提取公因式练习题
因式分解提公因式法计算题40道

因式分解提公因式法计算题40道因式分解是代数学中的一个重要概念,它在解决多项式方程、简化分式等方面起着关键作用。
提公因式法是因式分解中常用的一种方法,它可以帮助我们将多项式分解成更简单的形式。
下面我将为你提供40个因式分解提公因式法的计算题,并尽可能从多个角度全面地回答。
1. 2x^2 + 5x.2. 3x^2 12。
3. 4x^2 25。
4. 6x^2 + 11x 35。
5. 2x^3 8x^2 + 6x.6. 3x^3 + 12x^2 27x.7. 4x^3 16x.8. 5x^3 125。
9. 6x^3 + 27x^2 63x.10. 2x^4 18x^2 + 40。
11. 3x^4 48x^2 + 192。
12. 4x^4 12x^2 + 9。
13. 5x^4 20x^2 + 15。
14. 6x^4 72x^2 + 216。
15. 2x^5 + 8x^4 10x^3。
16. 3x^5 12x^4 + 9x^3。
17. 4x^5 32x^3 + 64x.18. 5x^5 80x^3 + 400。
19. 6x^5 + 18x^4 108x^3。
20. 2x^6 18x^4 + 40x^2。
21. 3x^6 48x^4 + 192x^2。
22. 4x^6 12x^4 + 9x^2。
23. 5x^6 20x^4 + 15x^2。
24. 6x^6 72x^4 + 216x^2。
25. 2x^7 + 8x^6 10x^5。
26. 3x^7 12x^6 + 9x^5。
27. 4x^7 32x^5 + 64x^3。
28. 5x^7 80x^5 + 400x^3。
29. 6x^7 + 18x^6 108x^5。
30. 2x^8 18x^6 + 40x^4。
31. 3x^8 48x^6 + 192x^4。
32. 4x^8 12x^6 + 9x^4。
33. 5x^8 20x^6 + 15x^4。
34. 6x^8 72x^6 + 216x^4。
小学数学提取公因式练习题

小学数学提取公因式练习题1. 提取公因式基础练习题a) 提取公因式:将下列各式中的公因式提取出来。
1) 3x + 62) 4y + 83) 5a + 104) 2b + 45) 6c + 12b) 提取公因式:将下列各式中的公因式提取出来。
1) 2m - 6n2) 3p - 9q3) 4x - 8y4) 5a - 15b5) 6c - 12d2. 提取公因式进阶练习题a) 提取公因式:将下列各式中的公因式提取出来。
1) 2x + 4y2) 3a - 6b3) 4c + 8d4) 5m - 10n5) 6p + 12qb) 提取公因式:将下列各式中的公因式提取出来。
1) 3x^2 + 6x2) 4y^2 + 8y3) 5a^2 + 10a4) 2b^2 + 4b5) 6c^2 + 12cc) 提取公因式:将下列各式中的公因式提取出来。
1) 2x^2 - 6x2) 3y^2 - 9y3) 4a^2 - 8a4) 5b^2 - 15b5) 6c^2 - 12c3. 综合应用练习题a) 提取公因式:将下列各式中的公因式提取出来。
1) 2x^3 + 4x^2 + 6x2) 3y^3 + 6y^2 + 9y3) 4a^3 + 8a^2 + 12a4) 5b^3 + 10b^2 + 15b5) 6c^3 + 12c^2 + 18cb) 提取公因式:将下列各式中的公因式提取出来。
1) 3x^2y + 6xy^2 + 9xy2) 4xy^2 + 8x^2y + 12xy3) 5xyz + 10xy + 15xz4) 2x^2yz + 4xyz + 6xy5) 6xy^3 + 12x^2y^2 + 18xy^2c) 提取公因式:将下列各式中的公因式提取出来。
1) 2x^2 - 4x + 62) 4y^2 - 8y + 123) 6a^2 - 12a + 184) 8b^2 - 16b + 245) 10c^2 - 20c + 30这些练习题可以帮助你加深对提取公因式的理解和掌握。
完整版)提公因式法练习题

完整版)提公因式法练习题提公因式法一、课堂练1.把一个多项式拆分成几个乘积的形式,这个操作叫做因式分解,也可以说是把这个多项式分解成若干个因式的乘积。
2.填写公因式:1) x(x-5y)。
(2) -3m2(n-4)。
(3) 4b(3b2-2b+1)4) -4ab2(a+3b)。
(5) xy(x2y2-xy+2)3.填写括号中的多项式:1) -4b(a+1)。
(2) 4xy(2x-3y)。
(3) 9m2(m+3)4) -3p(5q+3p)。
(5) 2ab(a2-2ab+b2)。
(6) -x(x-y+z)7) a(2a-1)二、选择题1.正确的因式分解变形是选项B:x2+3x-4=x(x+3)-4.2.正确的因式分解变形是选项C:(x-y)2=x2-2xy+y2.3.错误的因式分解是选项C:a2b2-1/3ab2=4ab(4a-b)。
4.多项式-6a3b2-3a2b2+12a2b3因式分解时,应提取的公因式是选项D:-3a2b2.5.应提取公因式2x2y2的是选项B:2x2y2(1/2xy+y-1)。
提公因式法一、课堂练1.把一个多项式拆分成若干个因式的乘积形式,这个操作叫做因式分解。
2.填写公因式:1) x(x-5y)。
(2) -3m^2(n-4)。
(3) 4b(3b^2-2b+1)4) -4ab^2(a+3b)。
(5) xy(x^2y^2-xy+2)3.填写括号中的多项式:1) -4b(a+1)。
(2) 4xy(2x-3y)。
(3) 9m^2(m+3)4) -3p(5q+3p)。
(5) 2ab(a^2-2ab+b^2)。
(6) -x(x-y+z)7) a(2a-1)二、选择题1.正确的因式分解变形是选项B:x^2+3x-4=x(x+3)-4.2.正确的因式分解变形是选项C:(x-y)^2=x^2-2xy+y^2.3.错误的因式分解是选项C:a^2b^2-1/3ab^2=4ab(4a-b)。
4.多项式-6a^3b^2-3a^2b^2+12a^2b^3因式分解时,应提取的公因式是选项D:-3a^2b^2.5.应提取公因式2x^2y^2的是选项B:2x^2y^2(1/2xy+y-1)。
(完整版)《提公因式法》习题

