全等三角形中的动态问题1

合集下载

全等三角形之动点问题

全等三角形之动点问题

全等三角形之动点问题(一)1、已知:如图,在△ABC中,AB=AC=18,BC=12,点D为AB的中点.点P在线段BC上以每秒3个单位的速度由B点向C点运动,同时点Q在线段CA上由C点向A点以每秒a个单位的速度匀速运动.设运动时间为t秒,若某一时刻△BPD与△CQP全等,求t的值与相应的点Q的运动速度a2、如图,在等边ABC∆的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问(1)在爬行过程中,CD和BE始终相等吗?(2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,,求证:︒CQE=∠60(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF是否正确3、在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证BA O DC E图84. 如下图,已知正方形ABCD 中,边长为10厘米,点E 在AB 边上,BE=6厘米.(1)如果点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPE 与△CQP 是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPE 与△CQP 全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿正方形ABCD 四边运动,求经过多长时间点P 与点Q 第一次在正方形ABCD 边上的何处相遇?5、如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;6、ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.C B OD图7AE全等构造角平分线类1如图,在ABC ∆中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .求证:AB BD AC +=.DC B A2如图,在ABC ∆中,AB BD AC +=,BAC ∠的平分线AD 交BC 与D .求证:2B C ∠=∠.DC B A3如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC4如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠,求证: 0180=∠+∠C A5已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、 CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.OED CBA6如图,在ABC ∆中,60B ∠=︒,AD 、CE 分别平分BAC ∠、BCA ∠,且AD 与CE 的交点为F .求证:FE FD =.CDBACBAFBEDCA7如图,已知在ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。

2022中考数学技巧《全等三角形中的动态问题》专题讲解附练习及答案

2022中考数学技巧《全等三角形中的动态问题》专题讲解附练习及答案

难点探究专题:全等三角形中的动态问题◆类型一全等三角形中的动点问题1.如图,在△MAB中,MA=MB,过M点作直线MN交AB于N点.P是直线MN 上的一个动点,在点P移动的过程中,假设NA=NB,那么∠PAM与∠PBM是否相等?说明理由.2.如图①,在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为________;②线段BC,CD,CF之间的数量关系为______________ (将结论直接写在横线上);(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?假设成立,请给予证明;假设不成立,请你写出正确结论再给予证明.◆类型二全等三角形中的动图问题3.等边三角形的三条边相等、三个角都等于60°.如图,△ABC与△CDE都是等边三角形,连接AD,BE.(1)如果点B,C,D在同一条直线上,如图①所示,试说明:AD=BE;(2)如果△ABC绕C点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.◆类型三 全等三角形中的翻折问题4.如图,将Rt △ABC 沿斜边翻折得到△ADC ,E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并说明理由.参考答案与解析1.解:∠P AM =∠PBM .理由如下:∵NA =NB ,MA =MB ,MN 是公共边,∴△AMN ≌△BMN (SSS),∴∠MAN =∠MBN ,∠MNA =∠MNB .又∵NA =NB ,PN 是公共边,∴△P AN ≌△PBN (SAS),∴∠P AN =∠PBN .∴∠P AM =∠PBM .2.解:(1)①垂直 ②BC =CD +CF(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下:∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF .在△DAB 与△F AC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△F AC (SAS),∴∠ABD =∠ACF ,DB =CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .3.解:(1)∵△ABC ,△CDE 都是等边三角形,∴AC =BC ,CD =DE ,∠ACB =∠DCE =60°.∵点B ,C ,D 在同一条直线上,∴∠ACE =60°,∴∠BCE =∠ACD =120°.在△ACD与△BCE 中,∵⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE .(2)成立.理由如下:∵∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠BCE =∠ACD .又∵AC =BC ,CD =CE ,∴△ACD ≌△BCE ,∴AD =BE .4.解:DE +BF =EF .理由如下:延长CB 至G ,作∠5=∠1,如以下列图.∵将Rt △ABC沿斜边翻折得到△ADC ,∠EAF =12∠DAB ,∴AB =AD ,∠ABC =∠ADE =90°,∠2+∠3=∠1+∠4,∴∠ABG =90°=ADE .∵∠5=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠EAF .在△AGB 和△AED 中,⎩⎪⎨⎪⎧∠GAB =∠EAD ,AB =AD ,∠ABG =∠ADE ,∴△AGB ≌△AED (ASA),∴AG =AE ,BG =DE .在△AGF 和△AEF 中,⎩⎪⎨⎪⎧AG =AE ,∠GAF =∠EAF ,AF =AF ,∴△AGF ≌△AEF (SAS),∴GF =EF ,∴BG +BF=EF ,∴DE +BF =EF .。

全等三角形中的动态性问题

全等三角形中的动态性问题

全等三角形中的动态性问题动态性几何问题是中考数学题型中的热点题型,这类试题常以运动的点、线段、变化的图形等为基本条件,给出一个或多个变量,要求确定变量与其它量之间的关系,或变量在一定条件为定值时,进行相关的几何计算和综合解答。

解答这类题目,一般要根据点的运动和图形的变化过程,对其不同情况进行分类求解,要始终把握住“动静结合找界点、分类讨论细演算” 。

一、图形的全等图形经过“轴对称”、“平移”、“旋转” 后,位置发生了变化,但形状和大小不变,变换后的图形和变换前的图形能完全重合,这样的两个图形就全等。

1、全等三角形的性质:对应角相等,对应边相等。

2、全等三角形的判定:SSS , SAS , ASA , AAS , HL 。

二、试题探究例题1、已知:AB⊥BD, ED⊥BD, AC=CE, BC=DE。

例题1图(1)(1)试猜想线段AC与CE的位置关系,并证明你的结论.结论:AC⊥CE (证明略)(2)若将△ECD沿CB方向平移,其余条件不变, 结论:AC⊥C1E 还成立吗?请说明理由。

例题1图(2)结论:AC⊥C1E (证明略)例题2、已知:AB⊥BD, ED⊥BD, AC=CE, BC=DE。

(1)线段BD、AB、DE之间有怎样的数量关系,并说明理由。

例题2图(1)结论:BD=AB+DE (证明略)(2)若将两个三角形绕点C 旋转到如图所示的位置,则线段BD、AB、DE之间数量关系还成立吗?并说明理由。

例题2图(2)结论:BD = AB - ED (证明略)总结:图形变换,全等不变;遇到变式,先找不变。

三、典型例题例题3、如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ 。

(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E,如图b,求证:BE⊥DQ 。

例题3图(a)例题3图(b)证明:略。

例题4、已知,如图1,E、F为线段AC上的两个动点,且DE⊥AC于E点,BF ⊥AC于F点,若AB=CD,AF=CE,BD交AC于M点;(1)求证:MB=MD,ME=MF;(2)当E、F两点移至如图2所示的位置时,其它条件不变,上述结论能否成立?若成立,请说明你的理由。

