汽轮机抽气改造后合理投入的分析

汽轮机抽气改造后合理投入的分析
汽轮机抽气改造后合理投入的分析

俄制机组供热改造后供热负荷合理优化分析

摘要:我厂的汽轮机供热改造后,供热时如何合理分配两台机组对外的供热量的分析

主题词:改造后汽轮机供热负荷合理分配

1.0简介:

盘山发电厂两台汽轮机都是是列宁格勒金属制造厂生产的K-500-240-4型汽轮机为超临界压力,一次中间再热、单轴、四缸、四排汽、凝汽式汽轮机。2013年我厂对1#、2#机组进行了供热改造,机组的热网加热蒸汽系统采用单元制,热网供汽汽源为汽轮机中低压联络管引出的供热抽汽,供热抽汽管道上装有安全阀,逆止阀,液压快关阀,电动调节阀,确保机组安全运行。抽汽参数为:流量300~400t/h,压力0.2501MPa(绝对压力),温度193.5℃。,接入热网首站后,每根热网抽汽母管分成2路进入2台热网加热器,加热热网循环水。为保证循环水系统安全以及居民不断暖,增设一路双机供热停运条件下热网事故供汽,事故供汽由二期供一期厂用汽ORQ1500门后接一路至#2机供热蒸汽管道,供汽参数:温度280-300℃,压力0.8-0.9MPa。

进汽量、供热抽汽流量和发电机端功率曲线:

但是两台机组即使是相同的机型,但是在抽气供热时,在两台机组的向外供热温度、机组负荷相同的情况下,2号机组的小指标系统的汽耗率有不合格的现象,说明机组改造后,向外供热对于热负荷的分配存在可优化的部分,下面就将这一现象进行分析、探讨。

2.0分析过程:

以下就是机组热网首站对外网温度对外供热温度变化,我厂两台机组的汽耗率统计。

通过比较发现在向外网供热温度60度的情况下,1#.2号机组平均分配对外的供热量的情况下,2#机组汽耗率不合格,如果1机组热网首站温度63度,2机组热网首站温度58度,就能保证两台机组的汽耗率都合格。

虽然热电联产能源转换效率具有明显优势,因此,供热抽汽机组得到了大力的发展,我厂由纯凝汽式的机组改为抽汽供热机组向用户提供电力和采暖用热,受控于热用户和电用户的需求,对于确定的热电负荷,电负荷是受中调的控制,但是供热的两台机组的分配就应该何根据机组的类型以及机组效率的差异,在各机组间进行热电负荷的分配使整个电厂的热耗率最低,使整个电厂的经济效益最好。这就需要对电厂供热抽汽机热负荷进行分配优化,确定每台机组的热负荷为最佳,

通过供热抽汽机组的变工况理论计算,得到不同电负荷和热负荷时的机组热耗值关系曲线的结构和形式, 设计合理的运行方式。

1 热负荷1情况下,功率——热耗曲线

2 功率1情况下,热负荷——热耗曲线

功率1情况下,热负荷——热耗曲线

汽机热耗是影响煤耗的重要指标。机组设计热耗值为7796kj/kWh,当热耗值高于设计热耗时100 kj/kWh时,影响煤耗4.26g/kWh。

公司两台汽轮机的热耗值:(不带抽汽供热的参数)

通过历史数据分析,目前MIS系统上的汽轮机热耗值计算可能存在误差,但是汽轮机热耗高于设计值是实际存在的问题。以下是历次我厂两台机组热耗电科院给出的数据。

因为我厂1号机新近大修低压缸改造,机组的热耗实验数据没有更新,但是相同的机组热耗的不同,在供热方式的合理优化方面要考虑到这一因素。尽量让机组热耗、汽耗在相同负荷下,在合格范围运行。

3.0结论:

机组供热后,相同的机组应该根据汽耗(热耗)的不同,合理分配抽气供热的热负荷,使机组达到经济运行的目的。

汽轮机抽汽回热系统运行

汽轮机抽汽回热系统运行 抽汽回热系统的正常投运与否,对电厂的安全、负荷率、经济性影响很大。在实际运行中,必须进行严格的管理,正确的操作方法和维护方法对保证该系统的正常运行起重要作用。除氧器的运行和维护将在第六章中详细介绍,本节只介绍高、低压加热器的运行和维护。 1、启动 高、低加启动前必须先投入加热器水位保护,放尽加热器内积水,各抽汽管道上各疏水阀处于开启状态。启动时先投水侧,再投汽侧。低加汽侧的投入一般采用随机启动的方式;当机组负荷达20%-30%额定负荷时,按3号、2号、1号的顺序投入高加汽侧运行。在投入初期应注意预暖加热器,控制出口水的温升速度。若低加因故不能随机启动,而是在机组达到某负荷后逐个投入,应按由低到高的顺序依次投入,抽汽管道应预先进行充分疏水暖管。 投入加热器运行时应先对水侧注水,待给水缓慢地充满加热器以后,将所有放气门和启动排气门关闭,然后缓慢投入蒸汽,同时开启连续排气阀,疏水品质经检验合格后可排回凝汽器(除氧器)。应该注意的是,在加热器刚启动时参数低,不能克服疏水系统阻力(包括疏水冷却段的阻力、上下级加热器的级间压差、管道阻力等),此时若打开正常疏水门进行疏水逐级自流是困难的,故当机组低负荷运行时需用事故疏水门来疏水,以保证疏水的畅通。 加热器投运基本操作过程如下: 1)启动前的检查和操作已完成。 2)关闭加热器水侧放水门,打开水侧所有排气门。 3)投入加热器的水位保护(疏水调门投自动),缓慢打开水侧进口阀向加热器注水。 注水的目的,一是排净水室侧的空气,二是使加热器金属温度缓慢加热到水温。注 水速度取决于水温和限定的升温率(≤2℃/min)。由于进入低压加热器的水来自凝 结水泵的低温水,因此启动时可直接投入低压加热器的水侧,但仍须缓慢投入,以 免造成较大的冲击,损坏换热管。 4)当水侧排气阀有水连续排出后,即可认为加热器水侧的气体已经排尽,关闭水侧的排气阀,完全打开给水进口阀。待压力升高稳定后观察汽侧水位是否上升,以判断 水侧与汽侧间是否存在泄漏。 5)检查抽汽逆止阀在自由状态,确认加热器已经具备投运条件。稍开抽汽电动阀,蒸汽逐渐进入管道和加热器,抽汽逆止阀自动开启,这时应进行充分的暖管、疏水; 逐渐开启抽汽电动阀,注意给水出口升温率在限制范围内。启动后,为了防止U 形管腐蚀,保证加热器的传热效果,须打开蒸汽侧的连续排气阀,连续不断将不凝 结气体排出。 6)当加热器水位上升后,加热器的正常疏水阀和紧急疏水阀动作情况应正常。 2、运行 正常运行中运行人员须随时对设备上的人孔法兰、管道法兰的密封状况及设备外观和阀门等进行检查,如发现泄漏、变形、异常声响等现象,须立即采取措施或检修。同时还应监视加热器、除氧器系统的各项参数,如除氧器的水位、工作水温及压力是否正常;加热器的水位、进出水温度和流量、蒸汽压力、端差、疏水阀自动控制是否正常,通过与相同负荷下运行工况的比较,判断加热器内部管束是否存在泄漏或其他缺陷,尽早发现问题,及时处理。

压缩机用汽轮机抽气器应用中的能耗分析

龙源期刊网 https://www.360docs.net/doc/73282359.html, 压缩机用汽轮机抽气器应用中的能耗分析 作者:段雅丽 来源:《硅谷》2013年第08期 摘要抽气器作为压缩机凝气系统的重要组成部分,用来抽除系统内的不能凝结的气体,以维持凝汽器真空,改善传热效果,从而提高机组的热经济性。在氨合成项目中,对不同型式的抽气器在同种工况时的运行时,射水抽气器要比射汽抽气器耗能少,运行成本低,节能效果显著。 关键词抽气器;射汽抽气器;射水抽气器;能耗 中图分类号:TK263 文献标识码:A 文章编号:1671—7597(2013)042-113-01 在以煤为原料的合成氨装置中,为提高能效水平,空分及合成气压缩等大功率转动设备大多采用凝汽式汽轮机代替电机拖动。而凝汽系统中抽气器的工作状况直接影响到机组运行的经济性和安全性。因此,由抽气器、动力泵和冷却器等组成的抽气设备是凝气设备的重要组成部分,其中抽气器是除气系统的核心设备。现用于合成氨工程的抽气设备主要有以下两种形式:射水抽气器和射汽抽气器。 本文通过对两种抽气设备在运行过程中的能耗进行比较,结合工程实际情况,对抽气设备在运行过程中的能耗进行了分析。 1 抽气器工作原理 抽气器是由喷嘴、混合室、扩压管等组成。工作介质通过喷嘴,由压力能转变为速度能,在混合室中形成了高于凝汽器内的真空,达到把气、汽混合物从凝汽器内抽出的目的。在扩压管内,工质的速度能再转变为压力能,以略高于大气压力将混合物排入大气。 1.1 射汽抽气器的工作原理 射汽抽气器所使用的工质是过热蒸汽,故称之为射汽抽气器。工作蒸汽进入喷嘴,膨胀加速进入混合室,在混合室内形成了高度真空,从而把凝汽器内的气、汽混合物抽了出来,混合后进入扩压管,升压至比大气压略高,经冷却器冷凝后,大部分蒸汽冷凝成疏水回到凝汽器,少量汽、气混合物排入大。 射汽抽气器的结构简单,被广泛的应用在高、中压参数汽轮机中。早期设计的射汽抽气器的工作蒸汽多来自新蒸汽,经节流减压到所需工作压力,先在应用较广的多级射汽抽气器则利用低品位蒸汽进行驱动,不仅减少了蒸汽的节流损失,而且提高了循环热效率。 1.2 射水抽气器的工作原理