《提公因式法》习题一、填空题1.单项式-12x 12y 3与8x 10y 6的公因式是________.2.-xy 2(x+y)3+x(x+y)2的公因式是________.3.把4ab 2-2ab+8a 分解因式得________.4.5(m -n)4-(n-m)5可以写成________与________的乘积.5.当n 为_____时,(a-b )n =(b-a )n ;当n 为______时,(a-b )n =-(b-a )n 。
(其中n 为正整数)6.多项式-ab (a-b )2+a (b-a )2-ac (a-b )2分解因式时,所提取的公因式应是_____.7.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________.8.多项式18x n+1-24x n 的公因式是_______.二、选择题1.多项式8x m y n-1-12x 3m y n 的公因式是( )A .x m y nB .x m y n-1C .4x m y nD .4x m y n-12.把多项式-4a 3+4a 2-16a 分解因式( )A .-a(4a 2-4a+16)B .a(-4a 2+4a -16)C .-4(a 3-a 2+4a)D .-4a(a 2-a+4)3.如果多项式-51abc+51ab 2-a 2bc 的一个因式是-51ab,那么另一个因式是( ) A .c-b+5ac B .c+b-5ac C .c-b+51ac D .c+b-51ac 4.用提取公因式法分解因式正确的是( )A .12abc-9a 2b 2=3abc(4-3ab)B .3x 2y-3xy+6y=3y(x 2-x+2y)C .-a 2+ab-ac=-a(a-b+c)D .x 2y+5xy-y=y(x 2+5x)5.下列各式公因式是a 的是( )A. ax+ay+5 B .3ma-6ma 2 C .4a 2+10ab D .a 2-2a+ma6.-6xyz+3xy2+9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy7.把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()A.8(7a-8b)(a-b);B.2(7a-8b)2 ;C.8(7a-8b)(b-a);D.-2(7a-8b)8.把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1)B.(y-x)(x-y-1)C.(y-x)(y-x-1)D.(y-x)(y-x+1)9.下列各个分解因式中正确的是()A.10ab2c+ac2+ac=2ac(5b2+c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)10观察下列各式: ①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2+y2.其中有公因式的是()A.①② B.②③C.③④D.①④三、解答题1.请把下列各式分解因式(1)x(x-y)-y(y-x) (2)-12x3+12x2y-3xy2(3)(x+y)2+mx+my (4)a(x-a)(x+y)2-b(x-a)2(x+y)(5)15×(a-b)2-3y(b-a)(6)(a-3)2-(2a-6)(7)(m+n)(p-q)-(m+n)(q+p)2.满足下列等式的x的值.①5x2-15x=0 ②5x(x-2)-4(2-x)=03.a=-5,a+b+c=-5.2,求代数式a2(-b-c)-3.2a(c+b)的值.4.a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值.参考答案一、填空题1.答案:4x10y3;解析:【解答】系数的最大公约数是4,相同字母的最低指数次幂是x10y3,∴公因式为4x10y3.【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:x(x+y)2;解析:【解答】)-xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;【分析】运用公因式的概念,找出各项的公因式即可知答案.3. 答案:2a(2b2-b+4) ;解析:【解答】4ab²- 2ab + 8a= 2a( 2b² - b + 4 ),【分析】把多项式4ab²- 2ab + 8a运用提取公因式法因式分解即可知答案.4. 答案:(m-n)4,(5+m-n)解析:【解答】5(m-n)4-(n-m)5=(m-n)4(5+m-n)【分析】把多项式5(m-n)4-(n-m)5运用提取公因式法因式分解即可知答案.5. 答案:偶数奇数解析:【解答】当n为偶数时,(a-b)n=(b-a)n;当n为奇数时,(a-b)n=-(b-a)n.(其中n为正整数)故答案为:偶数,奇数.【分析】运用乘方的性质即可知答案.6. 答案:-a(a-b)2解析:【解答】-ab(a-b)2+a(a-b)2-ac(a-b)2=-a(a-b)2(b+1-c),故答案为:-a(a-b)2.【分析】运用公因式的概念,找出各项的公因式即可知答案.7. 答案:(a-b+x-y)解析:【解答】(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×(a-b+x-y).故答案(a-b+x-y ).【分析】把多项式(a-b )2(x-y )-(b-a )(y-x )2运用提取公因式法因式分解即可.8. 答案:6x n解析:【解答】系数的最大公约数是6,相同字母的最低指数次幂是x n , ∴公因式为6x n .故答案为6x n【分析】运用公因式的概念,找出各项的公因式即可知答案.二、选择题1. 答案:D解析:【解答】多项式8x m y n-1-12x 3m y n 的公因式是4x m y n-1.故选D .【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:D解析:【解答】-4a 3+4a 2-16a=-4a (a 2-a+4).故选D .【分析】把多项式-4a 3+4a 2-16a 运用提取公因式法因式分解即可.3. 答案:A解析:【解答】-51abc+51ab 2-a 2bc=-51ab (c-b+5ac ),故选A. 