专题全等三角形中的动点运动问题(30题)(原卷版)

专题全等三角形中的动点运动问题(30题)(原卷版)

(苏科版)八年级上册数学《第1章全等三角形》专题全等三角形中的动点运动问题(30题)1.(2023春•横山区期末)如图,AB=8cm,∠A=∠B,AC=BD=6cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上以xcm/s的速度由点B向点D运动.它们运动的时间为t (s).当△ACP与△BPQ全等时,x的值为.2.(2022春•普宁市期末)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.1、全等三角形中的动点运动问题,通过点的运动,用代数式表示线段的大小,从而寻找线段间的等量关系,建立方程,进而快速解题.2、解题策略:①明晰点的运动方向和速度;②根据已知和求证的目标,寻找线段或角之间的数量关系,进而解决问题;③有时要用到分类讨论的思想.典型题训练3.(2022秋•攸县期末)如图,在四边形ABCD中,∠DAB=∠ABC,AB=5cm,AD=BC=3cm,点E在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动.设运动时间为t(s),当△ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为cm/s.4.(2023春•吴江区期末)如图,已知长方形ABCD中,AB=8cm,AD=12cm,点E在AB边上,BE=3cm,点F在线段BC上以3cm/s的速度由B点向C点运动,到达点C后马上折返,向点B运动,点G在线段CD上以vcm/s的速度由C点向D点运动.点F,G同时出发,当一个点到达终点停止运动时,另一个点也随之停止运动,设运动的时间为t秒.若以E,B,F为顶点的三角形和以F,C,G为顶点的三角形全等,则t=秒.5.如图,△ABC中,AB=AC=24cm,BC=16cm,AD=BD.如果点P在线段BC上以2cm/s的速度由B 点向C点运动,同时,点Q在线段CA上以vcm/s的速度由C点向A点运动,那么当△BPD与△CQP 全等时,v=()A.3B.4C.2或4D.2或36.(2022秋•高邑县期中)如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是()A.2B.2.8C.3D.67.(2022秋•浠水县校级期中)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.当△ABD≌△ACE时,t的值为()A.2B.4C.6D.2或68.(2023春•和平区校级期中)如图,已知Rt△ABC中,∠ACB=90°,满足AC=7,BC=12,点P从A 点出发沿A→C→B路径向终点B运动:点Q从B出发沿B→C→A路径向终点A运动;点P,Q的速度分别以每秒1个单位长度和每秒3个单位长度的速度同时开始运动,两个点都要到达相应的终点时才能停止运动,分别过P,Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,当以P,E,C为顶点的三角形与以Q,F,C为顶点的三角形全等时,t的值为(不考虑两三角形重合的情况).9.如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,点E从点A出发沿线段AG以2cm/s的速度运动至点G,E、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与直线AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0<t<2和2<t<4时段BF的长度(用含t的代数式表示)(2)当BF=AE时,求t的值;(3)当△ADE≌△CDF时,直接写出所有满足条件的t值.10.在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动,且PQ=AB,问P点运动到AC上什么位置时△ABC才能和△QP A全等.11.(2022秋•昭阳区期中)如图,已知在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.(1)若点Q与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能使△BPD与△CQP全等?12.如图,△ABC中,∠ACB=90°,AC=12,BC=16.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以2和6的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.13.(2022秋•苍溪县期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B→A方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以lcm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.14.如图,在等腰△ABC中,AB=AC=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C 运动,设点P的运动时间为ts.(1)PC=cm.(用t的代数式表示)(2)当点P从点B开始运动,同时,点Q从点C出发,以vcm/s的速度沿CA向点A运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.15.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向C运动,同时,点Q在线段CA上由点C向A运动,①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以1cm/s的运动速度从B同时出发,都逆时针沿△ABC三边运动,则经过秒后,点P与点Q第一次在△ABC上相遇.(在横线上直接写出答案,不必书写解题过程)16.(2022秋•南召县期末)如图,在四边形ABCD中,∠B=∠C,AB=20cm,BC=15cm,E为AB的中点,若点P在线段BC上以5cm/s的速度由点B向点C运动,同时,点Q在线段CD上由点C向点D运动.(1)若点Q运动的速度是5cm/s,经过1秒后,△BPE与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当△BPE与△CQP全等时,求出点Q的运动速度.17.(2022春•二七区校级期中)如图,点E在线段CD上,EA,EB分别平分∠DAB和∠CBA,点F在线段AB上运动,AD=4cm,BC=3cm,且AD∥BC.(1)当点F运动到离点A多少厘米时,△ADE和△AFE全等?为什么?(2)在(1)的情况下,此时BF=BC吗?为什么?求出AB的长.18.如图,在长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(注:长方形中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC)(1)若点Q的运动速度与点P的运动速度相等:①经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;②设运动时间为t秒时,△PEQ的面积为Scm2,请用t的代数式表示S.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△AEP与△BPQ全等.19.(2023春•碑林区校级期末)如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ全等时,求t的值.20.如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以1cm/s的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.(1)若点F的运动速度与点E的运动速度相等,当t=2时:①判断△BEF与△ADE是否全等?并说明理由;②求∠EDF的度数.(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.21.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.22.如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=14,点E从点D出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒5个单位的速度,沿C→B→C做匀速移动,点G 从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒,G点的移动距离为y.(1)请用含t的代数式表示以下线段:ED=,当0<t≤2时,BF=,当2<t≤4时,BF=;(2)请猜想AD与BC的位置关系,并说明理由;(3)在移动过程中,请你探究当t取何值时,△DEG与△BFG全等?并求出此时G点的移动距离y.23.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.24.(2022春•华容县期中)如图,已知正方形ABCD的边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/s的速度由B点向C点运动,同时,点Q在线段CD上由C点向D 点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等.请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?相遇点在何处?25.(2022秋•红花岗区期中)如图1,直线AM⊥AN,AB平分∠MAN,过点B作BC⊥BA交AN于点C;动点E、D同时从A点出发,其中动点E以2cm/s的速度沿射线AN方向运动,动点D以1cm/s的速度运动;已知AC=6cm,设动点D,E的运动时间为t.(1)当点D在射线AM上运动时满足S△ADB:S△BEC=2:1,试求点D,E的运动时间t的值;(2)当动点D在直线AM上运动,E在射线AN运动过程中,是否存在某个时间t,使得△ADB与△BEC 全等?若存在,请求出时间t的值;若不存在,请说出理由.26.如图,AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在射线AB上以1cm/s的速度由点A出发沿射线AB方向运动,同时,点Q在射线DB上由点D出发沿射线DB方向运动.它们运动的时间为t (s).(1)若点Q的运动速度是点P的运动速度的2倍,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)设点Q的运动速度为xcm/s(x≠2),是否存在实数x,使△ACP与△BPQ全等?若存在,请画出示意图,将全等的三角形用符号表示出来,并直接写出相应的x,t的值;若不存在,请说明理由.27.(2022秋•沭阳县校级月考)如图①,线段BC=6,过点B、C分别作垂线,在其同侧取AB=4,另一条垂线上任取一点D.动点P从点B出发,以每秒2个单位的速度沿BC向终点C运动;同时动点Q从点C出发,以每秒a个单位的速度沿射线CD运动,当点P停止时,点Q也随之停止运动.设点P的运动的时间为t(s).(1)当t=1,CP=,用含a的代数式表示CQ的长为;(2)当a=2,t=1时,①求证:△ABP≌△PCQ;②求证:AP⊥PQ;(3)如图②,将“过点B、C分别作垂线”改为“在线段BC的同侧作∠ABC=∠DCB”,其它条件不变.若△ABP与△PCQ全等,直接写出对应的a的值.28.在直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,①如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E.求证:△ACD≌△CBE;②如图2,过点A作AD⊥直线l于点D,点B与点F关于直线l对称,连接BF交直线l于E,连接CF.求证:DE=AD+EF.(2)当AC=8cm,BC=6cm时,如图3,点B与点F关于直线l对称,连接BF、CF.点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C,点N以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E,点M、N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒.当△MDC与△CEN全等时,求t的值.29.(2022秋•浠水县期中)已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.30.(2022秋•原平市校级期中)如图,在△ABC中,BC=5,高AD、BE相交于点O,BD=23CD,且AE=BE.(1)求线段AO的长;(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,点F是直线AC上的一点且CF=BO.是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请直接写出符合条件的t值,若不存在,请说明理由.。

