全等三角形中的动态问题
全等三角形动态问题

- 1 -专题----全等三角形动态问题1、如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB=CD ,AF=CE ,BD 交AC 于点M .(1)求证:MB=MD ,ME=MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.2、如图所示,四边形ABCD 是正方形,点E 是边BC 的中点且∠AEF=90°,EF 交正方形外角平分线CF 于点F ,取边AB 的中点G ,连接EG. (1)求证:EG=CF ;(2)将△ECF 绕点E 逆时针旋转90°,请在图中直接画出旋转后的图形,并指出旋转后CF 与EG 的位置关系.3、在△ABC 中,,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E (1)当直线MN 绕点C 旋转到图①的位置时,求证:DE=AD+BE (2)当直线MN 绕点C 旋转到图②的位置时,求证:DE=AD-BE(3)当直线MN 绕点C 旋转到图③的位置时,试问:DE 、AD 、BE 有怎样的等量关系?请写出这个等量关系,并加以证明GFE B C AD- 2 -4、(1)如图1,A 、B 、C 三点在一直线上,分别以AB 、BC 为边在AC 同侧作等边△ABD 和等边△BCE ,AE 交BD 于点F ,,DC 交BE 于点G 。
则AE=DC 吗?BF=BG 吗?请说明理由。
(2)如图2,若A 、B 、C 不在同一直线上,那么这时上述结论成立吗?若成立请证明. (3)在图1中,若连结F 、G ,你还能得到什么结论?(写出结论,不需证明)5、如图,△ABC 的边BC 在直线m 上,AC ⊥BC ,且AC=BC ,△DEF 的边FE 也在直线m 上,边DF 与边AC 重合,且DF=EF .(1)在图(1)中,请你通过观察、思考,猜想并写出AB 与AE 所满足的数量关系和位置关系;(不要求证明)(2)将△DEF 沿直线m 向左平移到图(2)的位置时,DE 交AC 于点G ,连结AE ,BG .猜想△BCG 与△ACE 能否通过旋转重合?请证明你的猜想.6、已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,(或它们的延长线)于E F ,. (1)当MBN ∠绕B 点旋转到AE CF =时(如图1),求证AE CF EF +=.(2)当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系?请写出你的猜想,不需证明.A B CDE F G图A B CD EF G 图2(图1)ABCD EFMN(图2)ABCD EFM N(图3)A B CDE F MN。
全等三角形中的动态性问题

全等三角形中的动态性问题动态性几何问题是中考数学题型中的热点题型,这类试题常以运动的点、线段、变化的图形等为基本条件,给出一个或多个变量,要求确定变量与其它量之间的关系,或变量在一定条件为定值时,进行相关的几何计算和综合解答。
解答这类题目,一般要根据点的运动和图形的变化过程,对其不同情况进行分类求解,要始终把握住“动静结合找界点、分类讨论细演算” 。
一、图形的全等图形经过“轴对称”、“平移”、“旋转” 后,位置发生了变化,但形状和大小不变,变换后的图形和变换前的图形能完全重合,这样的两个图形就全等。
1、全等三角形的性质:对应角相等,对应边相等。
2、全等三角形的判定:SSS , SAS , ASA , AAS , HL 。
二、试题探究例题1、已知:AB⊥BD, ED⊥BD, AC=CE, BC=DE。
例题1图(1)(1)试猜想线段AC与CE的位置关系,并证明你的结论.结论:AC⊥CE (证明略)(2)若将△ECD沿CB方向平移,其余条件不变, 结论:AC⊥C1E 还成立吗?请说明理由。
例题1图(2)结论:AC⊥C1E (证明略)例题2、已知:AB⊥BD, ED⊥BD, AC=CE, BC=DE。
(1)线段BD、AB、DE之间有怎样的数量关系,并说明理由。
例题2图(1)结论:BD=AB+DE (证明略)(2)若将两个三角形绕点C 旋转到如图所示的位置,则线段BD、AB、DE之间数量关系还成立吗?并说明理由。
例题2图(2)结论:BD = AB - ED (证明略)总结:图形变换,全等不变;遇到变式,先找不变。
三、典型例题例题3、如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ 。
(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E,如图b,求证:BE⊥DQ 。
例题3图(a)例题3图(b)证明:略。
例题4、已知,如图1,E、F为线段AC上的两个动点,且DE⊥AC于E点,BF ⊥AC于F点,若AB=CD,AF=CE,BD交AC于M点;(1)求证:MB=MD,ME=MF;(2)当E、F两点移至如图2所示的位置时,其它条件不变,上述结论能否成立?若成立,请说明你的理由。
全等三角形中的动态几何问题

全等三角形中的动态几何问题动态几何题,是指以几何知识和几何图形为背景,渗透运动变化观点的一类试题;而通过对几何图形运动变化,使同学们经历由观察、想象、推理等发现、探索的过程,是中考数学试题中,考查创新意识、创新能力的重要题型;解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动.本文以中考试题中的全等三角形动态几何题为例,谈谈这类问题的解题思路,供同学们学习时参考.1. 在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD⊥MN 于D ,BE⊥MN于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD -BE ; (3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.CBA ED图1NM AC DE MN图2AC BEDNM图32.如图A,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图A中的△CEF绕点C旋转一定的角度,得到图B,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图A中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形C(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现.3. (08河北中考第24题)如图14-1,在△ABC 中,BC 边在直线l 上,AC ⊥BC ,且AC = BC .△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF =FP .(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将△EFP 沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP 沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.4. 如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系: ①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论图14-1(E )(F ) BC PA llPCF图14-2l图14-3是否仍然成立,并选取图2证明你的判断.5. 如图,在等腰梯形ABCD 中,已知AD∥BC,AB=DC ,AD=2,BC=4,延长BC 到E ,使CE=AD .(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(5分)(2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说明理由.(5分)F EDCBA。
河北省八年级数学上册拔高练全等三角形中的动态问题新版新人教版

∵ BP = CQ . 点 P , Q 运动的时间相等,点 P 的运动速度
是3厘米/秒,∴点 Q 的运动速度是3厘米/秒.
1
2
3
②当 CQ = BE , PB = PC 时,△ BPE ≌△ CPQ . 此时3 t
=8-3 t ,∴ t = ,
∵点 E 是 AB 的中点,∴ CQ = BE =5厘米.
∠=∠,
在△ AOB 和△ EOB 中,∵ቐ=,
∠=∠ = °,
∴△ AOB ≌△ EOB (ASA),
∴ AO = EO ,∠ BAO =∠ BEO ,∴∠ AHD =∠ BEO ,
1
2
3
∴∠ BHA =∠ AEC ,
由(1)易得∠ CAE =∠ ABH .
∠=∠,
90°,点 A 、点 B 分别是 x 轴、 y 轴上的两个动点,直角
边 AC 交 x 轴于点 D ,斜边 BC 交 y 轴于点 E .
(2)如图②,在等腰直角三角形 ABC 不断运动的过程中,
若满足 BD 始终是∠ ABC 的平分线,试探究:线段
OA , OD , BD 三者之间是否存在
某一固定的数量关系,并说明理由.
(1)如图①,若 A (0,1), B (2,0),求点 C 的坐标;
1
2
3
解:(1)过点 C 作 CF ⊥ y 轴于点 F ,
∴∠ AFC =90°,∴∠ CAF +∠ ACF =90°.
∵△ ABC 是等腰直角三角形,∠ BAC =90°,
∴ AC = AB ,∠ CAF +∠ BAO =90°,∴∠ ACF =∠ BAO .