【分析】运用提取公因式法把多项式-51abc+51ab 2-a 2bc 因式分解即可知道答案. 4. 答案:C解析:【解答】A .12abc-9a 2b 2=3ab (4c-3ab ),故本选项错误; B .3x 2y-3xy+6y=3y (x 2-x+2),故本选项错误;C .-a 2+ab-ac=-a (a-b+c ),本选项正确; D .x 2y+5xy-y=y (x 2+5x-1),故本选项错误;故选C.【分析】根据公因式的定义,先找出系数的最大公约数,相同字母的最低指数次幂,确定公因式,再提取公因式即可.5. 答案:D ;解析:【解答】A.ax+ay+5没有公因式,所以本选项错误;B.3ma-6ma 2的公因式为:3ma ,所以本选项错误;C.4a 2+10ab 的公因式为:2a ,所以本选项错误;D.a 2-2a+ma 的公因式为:a ,所以本选项正确.故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.6. 答案:D;解析:【解答】-6xyz+3xy2-9x2y各项的公因式是-3xy.故选D.【分析】运用公因式的概念,找出即可各项的公因式可知答案.7. 答案:C;【解答】(3a-4b)(7a-8b)-(11a-12b)(7a-8b)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b) 解析:=8(7a-8b)(b-a).故选C【分析】把(3a-4b)(7a-8b)-(11a-12b)(7a-8b)运用提取公因式法因式分解即可知答案.8. 答案:C;解析:【解答】(x-y)2-(y-x)=(y-x)2-(y-x)=(y-x)(y-x-1),故答案为:C. 【分析】把(x-y)2-(y-x)运用提取公因式法因式分解即可知答案.9. 答案:D;解析:【解答】10ab2c+6ac2+2ac=2ac(5b2+3c+1),故此选项错误;(a-b)3-(b-a)2=(a-b)2(a-b-1)故此选项错误;x(b+c-a)-y(a-b-c)-a+b-c=x(b+c-a)+y(b+c-a)+(b-c-a)没有公因式,故此选项错误;(a-2b)(3a+b)-5(2b-a)2=(a-2b)(3a+b-5a+10b)=(a-2b)(11b-2a),故此选项正确;故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.10. 答案:B.解析:【解答】①2a+b和a+b没有公因式;②5m(a-b)和-a+b=-(a-b)的公因式为(a-b);③3(a+b)和-a-b=-(a+b)的公因式为(a+b);④x 2 -y 2和x 2 +y 2没有公因式.故选B.【分析】运用公因式的概念,加以判断即可知答案.三、解答题1.答案:(1)(x-y)(x+y);(2)-3x(2x-y)2;(3)(x+y)(x+y+m);(4)(x-a)(x+y)(ax+ay-bx+ab);(5)3(a-b)(5ax-5bx+y);(6)(a-3)(a-5);(7)-2q(m+n). 解析:【解答】(1)x(x-y)-y(y-x)=(x-y)(x+y)(2)-12x3+12x2y-3xy2=-3x(4x2-4xy+y2)=-3x(2x-y)2(3)(x+y)2+mx+my=(x+y)2+m(x+y)=(x+y)(x+y+m)(4)a(x-a)(x+y)2-b(x-a)2(x+y)=(x-a)(x+y)[a(x+y)-b(x-a)]=(x-a)(x+y)(ax+ay-bx+ab) (5)15x(a-b)2-3y(b-a)=15x(a-b)2+3y(a-b)=3(a-b)(5ax-5bx+y);(6)(a-3)2-(2a-6)=(a-3)2-2(a-3)=(a-3)(a-5);(7)(m+n)(p-q)-(m+n)(q+p)=(m+n)(p-q-q-p)=-2q(m+n)【分析】运用提取公因式法因式分解即可.42.答案:(1)x=0或x=3;(2)x=2或x=-5解析:【解答】(1)5x2-15x=5x(x-3)=0,则5x=0或x-3=0,∴x=0或x=34(2)(x-2)(5x+4)=0,则x-2=0或5x+4=0,∴x=2或x=-5【分析】把多项式利用提取公因式法因式分解,然后再求x的值.3.答案:1.8解析:【解答】∵a=-5,a+b+c=-5.2,∴b+c=-0.2∴a2(-b-c)-3.2a(c+b)=-a2(b+c)-3.2a·(b+c)=(b+c)(-a2-3.2a)=-a(b+c)(a+3.2)=5×(-0.2)×(-1.8)=1.8【分析】把a2(-b-c)-3.2a(c+b)利用提取公因式法因式分解,再把已知的值代入即可知答案.4. 答案:-16解析:【解答】4a2b+4ab2-4a-4b=4(a+b)(ab-1),∵a+b=-4,ab=2,∴4a2b+4ab2-4a-4b=4(a+b)(ab-1)=-16.【分析】把4a2b+4ab2-4a-4b利用提取公因式法因式分解,再把已知的值代入即可知答案.。
提公因式法(分层练习)(解析版)-八年级数学 下册

第四章因式分解4.2提公因式法一、单选题1.(2022秋·内蒙古呼伦贝尔·八年级校考阶段练习)把322223638x y x y x y 因式分解时,应提取的公因式是()A .223x y B .222x y C .226x y D .22x y【答案】D【分析】根据公因式的概念(多项式各项都含有的相同因式),即可求解.【详解】由题意得应该提取的公因式是:22x y 故选:D .【点睛】本题考查因式分解中公因式的概念,解题的关键是掌握公因式的概念.2.(2022秋·河南鹤壁·八年级校考期中)多项式2224333126x y z x y x y z 的公因式是()A .223x y B .22x y C .223x y z D .323x y z 【答案】A【分析】根据多项式的公因式的确定方法,即可求解.【详解】解:多项式2224333126x y z x y x y z 的公因式是223x y .故选:A .【点睛】本题考查了公因式的定义.确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.3.(2021春·浙江宁波·七年级校考期中)已知4322811d x x x x ,则当2230x x时,d 的值为().A .25B .24C .23D .22【答案】C 【分析】先把d 变形,再整体代入求值.