止初压或初压,反比 与喷嘴前滞止热力学温度或热力学温度平方根。 2、在电站汽轮机中只有凝汽式汽轮机的最末一、二级和调 节级的喷嘴可能超过音速。

设计工况和变工况下喷嘴均为亚临界工况
0 0 0 1 p01 G1 0.648 1 p01 01 0 0 0 G p0 0.648 p0 0
T00 1 p01 0 p0 T01
T0 T01
忽略温度变化
0 G1 1 p01 1 p01 0 G p0 p0
推导得:
2 p01 2 p0 2 G1 2 pz1 pz 1 p 2 0 G p0
2
上式表明,当背压不变时,背压式汽轮机各级前压力与流量的关系按双曲线 规律变化。离末级越远,越近于直线。
从图上分析:
1,对于背压式汽轮机的前几级,当工况偏离设计值不远时,级前压力与流量 的关系近于直 线; 2,当流量在设计值附近变化时,可认为各中间级焓降不变,或变化很小; 3,当流量变化较大时,各级焓降都要变化,并且最后一、二级变化最大。

工况变化前后级组均为临界工况
Gc1 p01 Gc p0 T0 T01
G c1 p 01 Gc p0
结论:
级组为临界工况时,级组流量与级前压力成正比,与 级前绝对温度的平方根成反比;若不考虑温度变化, 则级组流量只与级组前压力成正比。

工况变化前后级组均为亚临界工况
斯托陀拉实验 级数—无穷大
b 1
a
流量锥
四、缩放喷嘴的变工况
n 1d
G n An 2k * * p0 0 k 1 2 k 1 k 1 2
2 k 1d

k 1 k 1d
2 * * Gcr n ( An ) cr kp0 0 k 1



六、撞击损失

撞击损失
口角应一致;
设计工况下,汽流进入动叶栅相对运动方向角与动叶几何进
变工况时,当比焓降变化,二者不再一致,使汽流进入动叶 的相对运动方向改变,从而使动叶附面层厚度改变,叶型 损失增加,这一增加损失称为撞击损失。 近似公式:
1 h1 (w11 sin ) 2 2
撞击损失的形成图
结论: 对于凝汽式汽轮机, 若所取级数较多时, 弗留格尔公式可用下 式近似:
G1 p 01 G p0
凝汽式汽轮机末级p0-G关系
四、压力与流量关系的应用


应用条件
2 2 p01 pz G1 1 a 2 2 p0 p z G
相关文档
最新文档