∠=∠ = °,
初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点+例题解析)初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。
解决动点问题常见的答题思路是:1.注意分类讨论;2.仔细探究全等三角形对应边与对应角的变化;3.利用时间表示出相应线段或边的长度,列出方程求解.【典例解析】【例1-1】(2020·周口市月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______秒时,△DEB与△BCA全等.【例1-2】(2020·江阴市月考)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1B.1或3C.1或7D.3或7【变式1-1】(2020·无锡市月考)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.【变式1-2】(2020·河北灵寿期末)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【例2】(2020·惠州市月考)如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC =5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【变式2-1】(2020·江阴市月考)如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D 点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C 作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD∥BC.(2)在移动过程中,小芹发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.【变式2-2】(2020·重庆巴南月考)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在cm s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它线段AB上以1/们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的cm s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若运动速度为x/不存在,请说明理由.【变式2-3】(2020·江苏兴化月考)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.点P从点A出发,沿折线AC—CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC—CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):(1)当P、Q两点相遇时,求t的值;(2)在整个运动过程中,求CP的长(用含t的代数式表示);(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.【例3】(2020·惠州市月考)如图,在△ABC中,AB=AC=18cm,BC=10cm,∠B=∠C,AD=2BD.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【变式3-1】(2019·山西太原月考)如图1,在长方形ABCD中,AB=CD=5cm,BC=12cm,点P从点B 出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=___cm;(用含t的式子表示)(2)当t为何值时,△ABP≌△DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻△ABP与以P,Q,C为顶点的直角三角形全等?若存在,请求出v的值;若不存在,请说明理由.【变式3-2】(2020·四川成都)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q 三点所构成的三角形全等.【习题精练】=,BC6=,线段PQ=AB,1.(2020·江苏东台月考)如图,有一个直角三角形ABC,∠C=90°,AC10点Q在过点A且垂直于AC的射线AX上来回运动,点P从C点出发,沿射线CA以2cm/s的速度运动,问>,才能使△ABC≌△QPA全等.P点运动___________秒时(t0)2.(2020·江苏泰州月考)如图,AB =12,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC =4m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动_______分钟后△CAP 与△PQB 全等.3.(2020·常州市月考)如图, ADC 中.∠C =90°,AC =10cm ,BC =5cm .AD ⊥AC ,AB =PQ ,P 、Q 两点分别在AC 、AD 上运动,当AQ =_____时,△ABC 才能和△APQ 全等.4.(2020·江西新余期末)如图,ABC ∆中,90ACB ∠=︒,8cm AC =,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.5.(2020·武城县月考)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为多少时,能够使△BPE与以C、P、Q三点所构成的三角形全等?6.(2020·盐城市盐都区月考)如图,有一个直角△ABC,∠C=90°,AC=6,BC=3,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问:当AP=________时,才能使以点P、A、Q 为顶点的三角形与△ABC全等.7.(2020·四川青羊期中)如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4cm,BC=8cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD=cm,CE=cm;(2)当t为多少时,△ABD的面积为12cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.8.(2020·郑州市月考)如图,在平面直角坐标系中,O 为坐标原点A 、B 两点的坐标分别A (m ,0),B(0,n ),且|m -n -3|=0,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒.(1)求OA 、OB 的长;(2)连接PB ,若△POB 的面积不大于3且不等于0,求t 的范围;(3)过P 作直线AB 的垂线,垂足为D ,直线PD 与y 轴交于点E ,在点P 运动的过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.9.(2020·宜兴市月考)如图,在△ABC 中,∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:AF =AM ;(2)当t 取何值时,△DFE 与△DMG 全等;(3)求证:在运动过程中,不管t 取何值,都有2AED DGC S S =△△.10.(2020·江苏工业园区期末)如图①,将长方形纸片沿对角线剪成两个全等的直角三角形ABC、EDF,其中AB=8cm,BC=6cm,AC=10cm.现将△ABC和△EDF按如图②的方式摆放(点A与点D、点B与点E 分别重合).动点P从点A出发,沿AC以2cm/s的速度向点C匀速移动;同时,动点Q从点E出发,沿射线ED以acm/s(0<a<3)的速度匀速移动,连接PQ、CQ、FQ,设移动时间为ts(0≤t≤5).=3S△BQC,则a=;(1)当t=2时,S△AQF(2)当以P、C、Q为顶点的三角形与△BQC全等时,求a的值;(3)如图③,在动点P、Q出发的同时,△ABC也以3cm/s的速度沿射线ED匀速移动,当以A、P、Q为顶点的三角形与△EFQ全等时,求a与t的值.11.(2019·江苏期末)如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3cm /s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm /s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s ).(1)点M 、N 从移动开始到停止,所用时间为s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2cm /s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.图①图②12.如图,ABC 中,90ACB ∠=︒,8AC cm =,15BC cm =,点M 从A 点出发沿A →C →B 路径向终点运动,终点为B 点,点N 从B 点出发沿B →C →A 路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F 设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为________.13.(2019·湖北襄州)在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?14.