【详解】∵2230x x ,∴4322811d x x x x ,222(23)4(23)23x x x x x ,23故选:C【点睛】本题考查了因式分解的应用,代数式变形时解题的关键.4.(2021春·四川成都·八年级校考期中)多项式22936x y xy xyz 中,各项的公因式是().A .3xyB .3yzC .3xzD .3x 【答案】A【分析】观察多项式的数字因数,字母,根据一个因式能同时整除几个多项式,这个因式叫做这几个多项式的公因式,即可求解.【详解】解:22936x y xy xyz 各项的公因式是3xy ,故选:A .【点睛】本题主要考查公因式的概念,掌握多项式中各项都含有相同的数字因数,相同的字母,相同字母的指数也相同是解题的关键.5.(2023春·七年级课时练习)多项式263ab ab 进行因式分解,公因式是()A .3abB .abC .23abD .6ab 【答案】A【分析】根据公因式的定义:多项式ma mb mc 中,各项都含有一个公共的因式m ,因式m 叫做这个多项式各项的公因式进行解答即可.【详解】解:多项式263ab ab 进行因式分解,公因式是3ab .故选:A .【点睛】本题考查的是公因式,掌握其定义是解决此题的关键.6.(2023春·七年级课时练习)下列多项式中,可以提取公因式的是()A .22x y B .2x x C .2x y D .222x xy y【答案】B【分析】直接利用公因式的定义逐一分析得出答案.【详解】解:A .22x y ,没有公因式,故此选项不符合题意;B .2x x 有公因式x , 21x x x x ,故此选项符合题意;C .2x y ,没有公因式,故此选项不符合题意;D .222x xy y ,没有公因式,故此选项不符合题意.故选B .【点睛】本题主要考查了公因式的含义,提取公因式法分解因式,正确找出公因式是解题的关键.二、填空题7.(2022秋·广东广州·八年级广州市天河中学校考期末)已知4x y ,3xy ,则22x y xy 的值是________.【答案】12【分析】对式子进行因式分解,再整体代入求解即可.【详解】解: 22x y xy xy x y ,将4x y ,3xy 代入可得,原式3412 ,故答案为:12【点睛】此题考查了因式分解,代数式求值,解题的关键是掌握因式分解的方法,利用整体代入进行求解.8.(2022秋·北京·八年级清华附中校考期末)在多项式32232486x y x y xy 中,各项的公因式是______.【答案】22xy 【分析】各项都含有的因式称为公因式,根据定义解答.【详解】解:多项式32232486x y x y xy 中,各项的公因式是22xy ,故答案为:22xy .【点睛】此题考查了公因式的定义,正确掌握确定公因式的方法:取相同数字的最大公约数,取相同字母的最小指数,是解题的关键.9.(2022秋·上海黄浦·七年级统考期中)分解因式:324x x x _____________________.【答案】2(41)x x x 【分析】直接提取公因式x ,进而分解因式得出答案.【详解】解:原式2(41)x x x .故答案为:2(41)x x x .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.(2022秋·全国·八年级专题练习)多项式322236312m n m n m n 因式分解时应提取的公因式为______.【答案】23m n【分析】根据公因式取系数最大公约数,相同字母的最低次项相乘即可求解.【详解】解:多项式322236312m n m n m n 因式分解时应提取的公因式为23m n ,故答案为:23m n .【点睛】本题考查了确定公因式,解题关键是明确公因式的确定方法.三、解答题11.(2022秋·八年级课时练习)把下列各式分解因式:(1)5xy -10x ;(2) 2222m a b n a b .【答案】(1)52x y (2)22a b m n 【分析】(1)直接提取公因式5x 即可;(2)直接提取公因式 22a b 即可.【详解】(1)解:原式 52x y .(2)解:原式 22a b m n .【点睛】本题考查了因式分解,熟练掌握提公因式法分解因式是解题的关键.12.(2022秋·八年级课时练习)先因式分解,再计算求值:(1)4(2)3(2)x m x m ,其中 1.5,6x m ;(2)2(2)6(2)a a ,其中2a .【答案】(1)(2)x m ,6;(2)(2)(4),8a a .【分析】(1)先利用提取公因式法分解因式,再代入求值;(2)先利用提取公因式法分解因式,再代入求值.【详解】解:(1)原式=(2)(43)=(2)x m x m ,把 1.5,6x m 代入,得:原式=1.5(62) =6,(2)原式=2(2)+6(2)=(2)(2+6)=(2)(+4)a a a a a a ,把2a 代入,得:原式=(22)(2+4)=8 .【点睛】本题考查因式分解、代数式求值,熟练掌握提公因式法是关键.一、填空题1.(2022秋·山东日照·八年级统考期末)已知3,1a b ab ,则多项式22a b ab a b 的值为__________.【答案】0【分析】先进行因式分解,再代值计算即可.【详解】解:22a b ab a b ab a b a b 1ab a b ;当3,1a b ab 时,原式 3110 ;故答案为:0.【点睛】本题考查代数式求值.熟练掌握分组法进行因式分解,整体思想代入求值,是解题的关键.2.(2021春·安徽马鞍山·七年级校考期中)若124248n n ,则n 的值为_____________.【答案】2【分析】利用幂的乘方与积的乘方进行计算,得出关于n 的方程,解方程即可得出答案.【详解】解:124248n n ∵,2(1)22248n n ,2222248n n ,22(41)48n ,22348n ,2216n ,2422n ,24n ,2n ,故答案为:2.【点睛】本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解决问题的关键.3.(2022秋·上海普陀·七年级统考期中)如果210x x ,那么23991x x x x 的值是______.