初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点+例题解析)初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

解决动点问题常见的答题思路是:1.注意分类讨论;2.仔细探究全等三角形对应边与对应角的变化;3.利用时间表示出相应线段或边的长度,列出方程求解.【典例解析】【例1-1】(2020·周口市月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______秒时,△DEB与△BCA全等.【例1-2】(2020·江阴市月考)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1B.1或3C.1或7D.3或7【变式1-1】(2020·无锡市月考)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.【变式1-2】(2020·河北灵寿期末)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【例2】(2020·惠州市月考)如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC =5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【变式2-1】(2020·江阴市月考)如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D 点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C 作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD∥BC.(2)在移动过程中,小芹发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.【变式2-2】(2020·重庆巴南月考)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在cm s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它线段AB上以1/们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的cm s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若运动速度为x/不存在,请说明理由.【变式2-3】(2020·江苏兴化月考)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.点P从点A出发,沿折线AC—CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC—CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):(1)当P、Q两点相遇时,求t的值;(2)在整个运动过程中,求CP的长(用含t的代数式表示);(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.【例3】(2020·惠州市月考)如图,在△ABC中,AB=AC=18cm,BC=10cm,∠B=∠C,AD=2BD.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【变式3-1】(2019·山西太原月考)如图1,在长方形ABCD中,AB=CD=5cm,BC=12cm,点P从点B 出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=___cm;(用含t的式子表示)(2)当t为何值时,△ABP≌△DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻△ABP与以P,Q,C为顶点的直角三角形全等?若存在,请求出v的值;若不存在,请说明理由.【变式3-2】(2020·四川成都)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q 三点所构成的三角形全等.【习题精练】=,BC6=,线段PQ=AB,1.(2020·江苏东台月考)如图,有一个直角三角形ABC,∠C=90°,AC10点Q在过点A且垂直于AC的射线AX上来回运动,点P从C点出发,沿射线CA以2cm/s的速度运动,问>,才能使△ABC≌△QPA全等.P点运动___________秒时(t0)2.(2020·江苏泰州月考)如图,AB =12,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC =4m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动_______分钟后△CAP 与△PQB 全等.3.(2020·常州市月考)如图, ADC 中.∠C =90°,AC =10cm ,BC =5cm .AD ⊥AC ,AB =PQ ,P 、Q 两点分别在AC 、AD 上运动,当AQ =_____时,△ABC 才能和△APQ 全等.4.(2020·江西新余期末)如图,ABC ∆中,90ACB ∠=︒,8cm AC =,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.5.(2020·武城县月考)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为多少时,能够使△BPE与以C、P、Q三点所构成的三角形全等?6.(2020·盐城市盐都区月考)如图,有一个直角△ABC,∠C=90°,AC=6,BC=3,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问:当AP=________时,才能使以点P、A、Q 为顶点的三角形与△ABC全等.7.(2020·四川青羊期中)如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4cm,BC=8cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD=cm,CE=cm;(2)当t为多少时,△ABD的面积为12cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.8.(2020·郑州市月考)如图,在平面直角坐标系中,O 为坐标原点A 、B 两点的坐标分别A (m ,0),B(0,n ),且|m -n -3|=0,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒.(1)求OA 、OB 的长;(2)连接PB ,若△POB 的面积不大于3且不等于0,求t 的范围;(3)过P 作直线AB 的垂线,垂足为D ,直线PD 与y 轴交于点E ,在点P 运动的过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.9.(2020·宜兴市月考)如图,在△ABC 中,∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:AF =AM ;(2)当t 取何值时,△DFE 与△DMG 全等;(3)求证:在运动过程中,不管t 取何值,都有2AED DGC S S =△△.10.(2020·江苏工业园区期末)如图①,将长方形纸片沿对角线剪成两个全等的直角三角形ABC、EDF,其中AB=8cm,BC=6cm,AC=10cm.现将△ABC和△EDF按如图②的方式摆放(点A与点D、点B与点E 分别重合).动点P从点A出发,沿AC以2cm/s的速度向点C匀速移动;同时,动点Q从点E出发,沿射线ED以acm/s(0<a<3)的速度匀速移动,连接PQ、CQ、FQ,设移动时间为ts(0≤t≤5).=3S△BQC,则a=;(1)当t=2时,S△AQF(2)当以P、C、Q为顶点的三角形与△BQC全等时,求a的值;(3)如图③,在动点P、Q出发的同时,△ABC也以3cm/s的速度沿射线ED匀速移动,当以A、P、Q为顶点的三角形与△EFQ全等时,求a与t的值.11.(2019·江苏期末)如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3cm /s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm /s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s ).(1)点M 、N 从移动开始到停止,所用时间为s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2cm /s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.图①图②12.如图,ABC 中,90ACB ∠=︒,8AC cm =,15BC cm =,点M 从A 点出发沿A →C →B 路径向终点运动,终点为B 点,点N 从B 点出发沿B →C →A 路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F 设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为________.13.(2019·湖北襄州)在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?14.(2019·福建省惠安期中)如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,同时点E从点A出发沿线段AG以2cm/s的速度向终点G运动,当点E到达点G时,E、F两点同时停止运动,EF与AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0≤t≤2和2<t≤4时线段BF的长度(用含t的代数式表示);(2)当BF=AE时,求t的值;(3)若△ADE≌△CDF,求所有满足条件的t值.15.(2020·无锡市月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q 的运动速度为_____厘米/秒,△BPD与△CQP全等.16.(2020·广东龙岗期末)直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N 作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.17.(2020·青岛市黄岛区月考)如图1,直线AM AN ⊥,AB 平分MAN ∠,过点B 作BC BA ⊥交AN 于点C ;动点E 、D 同时从A 点出发,其中动点E 以2/m s 的速度沿射线AN 方向运动,动点D 以1/m s 的速度运动;已知6AC cm =,设动点D ,E 的运动时间为t .图1备用图(1)试求∠ACB 的度数;(2)当点D 在射线AM 上运动时满足ADB S :2BEC S = :3,试求点D ,E 的运动时间t 的值;(3)当动点D 在直线AM 上运动,E 在射线AN 运动过程中,是否存在某个时间t ,使得ADB 与BEC 全等?若存在,请求出时间t 的值;若不存在,请说出理由.参考答案及解析初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