(2019·福建省惠安期中)如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,同时点E从点A出发沿线段AG以2cm/s的速度向终点G运动,当点E到达点G时,E、F两点同时停止运动,EF与AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0≤t≤2和2<t≤4时线段BF的长度(用含t的代数式表示);(2)当BF=AE时,求t的值;(3)若△ADE≌△CDF,求所有满足条件的t值.15.(2020·无锡市月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q 的运动速度为_____厘米/秒,△BPD与△CQP全等.16.(2020·广东龙岗期末)直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N 作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.17.(2020·青岛市黄岛区月考)如图1,直线AM AN ⊥,AB 平分MAN ∠,过点B 作BC BA ⊥交AN 于点C ;动点E 、D 同时从A 点出发,其中动点E 以2/m s 的速度沿射线AN 方向运动,动点D 以1/m s 的速度运动;已知6AC cm =,设动点D ,E 的运动时间为t .图1备用图(1)试求∠ACB 的度数;(2)当点D 在射线AM 上运动时满足ADB S :2BEC S = :3,试求点D ,E 的运动时间t 的值;(3)当动点D 在直线AM 上运动,E 在射线AN 运动过程中,是否存在某个时间t ,使得ADB 与BEC 全等?若存在,请求出时间t 的值;若不存在,请说出理由.参考答案及解析初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。
全等三角形经典动态几何问题1

1.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.2、如图,已知∠AOB=120°,OM 平分∠AOB ,将等边三角形的一个顶点P 放在射线OM 上,两边分别与OA 、OB (或其所在直线)交于点C 、D .(1)如图①,当三角形绕点P 旋转到PC ⊥OA 时,证明:PC=PD .(2)如图②,当三角形绕点P 旋转到PC 与OA 不垂直时,线段PC 和PD 相等吗?请说明理由.(3)如图③,当三角形绕点P 旋转到PC 与OA 所在直线相交的位置时,线段PC 和PD 相等吗?直接写出你的结论,不需证明.C B A ED 图1 N M A B C DE M N 图2 A C B ED N M 图33、用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图13—1),通过观察或测量BE,CF的长度,你能得出什么结论?并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图13—2),你在(1)中得到的结论还成立吗?简要说明理由.4、如图(1),已知AB⊥BD,ED⊥BD,AB=CD,BC=DE,求证:AC⊥CE.若将CD沿CB方向平移得到图(2)(3)(4)(5)的情形,其余条件不变,结论AC1⊥C2E还成立吗?请说明理由.5、如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN是等边三角形.(1)当把△ADE 绕A 点旋转到图2的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;(2)当△ADE 绕A 点旋转到图3的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由.6、将一副三角板中的两块三角板重合放置,其中45°和30°的两个角顶点重合在一起.(1)如图1所示,边OA 与OC 重合,此时,AB ∥CD ,则∠BOD______;(2)三角板△COD 的位置保持不动,将三角板△AOD 绕点O 顺时针方向旋转,如图2,此时OA ∥CD ,求出∠BOD 的大小;(3)在图2中,若将三角板△AOB 绕点O 按顺时针方向继续旋转,在转回到图1的过程中,还存在△AOB 中的一边与CD 平行的情况,请针对其中一种情况,画出图形,并直接写出∠BOD 的大小.图1 图2 图3。
全等三角形中的动点问题(教师版)

全等三角形中的动点问题全等三角形的判断与定义1.定义:能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
2.判定:(1)三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
(2)有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
(3)有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
(4)有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
3.性质:(1)全等三角形的对应角相等。
(2)全等三角形的对应边相等。
(3)全等三角形的对应边上的高对应相等。
(4)全等三角形的对应角的角平分线相等。
(5)全等三角形的对应边上的中线相等。
(6)全等三角形面积相等。
(7)全等三角形周长相等。
(8)全等三角形的对应角的三角函数值相等。
1、如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为.(1)求证:在运动过程中,不管取何值,都有S△AED=2S△DGC;(2)当取何值时,△DFE与△DMG全等;(3)在(2)的前提下,若,,求S△BFD.(1)证明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,∴DF=DM,∵S△AED=AE•DF,S△DGC=CG•DM,∴=,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴AE=2tcm,CG=tcm,∴=2,即=2,∴在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)解:设时间为t时,△DFE与△DMG全等,则EF=MG,①当M在线段CG的延长线上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t,MG=AC-CG-AM=4-t,即10-2t=4-t,解得:t=6,当t=6时,MG=-2,所以舍去;②当M在线段CG上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t(cm),MG=AM-(AC-CG)=t-4(cm),即10-2t=t-4,解得:t=,综上所述当t=时,△DFE与△DMG全等.(3)∵t=,∴AE=2t=(cm),∵DF=DM,∴S△ABD:S△ACD=AB:AC=BD:CD=119:126,∵AC=14cm,∴AB=(cm),∴BF=AB-AF=-10=(cm),∵S△ADE:S△BDF=AE:BF=:,S△AED=28cm2,∴S△BDF=(cm2).解析:(1)由角平分线的性质可知DF=DM,所以△AED和△DEG的面积转化为底AE和CG的比值,根据路程=速度×时间求出AE和CG的长度即可证明在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)若△DFE与△DMG全等,则EF=MG,利用已知条件求出EF和MG的长度,建立方程解方程即可求出运动的时间.(3)利用等高三角形的面积比等于对应底的比,即可求得答案.2、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P从A出发向C以1cm/s的速度运动、点Q同时从C出发向B以1cm/s的速度运动,当一个点运动到终点时,该点停止运动,另一个点继续运动,当两个点都到达终点时也停止运动.(1)几秒后,△CPQ的面积为Rt△ABC的面积的?(2)填空:①点经过_____秒,点P在线段AB的垂直平分线上.②点Q经过_____秒,点Q在∠BAC的平分线上.(1)设经过x秒,首先求得线段BC的长,然后分x≤6和6<x≤8两种情况列方程求解即可;(2)①点P在线段AB的垂直平分线上,即可得到PA=PB,从而求得时间;②点Q在∠BAC的平分线上,则Q点到AC和AB的距离相等.解;(1)设经过x秒.在Rt△ABC中,根据题意得;当x≤6时,(8-x)x=××8×6解得:当6<x≤8时,(8-x)×6=37解得:x=7答:经过7秒或秒.(2)当点P在线段AB的垂直平分线上时,PA=PB,∵设经过x秒后点P在线段AB的垂直平分线上,∴x2=(8-x)2+62解得:x=,∴经过秒,点P在线段AB的垂直平分线上②如图,作QD⊥AB于点D,∵点Q在∠BAC的平分线上,∴QD=QC,设经过x秒,则CQ=x,则QD=(6-x),∴x=(6-x),解得:x=,∴点Q经过秒,点Q在∠BAC的平分线上.3、如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm2解:根据题意沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,∴AP=2t,AQ=t,S△APQ=t2,∵0<t≤4,∴三角形APQ的最大面积是16.故选B.4、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.解:(1)解法一:如图1延长BP交直线AC于点E.∵AC∥BD,∴∠PEA=∠PBD.∵∠APB=∠PAE+∠PEA,∴∠APB=∠PAC+∠PBD;解法二:如图2过点P作FP∥AC,∴∠PAC=∠APF.∵AC∥BD,∴FP∥BD.∴∠FPB=∠PBD.