【答案】1【分析】首先需要先将23991x x x x 变形为234561x x x x x x 979899x x x ,经过提公因式得到242111x x x x x x 9721x x x ,将210x x 整体代入即可.【详解】解:23991x x x x 234561x x x x x x 979899x x x242111x x x x x x 9721x x x 将210x x 代入,得到10001 .故答案为:1.【点睛】本题主要考查因式分解的应用,寻找公因式21x x 是解题的关键.4.(2022·河北保定·统考二模)已知6a b ,2ab .(1)则2222a b ab ______.(2) 2a b ______.【答案】2428【分析】根据提公因式进行因式分解及完全平方公式变形.然后整体代入即可求解.【详解】解:(1)∵6a b ,2ab .∴22222()22624a b ab ab a b ,222()464228a b a b ab ,故答案为:(1)24;(2)28;【点睛】本题考查了完全平方公式,因式分解,熟记公式结构以及公式的变形对解题比较有用.5.(2022春·湖南岳阳·七年级校考期中)已知:2111x x x x x (1)1(1)x x x x 31111x x x x ,因式分解 220221111x x x x x x x ,结果为_______________.【答案】 20231x 【分析】将 220221111x x x x x x x 提出一个 1x ,再将220211111...1x x x x x x x x提出一个 1x ,继续提出一个 1x ,以此类推,直到原式变为 202211x x ,再化简即可.【详解】解:220221111x x x x x x x 220211111...1x x x x x x x x2220201111...1x x x x x x x3220191111...1x x x x x x x x…2021111x x x x202211x x 20231x 故答案为: 20231x 【点睛】本题考查了提公因式法,一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成多项式与另一个因式的乘积的形式,在这种分解因式的方法叫做提公因式法.二、解答题6.(2022秋·河南驻马店·八年级统考期末)(1)因式分解: 2244x x xy x xy ;(2)先化简,再求值: 22a a b a b ,其中1a ,b .72021··12x y ,8x y ,求下列各式的值:(1)xy .(2)33x y xy .【答案】(1)1(2)10【分析】(1)利用完全平方公式展开,然后相减即可求出;(2)利用完全平方公式展开,然后相加求出22x y 的值,进而可得答案.【详解】(1)解: 222212x y x xy y ①, 22228x y x xy y ②,由①-②得:44xy ,∴1xy ;(2)解: 222212x y x xy y ①, 22228x y x xy y ②,由 ①②得: 22220x y ,∴2210x y ,∴ 332211010x y xy xy x y .【点睛】本题考查利用完全平方公式求值,因式分解的应用,学生们熟练掌握完全平方公式是解题的关键.8.(2022秋·贵州遵义·八年级校考期中)阅读下列材料.形如 2x p q x pq 型的二次三项式,有以下特点:①二项式的系数是1;②常数项是两个数之积:③一次项系数是常数项的两个因数的和,把这个二次三项式进行因式分解,可以这样来解:2x p q x pq2x px qx pq2x px qx pqx x p q x px p x q 请利用上述方法将下列多项式因式分解:(1)2712x x ;(2)222()7()18y y y y .11【答案】(1)43x x (2)2219y y y y 【分析】(1)仿照材料进行因式分解即可;(2)令2y y a 仿照材料进行因式分解得 29a a ,再将2y y a 代回可得 2229y y y y ,同理对22y y 进行因式分解即可.【详解】(1)解:2712x x23434x x x343x x x43x x (2)令2y y a ,则可得2718a a29292a a a929a a a 29a a ,再将2y y a 代回,得:222()7()18y y y y2229y y y y 同理: 22222121y y y y y y y ,即:2222()7()18219y y y y y y y y 【点睛】此题考查了因式分解,弄清阅读材料中的规律是解本题的关键.。
提公因式法习题

提公因式法因式分解练习题(一)课堂练习一、填空题1.把一个多项式__________________________,这样的式子变形,叫做把这个多项式因式分解,也叫做把这个多项式______________。
2.把下列各多项式的公因式填写在横线上。
(1)x 2-5xy _________ (2)-3m 2+12mn _________(3)12b 3-8b 2+4b _________ (4)-4a 3b 2-12ab 3 __________(5)-x 3y 3+x 2y 2+2xy _________3.在括号内填入适当的多项式,使等式成立。
(1)-4ab-4b=-4b( ) (2)8x 2y-12xy 3=4xy( )(3)9m 3+27m 2=( )(m+3) (4)-15p 4-25p 3q=( )(3p+5q)(5)2a 3b-4a 2b 2+2ab 3=2ab( ) (6)-x 2+xy-xz=-x( ) (7)21a 2-a=21a( ) 二、选择题1.下列各式从左到右的变形是因式分解的是 ( )(A)m(a+b)=ma+mb (B)x 2+3x-4=x(x+3)-4(C)x 2-25=(x+5)(x-5) (D)(x+1)(x+2)=x 2+3x+22.下列各等式从左到右的变形是因式分解的是 ( )(A)8a 2b 3c=2a 2·2b 3·2c (B)x 2y+xy 2+xy=xy(x+y)(C)(x-y)2=x 2-2xy+y 2 (D)3x 3+27x=3x(x 2+9)3.下列各式因式分解错误的是 ( )(A)8xyz-6x 2y 2=2xy(4z-3xy) (B)3x 2-6xy+x=3x(x-2y)(C)a 2b 2-41ab 3=41ab 2(4a-b) (D)-a 2+ab-ac=-a(a-b+c) 4.