全等三角形动点问题

全等三角形动点问题

ABCDEF全等三角形动点问题一)、知识回顾动态几何题,是指以几何知识和几何图形为背景,渗透运动变化观点的一类试题;而通过对几何图形运动变化,使同学们经历由观察、想象、推理等发现、探索的过程,是中考数学试题中,考查创新意识、创新能力的重要题型;解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动.热身练习:1、如图,在等腰△ACB 中,AC =BC =5,AB =8,D 为底边AB 上一动点 (不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F ,则DE +DF = . 二)、例题辨析例1、 如图,在等腰Rt △ABC 中,∠ACB=90°,AC=CB ,AC=8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且始终保持AD=CE ,连接DE 、DF 、EF. (1)、求证:△ADF ≌△CEF.(2)、试证明△DFE 是等腰直角三角形.(3)、在此运动变化的过程中,四边形CDFE 的面积是否保持不变?试说明理由.(4)、求△CDE 面积的最大值.例2如图,△ABC 的边BC 在直线 上,AC ⊥BC ,且AC =BC ,△EFP 的边FP 也在直线 上,边EF 与边AC 重合,且EF =FP 。

(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线向左平移到图2的位置时,EP交AC于点Q,连结AP、BQ。

猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想。

练习:1、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E 分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的最小值为4;③四边形CDFE的面积保持不变;④△CDE 面积的最大值为8.其中正确的结论是( ) A .①②③ B .①③ C .①③④ D .②③④2、(2011随州,18,7分)在等腰三角形ABC 中,∠ABC=90°,D 为AC 边上中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE=4,FC=3,求EF 长.例2:在ABC ∆中,AB AC =,CG BA ⊥交BA 的延长线于点G .一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 边在一条直线上,另一条直角边恰好经过点B . (1)在图1中请你通过观察、测量BF 与CG 的长度,猜想并写出BF 与CG 满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC 方向平移到图2所示的位置时,一条直角边仍与AC 边在同一直线上,另一条直角边交BC 边于点D ,过点D 作DE BA ⊥于点E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE DF +与CG 之间满足的数量关系,然后证明你的猜想; (3)当三角尺在⑵的基础上沿AC 方向继续平移到图3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,⑵中的猜想是否仍然成立?(不用说明理由)例3、如图,在等边△ABC 中,AB=9cm ,点P 从点C 出发沿CB 边向点B 点以2cm/s 的速度移动,点Q 点从B 点出发沿BA 边向A 点以5cm/s 速度移动.P 、Q 两点同时出发,它们移动的时间为t 秒钟.(1)你能用t 表示BP 和BQ 的长度吗?请你表示出来. (2)请问几秒钟后,△PBQ 为等边三角形?ABE G图3BC GC G图1(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?三)、归纳总结动点一般在中考都是压轴题,步骤不重要,重要的是思路。

全等三角形经典动态几何问题1

全等三角形经典动态几何问题1

1.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.2、如图,已知∠AOB=120°,OM 平分∠AOB ,将等边三角形的一个顶点P 放在射线OM 上,两边分别与OA 、OB (或其所在直线)交于点C 、D .(1)如图①,当三角形绕点P 旋转到PC ⊥OA 时,证明:PC=PD .(2)如图②,当三角形绕点P 旋转到PC 与OA 不垂直时,线段PC 和PD 相等吗?请说明理由.(3)如图③,当三角形绕点P 旋转到PC 与OA 所在直线相交的位置时,线段PC 和PD 相等吗?直接写出你的结论,不需证明.C B A ED 图1 N M A B C DE M N 图2 A C B ED N M 图33、用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图13—1),通过观察或测量BE,CF的长度,你能得出什么结论?并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图13—2),你在(1)中得到的结论还成立吗?简要说明理由.4、如图(1),已知AB⊥BD,ED⊥BD,AB=CD,BC=DE,求证:AC⊥CE.若将CD沿CB方向平移得到图(2)(3)(4)(5)的情形,其余条件不变,结论AC1⊥C2E还成立吗?请说明理由.5、如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN是等边三角形.(1)当把△ADE 绕A 点旋转到图2的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;(2)当△ADE 绕A 点旋转到图3的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由.6、将一副三角板中的两块三角板重合放置,其中45°和30°的两个角顶点重合在一起.(1)如图1所示,边OA 与OC 重合,此时,AB ∥CD ,则∠BOD______;(2)三角板△COD 的位置保持不动,将三角板△AOD 绕点O 顺时针方向旋转,如图2,此时OA ∥CD ,求出∠BOD 的大小;(3)在图2中,若将三角板△AOB 绕点O 按顺时针方向继续旋转,在转回到图1的过程中,还存在△AOB 中的一边与CD 平行的情况,请针对其中一种情况,画出图形,并直接写出∠BOD 的大小.图1 图2 图3。

全等三角形中的动点问题(教师版)

全等三角形中的动点问题(教师版)

全等三角形中的动点问题全等三角形的判断与定义1.定义:能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”。