∴∠APB=∠APF+∠FPB=∠PAC+∠PBD;解法三:如图3,∵AC∥BD,∴∠CAB+∠ABD=180°,∠PAC+∠PAB+∠PBA+∠PBD=180°.又∠APB+∠PBA+∠PAB=180°,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)(a)当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB.(b)当动点P在射线BA上,结论是∠PBD=∠PAC+∠APB.或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD(任写一个即可).(c)当动点P在射线BA的左侧时,结论是∠PAC=∠APB+∠PBD.选择(a)证明:如图4,连接PA,连接PB交AC于M.∵AC∥BD,∴∠PMC=∠PBD.又∵∠PMC=∠PAM+∠APM(三角形的一个外角等于与它不相邻的两个内角的和),∴∠PBD=∠PAC+∠APB.选择(b)证明:如图5∵点P在射线BA上,∴∠APB=0度.∵AC∥BD,∴∠PBD=∠PAC.∴∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD.选择(c)证明:如图6,连接PA,连接PB交AC于F∵AC∥BD,∴∠PFA=∠PBD.∵∠PAC=∠APF+∠PFA,∴∠PAC=∠APB+∠PBD.解析:(1)如图1,延长BP交直线AC于点E,由AC∥BD,可知∠PEA=∠PBD.由∠APB=∠PAE+∠PEA,可知∠APB=∠PAC+∠PBD;(2)过点P作AC的平行线,根据平行线的性质解答;(3)根据P的不同位置,分三种情况讨论.6、如图1,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF.(1)试说明BF=CE的理由;(2)当E、F相向运动,形成如图2时,BF和CE还相等吗?请说明你的结论和理由.证明:(1)∵AD∥BC,∴∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,∵∠ABC=∠DCB,∴∠BAD=∠CDA,∵AE=DF,∴AE+AD=DF+AD,即AF=DE,在△ABF和△DCE中,,∴△ABt≌△DCE(SAS),∴BF=CE;(2)相等.在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),∴BF=CE.解析:(1)根据两直线平行,同旁内角互明证明∠BAD=∠CDA,根据AE边DF证明AF=DE,再根据边角边定理证明△ABF和△DCE全等,根据全等三角形对应边相等即可证明BF=CE.(2)利用边角边定即证明△ABC和△DCB全等,再根据全等三角形对应边相等即可证明7、如图,已知△ABC中,BC=AC=8厘米,∠C=90°,如果点P在线段AC上以1厘米/秒的速度由A点向C点运动,同时,点Q在线段BC上由C点向B点运动,运动速度与点P的运动速度相等,点M是AB的中点.(1)在点P和点Q运动过程中,△APM与△CQM是否保持全等,请说明理由;(2)在点P和点Q运动过程中,四边形PMQC的面积是否变化?若变化说明理由;若不变,求出这个四边形的面积;(3)线段AP、PQ、BQ之间存在什么数量关系,写出这个关系,并加以证明.解:(1)在点P和点Q运动过程中,△APM与△CQM是否保持全等.理由如下:∵在△ABC中,BC=AC=8厘米,∠C=90°,点M是AB的中点,∴∠A=∠MCQ=45°,AM=CM,∴在△APM与△CQM中,,∴△APM与△CQM(SAS);(2)在点P和点Q运动过程中,四边形PMQC的面积不变化,其面积是32厘米2,理由如下:由(1)知,△APM与△CQM,∴S△APM=S△CQM,∴S四边形PMQC=S△AMC=S△ABC=AC•BC=×8×8=32(厘米2),即在点P和点Q运动过程中,四边形PMQC的面积不变化,其面积是32厘米2;(3)AP2+BQ2=PQ2.证明如下:∵由(1)知,△APM与△CQM,∴AP=CQ,又AC=BC,∴PC=BQ,∴AP2+BQ2=CQ2+CP2=PQ2.即AP2+BQ2=PQ2.解析:(1)通过SAS证得△APM与△CQM;(2)由(1)中的全等三角形的面积相等可以推知:S四边形PMQC=S△AMC=S△ABC;(3)AP2+BQ2=PQ2.利用(1)中的全等三角形的对应边相等推知AP=CQ,则PC=BQ,所以在直角△PCQ中,利用勾股定理推得AP2+BQ2=PQ2.8、如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?解:(1)①∵t=1秒,∴BP=CQ=3×1=3厘米,∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5厘米,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP.(SAS)②∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间秒,∴厘米/秒;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80厘米.∵80=56+24=2×28+24,∴点P、点Q在AB边上相遇,∴经过秒点P与点Q第一次在边AB上相遇.解析:(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.9、如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?分析:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.解答:解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴∠ABC=∠ACB,且BD=PC,BP=CQ,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8-3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8-3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.点评:本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.10、在△ABC中,AB=AC,(1)如图①,若∠BAC=45°,AD和CE是高,它们相交于点H.求证:AH=2BD;(2)如图②,若AB=AC=10厘米,BC=8厘米,点M为AB的中点,点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.如果在运动过程中存在某一时刻使得△BPM与△CQP全等,那么点Q的运动速度为多少?点P、Q运动的时间t为多少?解:(1)证明:在△ABC中,∵∠BAC=45°,CE⊥AB,∴AE=CE,∠EAH=∠ECB,在△AEH和△CEB中,,∴△AEH≌△CEB(ASA),∴AH=BC,∵BC=BD+CD,且BD=CD,∴BC=2BD,∴AH=2BD.(2)∵AB=AC,∴∠B=∠C,∴△BPM与△CQP全等有两种情况:△BPM≌△CPQ 或△BPM≌△CQP当△BPM≌△CPQ时,BP=PC=4,CQ=BM=5,∴点P,点Q运动的时间秒,∴厘米/秒.当△BPM≌△CQP时,BP=CQ,∴V Q=V P=3厘米/秒.此时PC=BM=5,t=秒.综上所述,点Q的运动速度为厘米/秒,此时t=秒或点Q的运动速度为3厘米/秒,此时t=1秒.解析:(1)证得△BCE≌△HAE,证得AH=BC,证得AH=2BD;(2)根据全等三角形应满足的的件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度B11、如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是______;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明分析:(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.解答:解:(1)①BD=CE;②AM=AN,∠MAN=∠BAC,∵∠DAE=∠BAC,∴∠CAE=∠BAD,在△BAD和△CAE中∵∴△CAE≌△BAD(SAS),∴∠ACE=∠ABD,∵DM=BD,EN=CE,∴BM=CN,在△ABM和△ACN中,∵∴△ABM≌△ACN(SAS),∴AM=AN,∴∠BAM=∠CAN,即∠MAN=∠BAC;(2)AM=k•AN,∠MAN=∠BAC.点评:本题考查三角形全等的判定方法和性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题还要会根据所求的结论运用类比的方法求得同类题目.12、已知:如图,在平面直角坐标系中,点A,B,C分别在坐标轴上,且OA=OB=OC,△ABC的面积为9,点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA,PB,D(-m,-m)为AC上的点(m>0)(1)试分别求出A,B,C三点的坐标;(2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直相等?请说明理由;(3)若PA=AB,在第四象限内有一动点Q,连QA,QB,QP,且∠PQA=60°,当Q在第四象限内运动时,下列说法:(i)∠APQ+∠PBQ的度数和不变;(ii)∠BAP+∠BQP的度数和不变,其中有且只有一个说法是正确的,请判断正确的说法,并求这个不变的值.解:(1)∵OA=OB=OC,∠AOC=∠BOC=90°,∴∠OAC=∠OCA=∠OBC=∠OCB=45°,∴∠ACB=90°,又△ABC的面积为9,∴OA=OC=OB=3,∴A(-3,0),B(3,0),C(0,-3);(2)当t=3秒时,即CP=OC时,DP与DB垂直且相等.