多项式-6a 3b 2-3a 2b 2+12a 2b 3因式分解时,应提取的公因式是 ( )(A)3ab (B)3a 2b 2 (C)- 3a 2b (D)- 3a 2b 25.把下列各多项式分解因式时,应提取公因式2x 2y 2的是 ( )(A)2x 2y 2-4x 3y (B)4x 2y 2-6x 3y 3+3x 4y 4(C)6x 3y 2+4x 2y 3-2x 3y 3 (D)x 2y 4-x 4y 2+x 3y 36.把多项式-axy-ax 2y 2+2axz 提公因式后,另一个因式是 ( )(A)y+xy 2-2z (B)y-xy 2+2z (C)xy+x 2y 2-2xz (D)-y+xy 2-2z7.如果一个多项式4x 3y-M 可以分解因式得4xy(x 2-y 2+xy) ,那么M 等于 ( )(A)4xy 3+4x 2y 2 (B)4xy 3-4x 2y 2 (C)-4xy 3+4x 2y 2 (D)-4xy 3-4x 2y 28. 下列各式从左到右的变形:9. ①(a+b)(a-b)=a 2-b 2 ②x 2+2x-3=x(x+2)-3③x+2=x1(x 2+2x) ④a 2-2ab+b 2=(a-b)2是因式分解的有 ( ) (A)1个 (B)2个 (C)3个 (D)4个(二)课后作业1.把下列各式分解因式(1)9m 2n-3m 2n 2 (2)4x 2-4xy+8xz (3)-7ab-14abx+56aby(4)6x 4-4x 3+2x 2 (5)6m 2n-15mn 2+30m 2n 2 (6)-4m 4n+16m 3n-28m 2n(7)x n+1-2x n-1 (8)-2x 2n +6x n (9)a n -a n+2+a 3n2.用简便方法计算:(1)9×10100-10101 (2)4.3×199.7+7.5×199.7-1.8×199.73.已知a+b=2,ab=-3求代数式2a 3b+2ab 3的值。
《提公因式法》习题

《提公因式法》习题一、填空题1.单项式-12x 12y 3与8x 10y 6的公因式是________.2.-xy 2(x+y)3+x(x+y)2的公因式是________.3.把4ab 2-2ab+8a 分解因式得________.4.5(m -n)4-(n-m)5可以写成________与________的乘积.5.当n 为_____时,(a-b )n =(b-a )n ;当n 为______时,(a-b )n =-(b-a )n 。
(其中n 为正整数)6.多项式-ab (a-b )2+a (b-a )2-ac (a-b )2分解因式时,所提取的公因式应是_____.7.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________.8.多项式18x n+1-24x n 的公因式是_______.二、选择题1.多项式8x m y n-1-12x 3m y n 的公因式是( )A .x m y nB .x m y n-1C .4x m y nD .4x m y n-12.把多项式-4a 3+4a 2-16a 分解因式( )A .-a(4a 2-4a+16)B .a(-4a 2+4a -16)C .-4(a 3-a 2+4a)D .-4a(a 2-a+4)3.如果多项式-51abc+51ab 2-a 2bc 的一个因式是-51ab,那么另一个因式是( ) A .c-b+5ac B .c+b-5ac C .c-b+51ac D .c+b-51ac 4.用提取公因式法分解因式正确的是( )A .12abc-9a 2b 2=3abc(4-3ab)B .3x 2y-3xy+6y=3y(x 2-x+2y)C .-a 2+ab-ac=-a(a-b+c)D .x 2y+5xy-y=y(x 2+5x)5.下列各式公因式是a 的是( )A. ax+ay+5 B .3ma-6ma 2 C .4a 2+10ab D .a 2-2a+ma6.-6xyz+3xy 2+9x 2y 的公因式是( )A.-3x B .3xz C .3yz D .-3xy7.把多项式(3a-4b )(7a-8b )+(11a-12b )(8b-7a )分解因式的结果是( )A .8(7a-8b )(a-b );B .2(7a-8b )2 ;C .8(7a-8b )(b-a );D .-2(7a-8b )8.把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1)B.(y-x)(x-y-1)C.(y-x)(y-x-1)D.(y-x)(y-x+1)9.下列各个分解因式中正确的是()A.10ab2c+ac2+ac=2ac(5b2+c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)10观察下列各式: ①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2+y2.其中有公因式的是()A.①② B.②③C.③④D.①④三、解答题1.请把下列各式分解因式(1)x(x-y)-y(y-x) (2)-12x3+12x2y-3xy2(3)(x+y)2+mx+my (4)a(x-a)(x+y)2-b(x-a)2(x+y)(5)15×(a-b)2-3y(b-a)(6)(a-3)2-(2a-6)(7)(m+n)(p-q)-(m+n)(q+p)2.满足下列等式的x的值.①5x2-15x=0 ②5x(x-2)-4(2-x)=03.a=-5,a+b+c=-5.2,求代数式a2(-b-c)-3.2a(c+b)的值.4.a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值.参考答案一、填空题1.答案:4x10y3;解析:【解答】系数的最大公约数是4,相同字母的最低指数次幂是x10y3,∴公因式为4x10y3.【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:x(x+y)2;解析:【解答】)-xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;【分析】运用公因式的概念,找出各项的公因式即可知答案.3. 