当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此,可以得出:全等三角形的对应边相等,对应角相等。

2.判定:(1)三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。

(2)有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

(3)有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。

(4)有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。

注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

3.性质:(1)全等三角形的对应角相等。

(2)全等三角形的对应边相等。

(3)全等三角形的对应边上的高对应相等。

(4)全等三角形的对应角的角平分线相等。

(5)全等三角形的对应边上的中线相等。

(6)全等三角形面积相等。

(7)全等三角形周长相等。

(8)全等三角形的对应角的三角函数值相等。

1、如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为.(1)求证:在运动过程中,不管取何值,都有S△AED=2S△DGC;(2)当取何值时,△DFE与△DMG全等;(3)在(2)的前提下,若,,求S△BFD.(1)证明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,∴DF=DM,∵S△AED=AE•DF,S△DGC=CG•DM,∴=,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴AE=2tcm,CG=tcm,∴=2,即=2,∴在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)解:设时间为t时,△DFE与△DMG全等,则EF=MG,①当M在线段CG的延长线上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t,MG=AC-CG-AM=4-t,即10-2t=4-t,解得:t=6,当t=6时,MG=-2,所以舍去;②当M在线段CG上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t(cm),MG=AM-(AC-CG)=t-4(cm),即10-2t=t-4,解得:t=,综上所述当t=时,△DFE与△DMG全等.(3)∵t=,∴AE=2t=(cm),∵DF=DM,∴S△ABD:S△ACD=AB:AC=BD:CD=119:126,∵AC=14cm,∴AB=(cm),∴BF=AB-AF=-10=(cm),∵S△ADE:S△BDF=AE:BF=:,S△AED=28cm2,∴S△BDF=(cm2).解析:(1)由角平分线的性质可知DF=DM,所以△AED和△DEG的面积转化为底AE和CG的比值,根据路程=速度×时间求出AE和CG的长度即可证明在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)若△DFE与△DMG全等,则EF=MG,利用已知条件求出EF和MG的长度,建立方程解方程即可求出运动的时间.(3)利用等高三角形的面积比等于对应底的比,即可求得答案.2、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P从A出发向C以1cm/s的速度运动、点Q同时从C出发向B以1cm/s的速度运动,当一个点运动到终点时,该点停止运动,另一个点继续运动,当两个点都到达终点时也停止运动.(1)几秒后,△CPQ的面积为Rt△ABC的面积的?(2)填空:①点经过_____秒,点P在线段AB的垂直平分线上.②点Q经过_____秒,点Q在∠BAC的平分线上.(1)设经过x秒,首先求得线段BC的长,然后分x≤6和6<x≤8两种情况列方程求解即可;(2)①点P在线段AB的垂直平分线上,即可得到PA=PB,从而求得时间;②点Q在∠BAC的平分线上,则Q点到AC和AB的距离相等.解;(1)设经过x秒.在Rt△ABC中,根据题意得;当x≤6时,(8-x)x=××8×6解得:当6<x≤8时,(8-x)×6=37解得:x=7答:经过7秒或秒.(2)当点P在线段AB的垂直平分线上时,PA=PB,∵设经过x秒后点P在线段AB的垂直平分线上,∴x2=(8-x)2+62解得:x=,∴经过秒,点P在线段AB的垂直平分线上②如图,作QD⊥AB于点D,∵点Q在∠BAC的平分线上,∴QD=QC,设经过x秒,则CQ=x,则QD=(6-x),∴x=(6-x),解得:x=,∴点Q经过秒,点Q在∠BAC的平分线上.3、如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm2解:根据题意沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,∴AP=2t,AQ=t,S△APQ=t2,∵0<t≤4,∴三角形APQ的最大面积是16.故选B.4、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.解:(1)解法一:如图1延长BP交直线AC于点E.∵AC∥BD,∴∠PEA=∠PBD.∵∠APB=∠PAE+∠PEA,∴∠APB=∠PAC+∠PBD;解法二:如图2过点P作FP∥AC,∴∠PAC=∠APF.∵AC∥BD,∴FP∥BD.∴∠FPB=∠PBD.∴∠APB=∠APF+∠FPB=∠PAC+∠PBD;解法三:如图3,∵AC∥BD,∴∠CAB+∠ABD=180°,∠PAC+∠PAB+∠PBA+∠PBD=180°.又∠APB+∠PBA+∠PAB=180°,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)(a)当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB.(b)当动点P在射线BA上,结论是∠PBD=∠PAC+∠APB.或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD(任写一个即可).(c)当动点P在射线BA的左侧时,结论是∠PAC=∠APB+∠PBD.选择(a)证明:如图4,连接PA,连接PB交AC于M.∵AC∥BD,∴∠PMC=∠PBD.又∵∠PMC=∠PAM+∠APM(三角形的一个外角等于与它不相邻的两个内角的和),∴∠PBD=∠PAC+∠APB.选择(b)证明:如图5∵点P在射线BA上,∴∠APB=0度.∵AC∥BD,∴∠PBD=∠PAC.∴∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD.选择(c)证明:如图6,连接PA,连接PB交AC于F∵AC∥BD,∴∠PFA=∠PBD.∵∠PAC=∠APF+∠PFA,∴∠PAC=∠APB+∠PBD.解析:(1)如图1,延长BP交直线AC于点E,由AC∥BD,可知∠PEA=∠PBD.由∠APB=∠PAE+∠PEA,可知∠APB=∠PAC+∠PBD;(2)过点P作AC的平行线,根据平行线的性质解答;(3)根据P的不同位置,分三种情况讨论.6、如图1,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF.(1)试说明BF=CE的理由;(2)当E、F相向运动,形成如图2时,BF和CE还相等吗?请说明你的结论和理由.证明:(1)∵AD∥BC,∴∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,∵∠ABC=∠DCB,∴∠BAD=∠CDA,∵AE=DF,∴AE+AD=DF+AD,即AF=DE,在△ABF和△DCE中,,∴△ABt≌△DCE(SAS),∴BF=CE;(2)相等.在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),∴BF=CE.解析:(1)根据两直线平行,同旁内角互明证明∠BAD=∠CDA,根据AE边DF证明AF=DE,再根据边角边定理证明△ABF和△DCE全等,根据全等三角形对应边相等即可证明BF=CE.(2)利用边角边定即证明△ABC和△DCB全等,再根据全等三角形对应边相等即可证明7、如图,已知△ABC中,BC=AC=8厘米,∠C=90°,如果点P在线段AC上以1厘米/秒的速度由A点向C点运动,同时,点Q在线段BC上由C点向B点运动,运动速度与点P的运动速度相等,点M是AB的中点.(1)在点P和点Q运动过程中,△APM与△CQM是否保持全等,请说明理由;(2)在点P和点Q运动过程中,四边形PMQC的面积是否变化?若变化说明理由;若不变,求出这个四边形的面积;(3)线段AP、PQ、BQ之间存在什么数量关系,写出这个关系,并加以证明.解:(1)在点P和点Q运动过程中,△APM与△CQM是否保持全等.理由如下:∵在△ABC中,BC=AC=8厘米,∠C=90°,点M是AB的中点,∴∠A=∠MCQ=45°,AM=CM,∴在△APM与△CQM中,,∴△APM与△CQM(SAS);(2)在点P和点Q运动过程中,四边形PMQC的面积不变化,其面积是32厘米2,理由如下:由(1)知,△APM与△CQM,∴S△APM=S△CQM,∴S四边形PMQC=S△AMC=S△ABC=AC•BC=×8×8=32(厘米2),即在点P和点Q运动过程中,四边形PMQC的面积不变化,其面积是32厘米2;(3)AP2+BQ2=PQ2.