理由如下:连接OD,作DM⊥x轴于点M,作DN⊥y轴于点N,∵D(-m,-m),∴DM=DN=OM=ON=m,∴∠DOM=∠DON=45°,而∠ACO=45°,∴DC=DO,∴∠PCD=∠BOD=135°,又CP=OC=OB,∴△PCD≌△BOD (SAS),∴DP=DB,∠PDC=∠BDO,∴∠BDP=∠ODC=90°,即DP⊥DB.(3)解:(i)正确.在QA上截取QS=QP,连接PS.∵∠PQA=60°,∴△QSP是等边三角形,∴PS=PQ,∠SPQ=60°,∵PO是AB的垂直平分线,∴PA=PB 而PA=AB,∴PA=PB=AB,∴∠APB=60°,∴∠APS=∠BPQ,∴△APS≌△BPQ,∴∠PAS=∠PBQ,∴∠APQ+∠PBQ=∠APQ+∠PAS=120°.解析:(1)利用OA=OB=OC,∠AOC=∠BOC=90°得出∠ACB=90°,再利用△ABC的面积为9,得出OA=OC=OB=3 即可得出各点的坐标;(2)作DM⊥x轴于点M,作DN⊥y轴于点N,假设出D点的坐标,进而得出△PCD≌△BOD,进而得到∠BDP=∠ODC=90°,即DP⊥DB;(3)在QA上截取QS=QP,连接PS,利用∠PQA=60°,得出△QSP是等边三角形,进而得出△APS≌△BPQ,从而得出∠APQ+∠PBQ=∠APQ+∠PAS得出答案.13、如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1)求证:BP=DP;(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.分析:(1)由正方形的性质可证△ABP≌△ADP,即BP=DP;(2)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立;(3)由旋转的性质和正方形的性质可证△BEC≌△DFC,即BE=DF.解答:(1)证明:证法一:在△ABP与△ADP中,∵AB=AD∠BAC=∠DAC,AP=AP,∴△ABP≌△ADP,∴BP=DP.(2分)证法二:利用正方形的轴对称性,可得BP=DP.(2分)(2)解:不是总成立.(3分)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立,(5分)说明:未用举反例的方法说理的不得分.(3)解:连接BE、DF,则BE与DF始终相等,,在图1中,由正方形ABCD可证:AC平分∠BCD,∵PE⊥BC,PF⊥CD,∴PE=PF,∠BCD=90°,∴四边形PECF为正方形.(7分)∴CE=CF,∵∠DCF=∠BCE,BC=CD,∴△BEC≌△DFC,∴BE=DF.(8分)点评:本题考查了旋转的性质和全等三角形的判定,以及正方形的性质.14、如图,在△ABC中,AB=AC=5,∠B=∠C,BC=8,点D从B点出发沿线段BC向C运动(D不与B、C重合),点E从点C出发沿线段CA向A运动(E不与A、C重合),它们以相同的速度同时运动,连结AD、DE.若要使△ABD≌△DCE,①请给出确定D、E两点位置的方法(如指明CD长度等),并说明理由;②此时∠ADE与∠C大小关系怎样?为什么?解:①DC=5,理由是:∵BC=8,CD=AB=5,∴BD=8-5=3,即CE=BD=3,在△ABD和△DCE中,,∴△ABD≌△DCE,即当CD=5时,△ABD≌△DCE.②∠ADE=∠C,理由是:∵△ABD≌△DCE,∴∠BDA=∠DEC,∴∠C=180°-∠DEC-∠EDC=180°-∠ADB-∠EDC,∵∠ADE=180°-∠BDA-∠EDC,∴∠ADE=∠C.解析:①CD=5时,根据SAS推出△ABD≌△DCE即可.②根据全等三角形性质得出∠BDA=∠DEC,根据三角形内角和定理求出∠C=180°-∠ADB-∠EDC,求出∠ADE=180°-∠BDA-∠EDC,即可得出答案.15、如图:△ABC中,AB=AC=5(即有∠B=∠C),BC=8,点D在线段BC上运动(D不与B、C重合),点E在线段AC上运动(E不与A、C重合),连结AD、DE.(1)点D从B向C运动时,∠BDA逐渐变_____(填“大”或“小”);(2)若要使△ABD≌△DCE,①请给出确定D、E两点位置的方法(如指明某些线段的长度等),并说明理由;②此时∠ADE与∠C大小关系怎样?为什么?(1)根据BD边逐渐增长可得∠BAD逐渐增大,又因为∠B的大小固定不变,结合三角形内角和定理∠B+∠BAD+∠ADB=180°可得∠ADB逐渐减小.(2)①根据三角形全等的性质可得DC=AB,DB=CE,进而得到答案;②根据全等三角形的性质可得∠1=∠2,再根据∠1+∠B+∠ADB=180°,∠2+∠ADE+∠BDA=180°,可得∠ADE=∠B,进而得到∠ADE=∠C.解:(1)∵点D从B向C运动时,BD边逐渐变长,∴∠BAD逐渐增大,∵∠B的大小固定不变,∠B+∠BAD+∠ADB=180°,∴∠ADB逐渐减小;(2)①∵△ABD≌△DCE,∴DC=AB=5,CE=DB,∵BC=8,∴CE=DB=8-5=3;②∠ADE=∠C;理由:∵△ABD≌△DCE,∴∠1=∠2,∵∠1+∠B+∠ADB=180°,∠2+∠ADE+∠BDA=180°,∴∠ADE=∠B,∵∠B=∠C,∴∠ADE=∠C.17、如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD 于点F.(1)求证:EF+AC=AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.分析:(1)过F作FM⊥AB于点M,首先证明△AMF≌△AEF,求出MF=MB,即可知道EF+AE=AB.(2)连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,证明Rt△A1E1F1≌Rt△A1PF1,Rt△QF1C1≌Rt△E1F1C1后推出A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1化简为E1F1+A1C1=AB.(3)设PB=x,QB=x,PB=1,E1F1=1,又推出E1F1+A1C1=AB,得出BD=.解答:(1)证明:如图1,过点F作FM⊥AB于点M,在正方形ABCD中,AC⊥BD 于点E.∴AE=AC,∠ABD=∠CBD=45°,∵AF平分∠BAC,∴EF=MF,又∵AF=AF,∴Rt△AMF≌Rt△AEF,∴AE=AM,∵∠MFB=∠ABF=45°,∴MF=MB,MB=EF,∴EF+AC=MB+AE=MB+AM=AB.(2)E1F1,A1C1与AB三者之间的数量关系:E1F1+A1C1=AB证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,∵A1F1平分∠BA1C1点/sub>,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1,21又∵A1F1=A1F1,∴Rt △A1E1F1≌Rt △A1PF1,∴A1E1=A1P ,同理Rt △QF1C1≌Rt △E1F1C1,∴C1Q=C1E1,由题意:A1A=C1C ,∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB ,∵PB=PF1=QF1=QB ,∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,∴E1F1+A1C1=AB .(3)解:设PB=x ,则QB=xm∵A1E1=3,QC1=C1E1=2,Rt △A1BC1中,A1B 2+BC12g/sup>=A 1C 12, 即(3+x )2+(2+x )2=52,∴x 1=1,x 2=-6(舍去), ∴PB=1,∴E 1F 1=1, 又∵A 1C 1=5, 由(2)的结论:E 1F 1+A 1C 1=AB , ∴AB=,∴BD=.点评:本题考查的是勾股定理的应用,全等三角形的判定以及正方形的性质等有关知识.18、如图,在等腰Rt △ABC 中,∠B=90°,AB=BC=8cm .动点P 从点A 出发沿线段AB 向点B 运动,动点Q 从点C 出发沿射线BC 运动,连接PQ ,交AC 于点D .作PE ⊥AC 于点E ,若在点P ,Q 运动的过程中,始终保持AP=CQ ,则线段DE 的长度为_____.作PF∥BC交AC于点D,就可以得出△APE是等腰直角三角形,由其性质就可以得出AE=EF,由△PFD≌△QCD就可以得出DC=DF,进而就可以得出DF+FE=CD+AE就可以得出结论.解:作PF∥BC交AC于点D,∴∠APF=∠B=90°,∠AFP=∠ACB.∠FPD=∠Q,∠PFD=∠QCD.∵∠B=90°,AB=BC=8cm,∴∠A=∠ACB=45°,∴∠A=∠ACB=45°,∴PA=AF.∵PE⊥AC,∴AE=EF.∵AP=CQ,∴PF=CQ.在Rt△ABC中,由勾股定理就可以得出AC=8.在△PFD和△QCD中,,∴△PFD≌△QCD(ASA)∴DF=DC,∴DF+EF=DC+AE,∴DE=AC,∴DE=4cm.故答案为:4.19、如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,M在AC上且AM=6cm,过点A(与BC在AC同侧)作射线AN⊥AC,若动点P从点A出发,沿射线AN匀速运动,运动速度为1厘米/秒,设点P运动时间为t秒(1)经过几秒时,Rt△AMP是等腰三角形?(2)又经过几秒时,PM⊥AB?(3)连接BM,在(2)的条件下,求四边形AMBP的面积.(1)解:设经过x秒时,Rt△AMP是等腰三角形,∵∠PAM=90°,∴只能AM=AP,∵AM=6cm,∴AP=6cm,即x=6(秒),答:经过6秒时,Rt△AMP是等腰三角形;(2)解:设经过t秒时,PM⊥AB,∵PM⊥AB,AN⊥AC,∠C=90°∴∠PAM=∠4=∠C=90°,∴∠3+∠2=90°,∠1+∠2=90°,∴∠1=∠3,∴△ACB∽△PAM,∴=,∴=,x=8,8-6=2,答:又经过2秒时,PM⊥AB;23(3)解:在Rt△ABC中,∠C=90°,AC=8,BC=6,由勾股定理得:AB=10,同理可求PM=10,∵PM⊥AB,∴四边形AMBP的面积S=AB×PM=×10×10=50,答:四边形AMBP的面积是50.解析:(1)得出腰时AM=AP,即可得出答案;(2)证△PAM∽△ACB,得出比例式,代入求出AP,即可得出答案;(3)由勾股定理求出PM、AB,关键三角形的面积公式求出即可.。