答案:2a(2b2-b+4) ;解析:【解答】4ab²- 2ab + 8a= 2a( 2b² - b + 4 ),【分析】把多项式4ab²- 2ab + 8a运用提取公因式法因式分解即可知答案.4. 答案:(m-n)4,(5+m-n)解析:【解答】5(m-n)4-(n-m)5=(m-n)4(5+m-n)【分析】把多项式5(m-n)4-(n-m)5运用提取公因式法因式分解即可知答案.5. 答案:偶数奇数解析:【解答】当n为偶数时,(a-b)n=(b-a)n;当n为奇数时,(a-b)n=-(b-a)n.(其中n为正整数)故答案为:偶数,奇数.【分析】运用乘方的性质即可知答案.6. 答案:-a(a-b)2解析:【解答】-ab(a-b)2+a(a-b)2-ac(a-b)2=-a(a-b)2(b+1-c),故答案为:-a(a-b)2.【分析】运用公因式的概念,找出各项的公因式即可知答案.7. 答案:(a-b+x-y)解析:【解答】(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×(a-b+x-y).故答案(a-b+x-y). 【分析】把多项式(a-b)2(x-y)-(b-a)(y-x)2运用提取公因式法因式分解即可.8. 答案:6x n解析:【解答】系数的最大公约数是6,相同字母的最低指数次幂是x n,∴公因式为6x n.故答案为6x n【分析】运用公因式的概念,找出各项的公因式即可知答案.二、选择题1. 答案:D解析:【解答】多项式8x m y n-1-12x 3m y n 的公因式是4x m y n-1.故选D .【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:D解析:【解答】-4a 3+4a 2-16a=-4a (a 2-a+4).故选D .【分析】把多项式-4a 3+4a 2-16a 运用提取公因式法因式分解即可.3. 答案:A解析:【解答】-51abc+51ab 2-a 2bc=-51ab (c-b+5ac ),故选A. 【分析】运用提取公因式法把多项式-51abc+51ab 2-a 2bc 因式分解即可知道答案. 4. 答案:C解析:【解答】A .12abc-9a 2b 2=3ab (4c-3ab ),故本选项错误; B .3x 2y-3xy+6y=3y (x 2-x+2),故本选项错误;C .-a 2+ab-ac=-a (a-b+c ),本选项正确;D .x 2y+5xy-y=y (x 2+5x-1),故本选项错误;故选C.【分析】根据公因式的定义,先找出系数的最大公约数,相同字母的最低指数次幂,确定公因式,再提取公因式即可.5. 答案:D ;解析:【解答】A.ax+ay+5没有公因式,所以本选项错误;B.3ma-6ma 2的公因式为:3ma ,所以本选项错误;C.4a 2+10ab 的公因式为:2a ,所以本选项错误;D.a 2-2a+ma 的公因式为:a ,所以本选项正确.故选:D .【分析】把各选项运用提取公因式法因式分解即可知答案.6. 答案:D ;解析:【解答】-6xyz+3xy 2-9x 2y 各项的公因式是-3xy .故选D .【分析】运用公因式的概念,找出即可各项的公因式可知答案.7. 答案:C ;解析:【解答】(3a-4b)(7a-8b)-(11a-12b)(7a-8b)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C【分析】把(3a-4b)(7a-8b)-(11a-12b)(7a-8b)运用提取公因式法因式分解即可知答案.8. 答案:C ;解析:【解答】(x-y)2-(y-x)=(y-x)2-(y-x)=(y-x)(y-x-1),故答案为:C.【分析】把(x-y)2-(y-x)运用提取公因式法因式分解即可知答案.9. 答案:D;解析:【解答】10ab2c+6ac2+2ac=2ac(5b2+3c+1),故此选项错误;(a-b)3-(b-a)2=(a-b)2(a-b-1)故此选项错误;x(b+c-a)-y(a-b-c)-a+b-c=x(b+c-a)+y(b+c-a)+(b-c-a)没有公因式,故此选项错误;(a-2b)(3a+b)-5(2b-a)2=(a-2b)(3a+b-5a+10b)=(a-2b)(11b-2a),故此选项正确;故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.10. 答案:B.解析:【解答】①2a+b和a+b没有公因式;②5m(a-b)和-a+b=-(a-b)的公因式为(a-b);③3(a+b)和-a-b=-(a+b)的公因式为(a+b);④x 2 -y 2和x 2 +y 2没有公因式.故选B.【分析】运用公因式的概念,加以判断即可知答案.三、解答题1.答案:(1)(x-y)(x+y);(2)-3x(2x-y)2;(3)(x+y)(x+y+m);(4)(x-a)(x+y)(ax+ay-bx+ab);(5)3(a-b)(5ax-5bx+y);(6)(a-3)(a-5);(7)-2q(m+n).解析:【解答】(1)x(x-y)-y(y-x)=(x-y)(x+y)(2)-12x3+12x2y-3xy2=-3x(4x2-4xy+y2)=-3x(2x-y)2(3)(x+y)2+mx+my=(x+y)2+m(x+y)=(x+y)(x+y+m)(4)a(x-a)(x+y)2-b(x-a)2(x+y)=(x-a)(x+y)[a(x+y)-b(x-a)]=(x-a)(x+y)(ax+ay-bx+ab)(5)15x(a-b)2-3y(b-a)=15x(a-b)2+3y(a-b)=3(a-b)(5ax-5bx+y);(6)(a-3)2-(2a-6)=(a-3)2-2(a-3)=(a-3)(a-5);(7)(m+n)(p-q)-(m+n)(q+p)=(m+n)(p-q-q-p)=-2q(m+n)【分析】运用提取公因式法因式分解即可.42.答案:(1)x=0或x=3;(2)x=2或x=-5解析:【解答】(1)5x2-15x=5x(x-3)=0,则5x=0或x-3=0,∴x=0或x=34(2)(x-2)(5x+4)=0,则x-2=0或5x+4=0,∴x=2或x=-5【分析】把多项式利用提取公因式法因式分解,然后再求x的值.3.答案:1.8解析:【解答】∵a=-5,a+b+c=-5.2,∴b+c=-0.2∴a2(-b-c)-3.2a(c+b)=-a2(b+c)-3.2a·(b+c)=(b+c)(-a2-3.2a)=-a(b+c)(a+3.2)=5×(-0.2)×(-1.8)=1.8【分析】把a2(-b-c)-3.2a(c+b)利用提取公因式法因式分解,再把已知的值代入即可知答案.4. 答案:-16解析:【解答】4a2b+4ab2-4a-4b=4(a+b)(ab-1),∵a+b=-4,ab=2,∴4a2b+4ab2-4a-4b=4(a+b)(ab-1)=-16. 【分析】把4a2b+4ab2-4a-4b利用提取公因式法因式分解,再把已知的值代入即可知答案.谢谢大家下载,本文档下载后可根据实际情况进行编辑修改.再次谢谢大家下载.翱翔在知识的海洋吧.。