证明如下:∵由(1)知,△APM与△CQM,∴AP=CQ,又AC=BC,∴PC=BQ,∴AP2+BQ2=CQ2+CP2=PQ2.即AP2+BQ2=PQ2.解析:(1)通过SAS证得△APM与△CQM;(2)由(1)中的全等三角形的面积相等可以推知:S四边形PMQC=S△AMC=S△ABC;(3)AP2+BQ2=PQ2.利用(1)中的全等三角形的对应边相等推知AP=CQ,则PC=BQ,所以在直角△PCQ中,利用勾股定理推得AP2+BQ2=PQ2.8、如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?解:(1)①∵t=1秒,∴BP=CQ=3×1=3厘米,∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5厘米,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP.(SAS)②∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间秒,∴厘米/秒;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80厘米.∵80=56+24=2×28+24,∴点P、点Q在AB边上相遇,∴经过秒点P与点Q第一次在边AB上相遇.解析:(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.9、如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?分析:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.解答:解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴∠ABC=∠ACB,且BD=PC,BP=CQ,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8-3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8-3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.点评:本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.10、在△ABC中,AB=AC,(1)如图①,若∠BAC=45°,AD和CE是高,它们相交于点H.求证:AH=2BD;(2)如图②,若AB=AC=10厘米,BC=8厘米,点M为AB的中点,点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.如果在运动过程中存在某一时刻使得△BPM与△CQP全等,那么点Q的运动速度为多少?点P、Q运动的时间t为多少?解:(1)证明:在△ABC中,∵∠BAC=45°,CE⊥AB,∴AE=CE,∠EAH=∠ECB,在△AEH和△CEB中,,∴△AEH≌△CEB(ASA),∴AH=BC,∵BC=BD+CD,且BD=CD,∴BC=2BD,∴AH=2BD.(2)∵AB=AC,∴∠B=∠C,∴△BPM与△CQP全等有两种情况:△BPM≌△CPQ 或△BPM≌△CQP当△BPM≌△CPQ时,BP=PC=4,CQ=BM=5,∴点P,点Q运动的时间秒,∴厘米/秒.当△BPM≌△CQP时,BP=CQ,∴V Q=V P=3厘米/秒.此时PC=BM=5,t=秒.综上所述,点Q的运动速度为厘米/秒,此时t=秒或点Q的运动速度为3厘米/秒,此时t=1秒.解析:(1)证得△BCE≌△HAE,证得AH=BC,证得AH=2BD;(2)根据全等三角形应满足的的件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度B11、如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是______;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明分析:(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.解答:解:(1)①BD=CE;②AM=AN,∠MAN=∠BAC,∵∠DAE=∠BAC,∴∠CAE=∠BAD,在△BAD和△CAE中∵∴△CAE≌△BAD(SAS),∴∠ACE=∠ABD,∵DM=BD,EN=CE,∴BM=CN,在△ABM和△ACN中,∵∴△ABM≌△ACN(SAS),∴AM=AN,∴∠BAM=∠CAN,即∠MAN=∠BAC;(2)AM=k•AN,∠MAN=∠BAC.点评:本题考查三角形全等的判定方法和性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题还要会根据所求的结论运用类比的方法求得同类题目.12、已知:如图,在平面直角坐标系中,点A,B,C分别在坐标轴上,且OA=OB=OC,△ABC的面积为9,点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA,PB,D(-m,-m)为AC上的点(m>0)(1)试分别求出A,B,C三点的坐标;(2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直相等?请说明理由;(3)若PA=AB,在第四象限内有一动点Q,连QA,QB,QP,且∠PQA=60°,当Q在第四象限内运动时,下列说法:(i)∠APQ+∠PBQ的度数和不变;(ii)∠BAP+∠BQP的度数和不变,其中有且只有一个说法是正确的,请判断正确的说法,并求这个不变的值.解:(1)∵OA=OB=OC,∠AOC=∠BOC=90°,∴∠OAC=∠OCA=∠OBC=∠OCB=45°,∴∠ACB=90°,又△ABC的面积为9,∴OA=OC=OB=3,∴A(-3,0),B(3,0),C(0,-3);(2)当t=3秒时,即CP=OC时,DP与DB垂直且相等.理由如下:连接OD,作DM⊥x轴于点M,作DN⊥y轴于点N,∵D(-m,-m),∴DM=DN=OM=ON=m,∴∠DOM=∠DON=45°,而∠ACO=45°,∴DC=DO,∴∠PCD=∠BOD=135°,又CP=OC=OB,∴△PCD≌△BOD (SAS),∴DP=DB,∠PDC=∠BDO,∴∠BDP=∠ODC=90°,即DP⊥DB.(3)解:(i)正确.在QA上截取QS=QP,连接PS.∵∠PQA=60°,∴△QSP是等边三角形,∴PS=PQ,∠SPQ=60°,∵PO是AB的垂直平分线,∴PA=PB 而PA=AB,∴PA=PB=AB,∴∠APB=60°,∴∠APS=∠BPQ,∴△APS≌△BPQ,∴∠PAS=∠PBQ,∴∠APQ+∠PBQ=∠APQ+∠PAS=120°.解析:(1)利用OA=OB=OC,∠AOC=∠BOC=90°得出∠ACB=90°,再利用△ABC的面积为9,得出OA=OC=OB=3 即可得出各点的坐标;(2)作DM⊥x轴于点M,作DN⊥y轴于点N,假设出D点的坐标,进而得出△PCD≌△BOD,进而得到∠BDP=∠ODC=90°,即DP⊥DB;(3)在QA上截取QS=QP,连接PS,利用∠PQA=60°,得出△QSP是等边三角形,进而得出△APS≌△BPQ,从而得出∠APQ+∠PBQ=∠APQ+∠PAS得出答案.13、如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1)求证:BP=DP;(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.分析:(1)由正方形的性质可证△ABP≌△ADP,即BP=DP;(2)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立;(3)由旋转的性质和正方形的性质可证△BEC≌△DFC,即BE=DF.解答:(1)证明:证法一:在△ABP与△ADP中,∵AB=AD∠BAC=∠DAC,AP=AP,∴△ABP≌△ADP,∴BP=DP.(2分)证法二:利用正方形的轴对称性,可得BP=DP.(2分)(2)解:不是总成立.(3分)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立,(5分)说明:未用举反例的方法说理的不得分.(3)解:连接BE、DF,则BE与DF始终相等,,在图1中,由正方形ABCD可证:AC平分∠BCD,∵PE⊥BC,PF⊥CD,∴PE=PF,∠BCD=90°,∴四边形PECF为正方形.(7分)∴CE=CF,∵∠DCF=∠BCE,BC=CD,∴△BEC≌△DFC,∴BE=DF.(8分)点评:本题考查了旋转的性质和全等三角形的判定,以及正方形的性质.14、如图,在△ABC中,AB=AC=5,∠B=∠C,BC=8,点D从B点出发沿线段BC向C运动(D不与B、C重合),点E从点C出发沿线段CA向A运动(E不与A、C重合),它们以相同的速度同时运动,连结AD、DE.若要使△ABD≌△DCE,①请给出确定D、E两点位置的方法(如指明CD长度等),并说明理由;②此时∠ADE与∠C大小关系怎样?为什么?解:①DC=5,理由是:∵BC=8,CD=AB=5,∴BD=8-5=3,即CE=BD=3,在△ABD和△DCE中,,∴△ABD≌△DCE,即当CD=5时,△ABD≌△DCE.②∠ADE=∠C,理由是:∵△ABD≌△DCE,∴∠BDA=∠DEC,∴∠C=180°-∠DEC-∠EDC=180°-∠ADB-∠EDC,∵∠ADE=180°-∠BDA-∠EDC,∴∠ADE=∠C.解析:①CD=5时,根据SAS推出△ABD≌△DCE即可.