专题05 难点探究专题:全等三角形中的动态问题(解析版)

专题05 难点探究专题:全等三角形中的动态问题考点一 利用全等三角形中的动点求时间问题(利用分类讨论思想)考点二 利用全等三角形中的动点求线段长问题考点三 利用全等三角形中的动点求线段长最小值问题考点四 利用全等三角形中的动点综合问题考点一 利用全等三角形中的动点求时间问题(利用分类讨论思想)例题:(2021·山东临沂·八年级期中)如图,CA AB ⊥,垂足为点A ,射线BM AB ⊥,垂足为点B ,12cm AB =,6cm AC =.动点E 从A 点出发以3cm /s 的速度沿射线AN 运动,动点D 在射线BM 上,随着 E 点运动而运动,始终保持ED CB =.若点E 的运动时间为(0)t t >,则当 t =________ 个秒时,DEB 与BCA 全等.【答案】2或6或8【解析】【分析】分两种情况:①当E 在线段AB 上时,②当E 在BN 上,再分别分成两种情况AC =BE ,AB =BE 进行计算即可.【详解】解:①当E 在线段AB 上,AC =BE 时,ACB BED ≅AC =6,∴ BE =6,∴ AE =12-6=6,∴ 点 E 的运动时间为632÷= (秒).②当E 在BN 上,AC =BE 时,ACB BED ≅AC =6,∴ BE =6,∴ AE =12+6=18.∴ 点 E 的运动时间为6318=÷ (秒).③当E 在BN 上,AB =BE 时,ACB BDE ≅∴ AE =12+12=24.∴点E 的运动时间为8324=÷ (秒)④当E 在线段AB 上,AB =BE 时,ACB BDE ≅这时E 在A 点未动,因此时间为0秒不符合题意. 故答案为:2或6或8.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式训练】1.(2021·全国·七年级专题练习)已知:如图,在长方形ABCD 中,6,10AB AD ==延长BC 到点E ,使4CE =,连接DE ,动点F 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为_______时,ABF 和DCE 全等.【答案】2或11【解析】【分析】分两种情况讨论,根据题意得出BF =2t =4和AF =26-2t =4即可求得答案.【详解】解:∵DCE 为直角三角形,且AB =DC ,∵当ABF ∵DCE 时,有BF =2t =CE =4,解得:t =2;当BAF △∵DCE 时,有AF =CE =4,此时2=10610-2t=26-2t AF BC CD DA t =++-++=4,解得:11t =,故答案为:2或11.【点睛】本题考查全等三角形的判定,注意到DCE为直角三角形,且AB=DC,故只有BF=2t=4和AF=26-2t=4两种情况.2.(2019·江苏·镇江实验学校八年级阶段练习)已知正方形ABCD中,AB=BC=CD=DA=8cm,∵A=∵B=∵C=∵D=90°.动点P以每秒2cm的速度从点B出发沿线段BC方向运动,动点Q同时以每秒8cm的速度从B点出发沿正方形的边BA-AD-DC-CB方向顺时针作折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.连接P A,当t的值为___________________秒时,P AB和QAD全等.【答案】0.8秒或83.【解析】【分析】分点Q在AB,AD,DC,BC边上这几种情况进行讨论,根据全等三角形的性质得出对应边相等,进而列出方程求得t的值.【详解】解:①当点Q在边AB上时,如图1,∵AB=AD,∵ABP=∵DAQ=90°,要使P AB和QAD全等,只能是P AB∵QDA,∵BP=AQ,∵AQ=8-8t,BP=2t,∵8-8t=2t,∵t=0.8,②当点Q在边AD时,不能构成QAD,③当点Q在边CD上时,如图2,同①的方法得,要使P AB和QAD全等,只能是P AB∵QAD,∵BP=DQ,∵2t=8t-16,∵t=83,④当点Q在边BC时,QAD不是直角三角形,而P AB是直角三角形,所以,不能全等;即:当P AB和QAD全等时,t的值为0.8或83,故答案为:0.8或83.【点睛】此题主要考查了全等三角形的判定和性质,解决本题的关键是分类讨论,用方程的思想解决问题.考点二利用全等三角形中的动点求线段长问题例题:(2019·江苏·宜兴市周铁中学八年级阶段练习)已知:如图,∵B=90°AB∵DF,AB=3cm,BD=8cm,点C 是线段BD上一动点,点E是直线DF上一动点,且始终保持AC∵CE,若AC=CE ,则DE的长为______.【答案】5【解析】【分析】根据全等得出对应边相等,即可得出答案.【详解】解:∵∵B=90°,AB∵DF,∵∵D=∵B=90°,∵AC∵CE,∵∵ACE=90°,∵∵ECD +∵CED =90°,∵ACB +∵ECD =90°,∵∵ACB =∵CED ;∴在∵ABC 和∵CDE 中ACB CED B DAC CE ∠∠∠∠⎧⎪⎨⎪⎩=== ∵∵ABC ∵∵CDE (AAS ),∵AB =CD =3cm ,∵DE =BC =8cm -3cm =5cm故答案为5.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.【变式训练】1.(2020·江苏·泰州中学附属初中八年级阶段练习)如图,△ABC 中,点D 在边BC 上,DE ∵AB 于E ,DH ∵AC 于H ,且满足DE =DH ,F 为AE 的中点,G 为直线AC 上一动点,满足DG =DF ,若AE =4cm ,则AG = _____cm .【答案】2或6.【解析】【详解】∵DE ∵AB ,DH ∵AC ,∵∵AED =∵AHE =90°.在△ADE 和△ADH 中,∵AD =AD ,DE =DH , ∵∵ADE ∵∵ADH (HL ),∵AH =AE =4cm .∵F 为AE 的中点,∵AF =EF =2cm .在△FDE 和△GDH 中,∵DF =DG ,DE =DH , ∵∵FDE ∵∵GDH (HL ),∵GH =EF =2cm .当点G 在线段AH 上时,AG =AH -GH =4-2=2cm ;当点G 在线段HC 上时,AG =AH +GH =4+2=6cm ;故AG 的长为2或6.2.(2022·全国·八年级课时练习)如图,AO∵OM,OA=7,点B为射线OM上的一个动点,分别以OB,AB 为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,则PB的长度____________.【答案】7 2【解析】【分析】根据题意过点E作EN∵BM,垂足为点N,首先证明∵ABO∵∵BEN,得到BO=ME;进而证明∵BPF∵∵MPE并分析即可得出答案.【详解】解:如图,过点E作EN∵BM,垂足为点N,∵∵AOB=∵ABE=∵BNE=90°,∵∵ABO+∵BAO=∵ABO+∵NBE=90°,∵∵BAO=∵NBE,∵∵ABE、∵BFO均为等腰直角三角形,∵AB=BE,BF=BO;在∵ABO与∵BEN中,BAO NBE AOB BNE AB BE ∠⎪∠⎧⎩∠⎪∠⎨===,∵∵ABO ∵∵BEN (AAS ),∵BO =NE ,BN =AO ;∵BO =BF ,∵BF =NE ,在∵BPF 与∵NPE 中,FBP ENP FPB EPN BF NE ∠⎪∠⎧⎩∠⎪∠⎨===,∵∵BPF ∵∵NPE (AAS ),∵BP =NP =12BN ,BN =AO , ∵BP = 12AO = 12×7=72. 故答案为:72. 【点睛】本题考查三角形内角和定理以及全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形并灵活运用有关定理进行分析.考点三 利用全等三角形中的动点求线段长最小值问题例题:(2021·重庆八中八年级开学考试)如图,在Rt ∵ABC 中,∵ACB =90°,AC =6,BC =8,AB =10,AD 平分∵CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE +EF 的最小值为________.【答案】245【解析】【分析】 在AB 上取点F ′,使AF ′=AF ,过点C 作CH ∵AB ,垂足为H .因为EF +CE =EF ′+EC ,推出当C 、E 、F ′共线,且点F ′与H 重合时,FE +EC 的值最小.【详解】解:如图所示:在AB 上取点F ′,使AF ′=AF ,过点C 作CH ∵AB ,垂足为H .∵AD 平分∵CAB ,∵∵CAD =∵BAD ,又AE =AE ,∵∵AEF ∵∵AE F ′(SAS ),∵FE =E F ′,∵S △ABC =12AB •CH =12AC •BC , ∵CH =•245AC BC AB =, ∵EF +CE =EF ′+EC ,∵当C 、E 、F ′共线,且点F ′与H 重合时,FE +EC 的值最小,最小值为245, 故答案为:245. 【点睛】本题主要考查的是勾股定理的应用、垂线段最短等知识,解题的关键是正确的作出辅助线,明确当C 、E 、F ′共线,且点F ′与点H 重合时,CE +EF 的值最小.【变式训练】1.(2021·全国·八年级专题练习)如图,在线段AB 两侧作ABC 和ABD △,使AC AB =,ABC ABD ∠=∠,E 为BC 边上一点,满足2EAD BAC ∠=∠,P 为直线AE 上的动点,连接BP 、DP .已知3AB =, 2.6AD =,BDE 的周长为3.6,则BP DP +的最小值为______.