数学提取公因式法专项练习题

数学提取公因式法专项练习题一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
基础训练1.多项式8x3y2-12xy3z的公因式是_________.2.多项式-6ab2+18a2b2-12a3b2c的公因式是A.-6ab2cB.-ab2C.-6ab2D.-6a3b2c3.下列用提公因式法因式分解正确的是A.12abc-9a2b2=3abc4-3abB.3x2y-3xy+6y=3yx2-x+2yC.-a2+ab-ac=-aa-b+cD.x2y+5xy-y=yx2+5x4.下列多项式应提取公因式5a2b的是A.15a2b-20a2b2B.30a2b3-15ab4-10a3b2C.10a2b-20a2b3+50a4bD.5a2b4-10a3b3+15a4b25.下列因式分解不正确的是A.-2ab2+4a2b=2ab-b+2aB.3ma-b-9nb-a=3a-bm+3nC.-5ab+15a2bx+25ab3y=-5ab-3ax-5b2y;D.3ay2-6ay-3a=3ay2-2y-16.填空题:1ma+mb+mc=m________; 2多项式32p2q3-8pq4m的公因式是_________;33a2-6ab+a=_________3a-6b+1;4因式分解:km+kn=_________;5-15a2+5a=________3a-1; 6计算:21×3.14-31×3.14=_________.7.用提取公因式法分解因式:18ab2-16a3b3; 2-15xy-5x2;3a3b3+a2b2-ab; 4-3a3m-6a2m+12am.8.因式分解:-a-bmn-a+b.提高训练9.多项式mn-2-m22-n因式分解等于A.n-2m+m2B.n-2m-m2C.mn-2m+1D.mn-2m-110.将多项式ax-y+2by-2bx分解因式,正确的结果是A.x-y-a+2bB.x-ya+2bC.x-ya-2bD.-x-ya+2b11.把下列各式分解因式:1a+b-a+b2; 2xx-y+yy-x;36m+n2-2m+n; 4mm-n2-nn-m2;56pp+q-4qq+p.应用拓展12.多项式-2an-1-4an+1的公因式是M,则M等于A.2an-1B.-2anC.-2an-1D.-2an+113.用简便方法计算:39×37-13×34=_______.14.因式分解:x6m-nx-nx2.参考答案1.4xy22.C3.C4.A5.C6.1a+b+c 28pq3 3a 4km+n5-5a 6-31.47.18ab21-2a2b 2-5x3y+x3aba2b2+ab-1 4-3ama2+2a-48.-a-bmn+19.C10.C11.1a+b1-a-b 2x-y2 32m+n•3m+3n-1 4m-n3 52p+q3p-2q12.C 13.390 14.2x3m-nx感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提取公因式练习题
提取公因式是数学中的一个重要概念,它在代数运算中具有广泛的应用。
通过
提取公因式,我们可以简化复杂的代数表达式,使其更易于计算和理解。
在本
文中,我们将通过一系列练习题来探讨提取公因式的方法和技巧。
练习题一:
将表达式3x + 6y的公因式提取出来。
解答一:
首先观察给定的表达式,我们可以发现3是x和y的公因子,因此可以将3提
取出来。
提取公因式后,原表达式可以简化为3(x + 2y)。
练习题二:
将表达式4a^2 - 8ab的公因式提取出来。
解答二:
观察给定的表达式,我们可以发现4是a和b的公因子,因此可以将4提取出来。
同时,a也是两项的公因子,所以我们可以将a提取出来。
提取公因式后,原表达式可以简化为4a(a - 2b)。
练习题三:
将表达式6x^3 + 9x^2 - 15x的公因式提取出来。
解答三:
观察给定的表达式,我们可以发现6是x的系数的公因子,因此可以将6提取
出来。
同时,x也是三项的公因子,所以我们可以将x提取出来。
提取公因式后,原表达式可以简化为6x(x^2 + 3x - 5)。
练习题四:
将表达式2x^2y + 4xy^2 - 6xy的公因式提取出来。
解答四:
观察给定的表达式,我们可以发现2是x和y的系数的公因子,因此可以将2提取出来。
同时,xy也是三项的公因子,所以我们可以将xy提取出来。
提取公因式后,原表达式可以简化为2xy(x + 2y - 3)。
练习题五:
将表达式3a^3b - 6a^2b^2 + 9ab^3的公因式提取出来。
解答五:
观察给定的表达式,我们可以发现3是a和b的系数的公因子,因此可以将3提取出来。
同时,ab也是三项的公因子,所以我们可以将ab提取出来。
提取公因式后,原表达式可以简化为3ab(a^2 - 2ab + 3b^2)。
通过以上练习题,我们可以看到提取公因式的方法和技巧。
首先观察表达式中的系数和变量,找出它们的公因子。
然后将公因子提取出来,并将原表达式简化为公因子与剩余部分的乘积。
这样做不仅可以简化代数表达式,还可以帮助我们更好地理解和计算数学问题。
提取公因式在数学中的应用非常广泛。
它不仅可以用于简化代数表达式,还可以用于解方程、因式分解等各种数学问题。
掌握了提取公因式的方法和技巧,我们可以更加轻松地处理复杂的代数运算,提高数学问题的解题效率。
总之,提取公因式是数学中的一项基本技能,通过练习题的实践,我们可以更好地掌握这一技巧。
希望通过本文的介绍和练习题的训练,读者们能够对提取公因式有更深入的理解,并能够灵活运用于实际问题中。