②根据全等三角形性质得出∠BDA=∠DEC,根据三角形内角和定理求出∠C=180°-∠ADB-∠EDC,求出∠ADE=180°-∠BDA-∠EDC,即可得出答案.15、如图:△ABC中,AB=AC=5(即有∠B=∠C),BC=8,点D在线段BC上运动(D不与B、C重合),点E在线段AC上运动(E不与A、C重合),连结AD、DE.(1)点D从B向C运动时,∠BDA逐渐变_____(填“大”或“小”);(2)若要使△ABD≌△DCE,①请给出确定D、E两点位置的方法(如指明某些线段的长度等),并说明理由;②此时∠ADE与∠C大小关系怎样?为什么?(1)根据BD边逐渐增长可得∠BAD逐渐增大,又因为∠B的大小固定不变,结合三角形内角和定理∠B+∠BAD+∠ADB=180°可得∠ADB逐渐减小.(2)①根据三角形全等的性质可得DC=AB,DB=CE,进而得到答案;②根据全等三角形的性质可得∠1=∠2,再根据∠1+∠B+∠ADB=180°,∠2+∠ADE+∠BDA=180°,可得∠ADE=∠B,进而得到∠ADE=∠C.解:(1)∵点D从B向C运动时,BD边逐渐变长,∴∠BAD逐渐增大,∵∠B的大小固定不变,∠B+∠BAD+∠ADB=180°,∴∠ADB逐渐减小;(2)①∵△ABD≌△DCE,∴DC=AB=5,CE=DB,∵BC=8,∴CE=DB=8-5=3;②∠ADE=∠C;理由:∵△ABD≌△DCE,∴∠1=∠2,∵∠1+∠B+∠ADB=180°,∠2+∠ADE+∠BDA=180°,∴∠ADE=∠B,∵∠B=∠C,∴∠ADE=∠C.17、如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD 于点F.(1)求证:EF+AC=AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.分析:(1)过F作FM⊥AB于点M,首先证明△AMF≌△AEF,求出MF=MB,即可知道EF+AE=AB.(2)连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,证明Rt△A1E1F1≌Rt△A1PF1,Rt△QF1C1≌Rt△E1F1C1后推出A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1化简为E1F1+A1C1=AB.(3)设PB=x,QB=x,PB=1,E1F1=1,又推出E1F1+A1C1=AB,得出BD=.解答:(1)证明:如图1,过点F作FM⊥AB于点M,在正方形ABCD中,AC⊥BD 于点E.∴AE=AC,∠ABD=∠CBD=45°,∵AF平分∠BAC,∴EF=MF,又∵AF=AF,∴Rt△AMF≌Rt△AEF,∴AE=AM,∵∠MFB=∠ABF=45°,∴MF=MB,MB=EF,∴EF+AC=MB+AE=MB+AM=AB.(2)E1F1,A1C1与AB三者之间的数量关系:E1F1+A1C1=AB证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,∵A1F1平分∠BA1C1点/sub>,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1,21又∵A1F1=A1F1,∴Rt △A1E1F1≌Rt △A1PF1,∴A1E1=A1P ,同理Rt △QF1C1≌Rt △E1F1C1,∴C1Q=C1E1,由题意:A1A=C1C ,∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB ,∵PB=PF1=QF1=QB ,∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,∴E1F1+A1C1=AB .(3)解:设PB=x ,则QB=xm∵A1E1=3,QC1=C1E1=2,Rt △A1BC1中,A1B 2+BC12g/sup>=A 1C 12, 即(3+x )2+(2+x )2=52,∴x 1=1,x 2=-6(舍去), ∴PB=1,∴E 1F 1=1, 又∵A 1C 1=5, 由(2)的结论:E 1F 1+A 1C 1=AB , ∴AB=,∴BD=.点评:本题考查的是勾股定理的应用,全等三角形的判定以及正方形的性质等有关知识.18、如图,在等腰Rt △ABC 中,∠B=90°,AB=BC=8cm .动点P 从点A 出发沿线段AB 向点B 运动,动点Q 从点C 出发沿射线BC 运动,连接PQ ,交AC 于点D .作PE ⊥AC 于点E ,若在点P ,Q 运动的过程中,始终保持AP=CQ ,则线段DE 的长度为_____.作PF∥BC交AC于点D,就可以得出△APE是等腰直角三角形,由其性质就可以得出AE=EF,由△PFD≌△QCD就可以得出DC=DF,进而就可以得出DF+FE=CD+AE就可以得出结论.解:作PF∥BC交AC于点D,∴∠APF=∠B=90°,∠AFP=∠ACB.∠FPD=∠Q,∠PFD=∠QCD.∵∠B=90°,AB=BC=8cm,∴∠A=∠ACB=45°,∴∠A=∠ACB=45°,∴PA=AF.∵PE⊥AC,∴AE=EF.∵AP=CQ,∴PF=CQ.在Rt△ABC中,由勾股定理就可以得出AC=8.在△PFD和△QCD中,,∴△PFD≌△QCD(ASA)∴DF=DC,∴DF+EF=DC+AE,∴DE=AC,∴DE=4cm.故答案为:4.19、如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,M在AC上且AM=6cm,过点A(与BC在AC同侧)作射线AN⊥AC,若动点P从点A出发,沿射线AN匀速运动,运动速度为1厘米/秒,设点P运动时间为t秒(1)经过几秒时,Rt△AMP是等腰三角形?(2)又经过几秒时,PM⊥AB?(3)连接BM,在(2)的条件下,求四边形AMBP的面积.(1)解:设经过x秒时,Rt△AMP是等腰三角形,∵∠PAM=90°,∴只能AM=AP,∵AM=6cm,∴AP=6cm,即x=6(秒),答:经过6秒时,Rt△AMP是等腰三角形;(2)解:设经过t秒时,PM⊥AB,∵PM⊥AB,AN⊥AC,∠C=90°∴∠PAM=∠4=∠C=90°,∴∠3+∠2=90°,∠1+∠2=90°,∴∠1=∠3,∴△ACB∽△PAM,∴=,∴=,x=8,8-6=2,答:又经过2秒时,PM⊥AB;23(3)解:在Rt△ABC中,∠C=90°,AC=8,BC=6,由勾股定理得:AB=10,同理可求PM=10,∵PM⊥AB,∴四边形AMBP的面积S=AB×PM=×10×10=50,答:四边形AMBP的面积是50.解析:(1)得出腰时AM=AP,即可得出答案;(2)证△PAM∽△ACB,得出比例式,代入求出AP,即可得出答案;(3)由勾股定理求出PM、AB,关键三角形的面积公式求出即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鞠洪武
Байду номын сангаас
知识点回顾
• 全等三角形的定义及性质 三角形面积公式 路程公式
小试牛刀
1、一只蜗牛以每秒1个单位长度的速度沿直线匀速运动,3
秒运动 3 个单位长度,t秒运动
单t 位长度。
2、一只蜗牛以每秒2个单位长度的速度沿射线BO匀速运动,线段OB=5。 (1)若蜗牛在线段BO上匀速运动到点P,则BP= 2t ,OP= 5-2t。
1、(1)∵B(0,4)
SΔOBC=6
y
∴ OC1 ·4=6
2
B
∴OC=3
得C(3,0)
P
(2)∵AB=BC,BO⊥AC
x
A
O
C
∴OA=OC=3
分两种情况
第一种当点P在线段OB上时 OB=4,BP=t
则 OP=4-t
SΔAOP= O1A·OP
2
= ×13(4-t)
2
=6- 3 t 2
y B
AO
x C
P
第二种 当点P在线段BO延长线上时 OB=4,BP=t 则 OP=4-t ∵SΔAOP= 1 OA·OP
2
= 1 ×3(t-4)
2
= 3 t -6
2
y
B
1
3
O A2 M
(3)∵∠1+∠3=90°
∠2+∠4=90°
∴∠1=∠2
因此,ΔBPN与ΔAOM全等
分两种情况:
第一种:当ΔBPN≌ΔAOM时
∴BO=AO=3
或(0,4)或(0,-4)
1、在ΔOBC中,B(0,4),面积是6,有一动 点P从B出发,沿射线BO方向运动,运动时间是t 秒,运动速度是每秒1个单位,且AB=BC。
(1)求C点坐标; (2)用含t的式子表示ΔAOP面积;
(3)A点做AM⊥AB交y轴于M,且M(0, ),
AM= ,在线段AB上有一动点N,t为何值时, ΔBPN与ΔAOM全等。
间•••①②③为求连当t秒接点A、。PPCA在两,线用点段坐含B标有O上;t运的代动数时,式表在示y轴Δ上PO是A否的存面在积点?
Q,使ΔPOQ与ΔAOC全等,若存在,请求出t的值
并直接写出点Q坐标;若不存在,说明理由。
例,解:①A(0,4)C(3,0)
y
②分两种情况:
第一种:
A
当点P在OB上时,
由OB=5 BP=2t
所以OP=5-2t
B
P
OP
x
C
=10-4t
第二种:
当点P在BO延长线上时, 由OB=5 BP=2t
所以OP=2t-5
=4t-10
B
P
y
A
∠AOC=∠POQ
O
x
O
C
Q
③ 在y轴上存在点Q
第二种
∠POQ=∠AOC=90° ∴ΔPOQ与ΔAOC全等 分两种情况:
当ΔPOQ≌ΔCOA时 ∴OQ=OA=4
(2)若蜗牛在线段BO延长线上运动到点P,则BP=2t ,OP= 2t-5。 (3)当t= 1或时4 ,OP=3。
B
P
O
B
O
P
例:如图,在平面直角坐标系中,O为坐标原点,
ΔABC的边BC在x轴上,A、C两点的坐标分别为
A(0,m)、C(n,0)B(-5,0),