【答案】2.8【解析】 【分析】在BC上取CD′=BD,连接AD′,证明∵ACD′∵∵ABD,得到AD′=AD,∵CAD′=∵BAD,从而证明∵AED′∵∵AED,得到D′E=DE,∵AED′=∵AED,过A作AF∵BC,AF与BC交于点F,从而推断出BP+DP=BP+D′P最小值为P 点与E点重合时,BP与D′P共线,BP+D′P=BD′,利用勾股定理求出BD′的长度即可.【详解】解:在BC上取CD′=BD,连接AD′,∵AC=AB,∵∵C=∵ABC,∵∵ABC=∵ABD,∵∵C=∵ABD,又CD′=BD,AC=AB,∵∵ACD′∵∵ABD(SAS),∵AD′=AD,∵CAD′=∵BAD,∵∵DAD′=∵BAC,∵2∵EAD=∵BAC=∵DAD′,∵∵D′AE=∵DAE,又AD′=AD,AE=AE,∵∵AED′∵∵AED(SAS),∵D′E=DE,∵AED′=∵AED,∵D′在直线BD上,过A作AF∵BC,AF与BC交于点F,∵CD′=BD,D′E=DE,∵CD′+D′E+EB=BC=BD+DE+BE=3.6,∵P为AE上的动点,故BP+DP=BP+D′P最小值为P点与E点重合时,BP与D′P共线,BP+D′P=BD′,∵∵ABC中,AB=AC=3,BC=3.6,AF∵BC,AD′=AD=2.6,∵F为BC中点,即CF=BF=12BC=12×3.6=1.8,∵AF 2.4==,∵D′F1,∵BD′=BF+D′F=1.8+1=2.8,∵BP+DP的最小值为2.8,故答案为:2.8.【点睛】本题考查了最短路径问题,全等三角形的判定和性质,勾股定理,解题的关键正确作出辅助线,利用全等三角形的性质得到相等线段.2.(2019·湖北·武汉大学附属外语学校八年级阶段练习)∵ABC是边长为2的等边三角形,点P为直线BC 上的动点,把线段AP绕A点逆时针旋转60°至AE,O为AB边上一动点,则OE的最小值为____.【解析】【分析】根据题意连接EC,作CH∵AB于H,首先证明CE∵AB,再求出平行线之间的距离即可解决问题.【详解】解:如图,连接EC,作CH∵AB于H.∵∵ABC是等边三角形,∵∵BAC=∵ABC=∵ACB=60°,AB=AC,∵∵P AE=∵BAC=60°,∵∵P AB=∵EAC,∵P A=EQ,BA=CA,∵∵P AB∵∵EAC(SAS),∵∵ABP=∵ACE,∵∵ABP=180°﹣60°=120°,∵∵ACE=120°,∵∵BCE=120°﹣60°=60°,∵∵ABC=∵BCE,∵CE ∵AB ,∵点E 的运动轨迹是直线CE (CE ∵AB ),∵CB =CA =AB =2,CH ∵AB ,∵BH =AH =1,∵CH=根据垂线段最短,可知OE 的最小值=CH =【点睛】本题考查旋转变换和等边三角形的性质以及全等三角形的判定和性质和垂线段最短等知识,解题的关键是学会用转化的思想思考问题.考点四 利用全等三角形中的动点综合问题例题:(2022·辽宁葫芦岛·八年级期末)如图,在ABC 中,90,BAC AB AC ∠=︒=.点D 是直线BC 上一动点(点D 不与点B ,C 重合),90,DAE AD AE ∠=︒=,连接CE .(1)如图1,当点D 在线段BC 上时,直接写出,BC CD 与CE 之间的数量关系;(2)如图2,当点D 在边BC 的延长线上时,请探究线段,BC CD 与CE 之间存在怎样的数量关系?并说明理由;(3)如图3,若点D 在边CB 的延长线上,且点A ,E 分别在直线的两侧,其他条件不变,若10,6CD BC ==,直接写出CE 的长度.【答案】(1)CE +CD =BC ,证明见解析(2)CE =BC +CD ,证明见解析(3)CE =4【解析】【分析】(1)根据条件AB =AC ,∵BAC =90°,AD =AE ,∵DAE =90°,判定∵ABD ∵∵ACE (SAS ),即可得出BD 和CE 之间的关系,根据全等三角形的性质,即可得到CE +CD =BC ;(2)根据已知条件,判定∵ABD ∵∵ACE (SAS ),得出BD =CE ,再根据BD =BC +CD ,即可得到CE =BC +CD ;(3)根据条件判定∵ABD ∵∵ACE (SAS ),得出BD =CE ,即可解决问题.(1)解:如图1,∵∵BAC =∵DAE =90°,∵∵BAD =∵CAE ,在∵ABD 和∵ACE 中,AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∵∵ABD ∵∵ACE (SAS ),∵BD =CE ,∵BC =BD +CD =CE +CD ,(2)线段BC ,CD 与CE 之间存在的数量关系为BC =CE -CD .理由:如图2中,由(1)同理可得,∵∵BAC =∵DAE =90°,∵∵BAC +∵CAD =∵DAE +∵CAD , 即∵BAD =∵CAE ,∵在∵ABD 和∵ACE 中,AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∵∵ABD ∵∵ACE (SAS ),∵BD =CE ,∵BD =BC +CD ,即CE =BC +CD .(3)如图3,由(1)同理可得, ∵∵BAC =∵DAE =90°,∵∵BAC -∵BAE =∵DAE -∵BAE , 即∵BAD =∵EAC ,同理,∵ABD ∵∵ACE (SAS ),∵BD =CE ,∵CD =10,BC =6,∵DB =DC -BC =4,∵CE =4.【点睛】本题主要考查了全等三角形的判定与性质.解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等.解题时注意:全等三角形的对应边相等.【变式训练】1.(2021·河南商丘·八年级期中)如图1,ABC 中,50A ∠=︒,AB AC =,点D 、E 别在边AB 、AC 上,且DE //BC .(1)求证:BD CE =;(2)围绕A 点旋转ADE ,使其一边AD 落在线段AC 上(如图2所示),连接CE 、BD 并延长相交于M 点.试求BMC ∠的度数.【答案】(1)证明见解析部分.(2)50°.【解析】【分析】(1)利用平行线的性质以及等腰三角形的性质证明∵ADE =∵AED ,推出AD =AE 即可解决问题.(2)证明△BAD∵∵CAE(SAS),推出∵ABD=∵ACE,可得∵BAD=∵CMD=50°.(1)证明:如图1中,∵AB=AC,∵∵B=∵C,∵DE∵BC,∵∵ADE=∵B,∵AED=∵C,∵∵ADE=∵AED,∵AD=AE,∵AB﹣AD=AC﹣AE,即BD=EC.(2)解:如图2中,∵AB=AC,∵BAD=∵CAE,AD=AE,∵∵BAD∵∵CAE(SAS),∵∵ABD=∵ACE,∵∵ADB=∵CDM,∵∵BMC=∵BAD=50°.【点睛】本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.2.(2022·辽宁葫芦岛·八年级期末)如图①,点C在线段AB上(点C不与A,B重合),分别以AC,BC 为边在AB同侧作等边∵ACD和等边∵BCE,连接AE,BD交于点P.(1)观察猜想:1.AE与BD的数量关系为______;2.∵APD的度数为______;(2)数学思考:如图②,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.【答案】(1)①AE=BD;②60°(2)上述结论成立.∵APD=60°,证明见解析【解析】【分析】(1)根据已知条件只要证明∵DCB∵∵ACE,即可证明出AE于BD的数量关系,以及∵APD的角度;(2)根据∵ACD,∵BCE均为等边三角形,可知=AC,BC=EC,∵DCA=∵BCE=60°,进而可知∵DCA+∵ACB =∵ACB+∵BCE,即∵DCB=∵ACE,从而可证∵DCB∵∵ACE(SAS),则DB=AE,∵CDB=∵CAE,根据∵DCA =∵DP A=60°可证∵APD=60°.(1)解:∵∵ACD和∵CBE都是等边三角形,∵AC=DC,CE=CB,∵ACD=∵ECB=60°,∵∵ACE=∵ACD+∵DCE,∵DCB=∵DCE+∵ECB,∵∵DCB=∵ACE,∵∵DCB∵∵ACE,∵AE=BD,∵BDC=∵CAE,又∵∵DOP=∵COA,∵∵APD=∵ACD=60°,故答案是:AE=BD,60°;(2)上述结论成立,∵∵ACD,∵BCE均为等边三角形,∵DC=AC,BC=EC,∵DCA=∵BCE=60°,∵∵DCA+∵ACB=∵ACB+∵BCE,即∵DCB=∵ACE,在∵DCB和∵ACE中,DC ACDCB ACE CB CE=⎧⎪∠=∠⎨⎪=⎩,∵∵DCB∵∵ACE(SAS),∵DB=AE,∵CDB=∵CAE,如图,设BD与AC交于点O,易知∵DOC=∵AOP(对顶角相等),∵∵CDB+∵DCA=∵CAE+∵DP A,∵∵DCA=∵DP A=60°,即∵APD=60°.【点睛】本题考查全等三角形的性质与判定,等边三角形的性质,能够熟练掌握全等三角形的性质与判定是解决本题的关键.一、选择题1.(2020·广西百色·八年级期末)如图,在长方形ABCD中,4AB=,6AD=,延长BC到点E,使2CE=.动点P从点B出发,以每秒2个单位的速度沿BC CD DA--方向向终点A运动.设点P的运动时间为t秒,当ABP△和DCE全等时,t的值是()A.1B.1或3C.1或7D.3或7【答案】C【分析】分两种情况进行讨论,根据题意得出22BP t==和1622AP t=-=即可求得.【详解】解:因为AB CD=,若90ABP DCE∠=∠=︒,2BP CE==,根据SAS证得ABP DCE∆≅∆,由题意得:22BP t ==,所以1t =,因为AB CD =,若90BAP DCE ∠=∠=︒,2AP CE ==,根据SAS 证得BAP DCE ∆≅∆,由题意得:1622AP t =-=,解得7t =.所以,当t 的值为1或7秒时.ABP ∆和DCE ∆全等.故选:C .【点睛】本题考查了全等三角形的判定,解题的关键是掌握判定方法有:ASA ,SAS ,AAS ,SSS ,HL .2.(2022·全国·八年级课时练习)如图,在锐角∵ABC 中,∵BAC =45°,点B 到AC 的距离为2,∵BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是( )A .1B .1.5C .2D .3【答案】C【分析】在AC 上截取AE =AN ,连接BE ,由AD 平分∵CAB ,可得∵EAM =∵NAM ,然后根据SAS 可证∵AEM ∵∵ANM ,可得MN =ME ,然后根据BM +MN =BM +ME ≥BE ,可得当BE ∵AC ,即BE 是点B 到AC 的距离时,BM +MN 的值最小,从而求得答案.【详解】解:如图,在AC 上截取AE =AN ,连接BE ,∵AD 平分∵CAB ,∵∵EAM =∵NAM ,在∵AEM 和∵ANM 中, ∵AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩∵∵AEM ∵∵ANM (SAS ),∵MN =ME ,∵BM +MN =BM +ME ≥BE ,【点睛】本题主要考查了全等三角形的判定与性质、三角形的三边关系、点到直线的距离,通过构造全等【答案】261⊥AD BC∴BG A//∴∠=GBAAB BG=∴∆≅∆ABF∴=GE BFBF CE CE CG∴+,∴当G、三点共线时,AB AC=BC=12在Rt BCG∆故答案为:【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,通过构造三角形全等,将所求【答案】2.5或1在Rt∵ABC中,AB=10,AC=6,∵O是AB 的中点,∵OA=OB,在∵OAP和∵OBQ中,A OBQOA OBAOP BOQ∠=∠⎧⎪=⎨⎪∠=∠⎩,∵∵OAP∵∵OBQ(ASA),∵P A=BQ=6﹣1=5,OQ=OP,∵OM∵PQ,∵MQ=MP,∵52+x2=12+(8﹣x)2,解得x=2.5.当点P在AC的延长线上时,同法可得72+x2=12+(8﹣x)2,解得x=1,综上所述,满足条件的BM的值为2.5或1.故答案为:2.5或1.【点睛】本题考查勾股定理,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.5.(2022·江苏·八年级单元测试)如图, 在ABC中, 90,8cm,10cmACB AC BC∠===.点C在直线l 上, 动点P从A点出发沿A C→的路径向终点C运动; 动点Q从B点出发沿B C A→→路径向终点A运动.点P和点Q分别以每秒1cm和2cm的运动速度同时开始运动, 其中一点到达终点时另一点也停止运动, 分别过点P和Q作PM⊥直线l于,M QN⊥直线l于N.当点P运动时间为___________秒时, PMC与QNC全等.【答案】2或6##6或2【分析】对点P和点Q是否重合进行分类讨论,通过证明全等即可得到结果;【详解】解:如图1所示:PMC ∆与QNC ∆全等,PC QC ,8102t t ∴-=-,解得∵2t =;如图2所示:点P 与点Q 重合,PMC 与QNC ∆全等,8210t t ∴-=-,解得∵6t =;故答案为∵1或6.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.三、解答题6.(2022·江西吉安·七年级期末)如图,在长方形ABCD 中,6cm,8cm AB BC ==,动点P 从点B 出发,沿BC 方向以2cm /s 的速度向点C 匀速运动:同时动点Q 从点C 出发,沿CD 方向以2cm /s 的速度向点D 匀速运动,当一个点停止运动时,另一个点也停止运动.设运动时()()0t s t <<3.解答下列问题:(1)当点C 在线段PQ 的垂直平分线上时,求t 的值;(2)是否存在某一时刻t ,使AP PQ ⊥?若存在,求出t 的值;若不存在,请说明理由:【答案】(1)2(2)存在某一时刻t ,使AP PQ ⊥,t =1.【分析】(1)由线段垂直平分线的性质可得PC CQ =,列出方程可求解;(2)证出ABP PCQ ASA ≌(),由全等三角形的性质可得AB PC =,列出方程可求t 的值.(1)解:由题意得,2BP CQ t ==,∵82PC BC BP t =-=-,若点C 在线段PQ 的垂直平分线上,∵PC CQ =,即822t t -=,∵2t =;(2)解:存在某一时刻t ,使AP PQ ⊥.∵AP PQ ⊥,90B C ∠=∠=︒,∵90PQC QPC ∠+∠=︒,∵90∠+∠=︒APB QPC ,∵APB PQC ∠=∠.又∵BP CQ =,∵ABP PCQ ASA ≌(),∵AB CP =,∵826t -=,∵1t =.【点睛】本题考查了全等三角形的判定和性质,垂直平分线的性质,一元一次方程的应用,灵活运用这些性质解决问题是解题的关键.7.(2021·江苏南通·八年级期中)如图,在∵ABC 中,AB =AC ,∵BAC =90°,点D 是边BC 上的动点,连接AD ,点C 关于直线AD 的对称点为点E ,射线BE 与射线AD 交于点F .(1)在图中,依题意补全图形,并求证:∵ABF =∵AEB ;(2)记∵DAC =α(α<45°),求∵AFB 的大小;(3)若AB =BD ,猜想BE 和AD 的数量关系,并证明.【答案】(1)补全图见解析,证明见解析;(2)∵AFB=45°;(3)AD=BE,证明见解析【分析】(1)根据垂直平分线的性质求解即可;(2)根据三角形内角和定理计算即可;(3)连接DE,CE,AE,根据题意求得∵CAF=22.5°,再证明∵BED∵∵ADC(ASA),即可得解;【详解】解:(1)补完图并小结如图所示;连接CE,AE,由题意可知,∵点C关于直线AD的对称点为点E,AF垂直平分CE,∵AC=AE,∵AB=AC,∵AB=AE,∵∵ABF=∵AEB;(2)如图,由题意可知,∵EAF=∵CAD=α,∵∵BAE=90°﹣2α,在∵ABE中,∵BAE+∵ABF+∵AEB=180°,∵∵ABF=∵AEB=45°+α,∵∵AEB=∵EAF+∵AFB,∵EAF=α,∵∵AFB=45°;(3)结论:AD=BE;证明:如备用图,连接DE,CE,AE,在∵ABC中,AB=AC,∵ACB=∵ABC=45°,在∵ABD中,AB=BD,∵BAD=∵BDA=67.5°,∵∵CAF=22.5°,由(2)可知,∵ABE=∵ABC+∵CBF=45°+α,∵ABC=45°,∵∵CBF=α=22.5°,∵∵CAF=∵CBF,∵点C关于直线AD的对称点为点E,∵ED=DC,【点睛】本题主要考查了几何综合变换,结合全等三角形的判定与性质,三角形内角和定理证明是解题的(1)若点Q的运动速度与点P的运动速度相等,当t=1时,∵ACP∵BPQ是否全等?PC与PQ是否垂直?请分Rt ABC C 中,出发,沿折线CA -(1)点P 在CA 上运动的过程中,当CP =______时,CPD △与CBD 的面积相等;(直接写出答案)是等腰三角形,求∠CD 所在直线上存在另一动点______.(直接写出答案)与CBD 的面积相等时,证∵PCD 45°,分两种情况:=∵PCD =45∵CPD =∵与CBD 的面积相等,理由如下:45=︒, 在PCD 和△CP CB PCD CD CD =∠=∠=与CBD 的面积相等.)得:PCD ∠分两种情况:AC 上,如图若PC PD =,则45PDC PCD ∠=∠=︒,存在DP DC =,'∥,则MP AC八年级)如图,在ABC中,(1)求线段AO的长;∵AD是高,∵CQ=OP,∵CQ=OP,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:全等三角形中的动态问题
【学习目标】
1、使学生熟练掌握全等三角形的判定方法,并能熟练应用。
2、通过对图形运动的剖析,培养学生观察、对图形结构特征识别的能力以及概括综合分析能力,从而进一步提高学生的推理论证能力。
【重点难点】通过对图形运动的剖析,培养学生观察、对图形结构特征识别的能力以及概括综合分析能力,从而进一步提高学生的推理论证能力。
【基础训练】
如图网格中有△ABC及线段DE,在网格上找一点,使之与的D,E构成的三角形与△ABC全等,
①使得△ABC≌△FDE,这样的点有个,在图1中画出这些三角形。
图1 图2
②使得△ABC与△DEF全等, 这样的点有个,在图2中画出这些三角形。
并在横线上表示这些全等关系
【例题教学】
如图,已知ABC △中,10AB AC ==厘米,∠B =∠C,8BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等? ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?
【课堂检测】
1、如图,△ABC 是不等边三角形,DE =BC ,以D 、E 为两个顶点画位置不同的 △DEF ,使所画的△DEF 与△ABC 全等,这样的三角形最多可画出( )
A.2个
B.4个
C.6个
D.8个
2、如图,在等边△ABC 的顶点A, C 处各有一只蜗牛,它们同时出发,分别以相同的速度 由
A 向
B 和由
C 向A 爬行,经过 t 分钟后,它们分别爬行到D,E 处, 请问C
D 与B
E 相等吗?在蜗牛爬行的过程中, DC 与BE 是否始终相等?并说明理由。
【课后巩固】
1、如图,有一个直角三角形ABC ,∠C=90°,AC=10,BC=5,一条
线段PQ=AB ,P.Q 两点分别在AC 和过点A 且垂直于AC 的射线AX
上运动,则AP= 时,ΔABC 与ΔPQA 全等.
2、如图,已知正方形ABCD 的边长为10厘米,点E 在边AB 上,且AE=4厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.设运动时间为t 秒。
(1)若点Q 的运动速度与点P 的运动速度相等,经过2秒后,△BPE 与△CQP 是否全等?请说明理由.
(2)若点Q 的运动速度与点P 的运动速度不相等,则当t 为何值时,能够使△BPE 与△CQP 全等;
A B
E C
D
此时点Q的运动速度为多少?。