,点P从点B出发,以每秒2
个单位的速度沿射线BO匀速运动,设点P的运动时
(2)过点P作直线AB的垂线,垂足
为D,直线PD与y轴交于点E, 在点P运动的过程中,是否存
x
O
A
在这样的点P,使ΔEOP≌ΔAOB,
若存在,请求出t的值;若存在,请说明理由。
我学会了……
∵BP=t
∴t=3
第二种:当ΔBPN≌ΔAOM时
x
C
∴BP=AM=
∴t=
∴t=3或 时,
ΔBPN与ΔAOM全等
2、如图,在平面直角坐标系中,O为坐标原点,A、
B两点的坐标分别为A(m,0)、B(0,n),

,点P从点A出发,以每
秒1个单位的速度沿射线AO匀速运动,设点P的
运动时间为 t秒。
y
(1)求OA、OB的长; B
OP=OC=3
得:5-2t=3
第一种 当ΔPOQ≌ΔAOC时 ∴OQ=OC=3
OP=OA=4 得:5-2t=4
解得:t= 1 2
此时Q(0,3)或(0,-3)
解得:t=1 此时,Q(0,4)或(0,-4) ∴当t= 12或1时 在y轴上存在点Q
使ΔPOQ与ΔAOC全等 此时,Q(0,3)或(0,-3)
相关文档
最新文档