射水射汽抽气器工作原理介绍

射水、射汽抽气器结构组成、工作原理介绍 一、凝汽设备的作用 凝汽设备的作用是增大蒸汽在汽轮机中的理想焓降△h,提高机组的循环热效率。另一个作用是将排汽凝结成水,以回收工质,重新送回锅炉作为给水使用。 增大汽轮机的理想焓降,可通过提高蒸汽的初参数和降低排汽参数来获得。 二、凝汽器内真空的形成 凝汽器内真空的形成可分为两种情况来讨论。在启动或停机过程中,凝汽器内的真空是由抽气器将其内部空气抽出而形成的。而在正常情况下,凝汽器内的真空是由汽轮机排汽在凝汽器内骤然凝结成水时,其比容急剧缩小而形成的,抽气器将不凝结的气体和空气连续不断地抽出,起到维持真空的作用,此时真空的形成主要靠蒸汽的凝结。 发电机组在夏季高温季节,由于受环境温度升高影响,冷却水温度上升,凝汽器内冷凝蒸汽效果下降,换热效率下降,导致凝汽器内排汽压力上升,真空下降,从而使汽轮机排汽焓升高,汽轮机做功能力下降,效率降低,发电机输出功率下降。这就是真空低影响发电负荷的原因。 但真空度也不是越高越好,有一个控制范围,如一线余热电站真空度控制范围为-92.0kPa~-98.0kPa。从汽轮机末级叶片出口截面来分析,在每台汽轮机末级叶片出口截面处,都有一个确定的极限背压,若汽轮机背压降至低于其极限背压时,则蒸汽在汽轮机中的可用焓降增值再也不会提高,因此,凝汽器内的真空是根据汽轮机设备和当地的气候条件来选定的,称为最有利真空,如一线电站最有利真空为-95.6kPa。 三、凝汽器射水、射汽抽气器的工作原理 抽气器的任务是将漏入凝汽器的空气和不凝结的气体连续不断地抽出,保持凝汽器始终在较高真空下运行。抽气器可分为射水、射汽抽气器两种,区别主要是工作介质的不同。 抽气器的工作原理:抽气器是由喷嘴、混合室、扩压管等组成,见附图。工作介质通过喷嘴,由压力能转变为速度能,在混合室中形成了高于凝汽器内的真空,达到把气、汽混合物从凝汽器内抽出的目的。在扩压管内,工质的速度能再转变为压力能,以略高于大气压力将混合物排入大气。 射汽抽气器的工作原理: 射汽抽气器所使用的工质是过热蒸汽,故称之为射汽抽气器。新线热力设计将射汽抽气器用于汽封蒸汽凝汽器,减少了汽轮机轴封漏汽损失,并利用漏汽的热量加热凝结水,回收热量和工质,提高了机组热经济性,防止了由于轴封漏汽过大时漏汽进入轴承润滑油,导致油中进水和轴承高温事故。工作原理:工作蒸汽进入喷嘴,膨胀加速进入混合室,在混合室内形成了高度真空,从而把凝汽器内的气、汽混合物抽了出来,混合后进入扩压管,升压至比大气压略高,经冷却器冷凝后,大部分蒸汽冷凝成疏水回到凝汽器,少量汽、气混合物排入大气。 尽管射汽式抽气器抽气效率较低,但其结构简单,能回收工作蒸汽的热量和凝结水,仍被广泛应用。 射水抽气器的工作原理: 射水抽气器工作原理基本与射汽抽气器相同,不同的是它以水代替蒸汽作为工作介质。 工作水压保持在0.2~0.4MPa,由专用的射水泵供给,压力水由水室进入喷嘴,喷嘴将压力水的压力能转变为速度能以高速射出,在混合室内形成高度真空,使凝汽器内的气、汽混合物被吸入混合室进入扩压管,流速逐渐下降,最后在扩压管出口其压力升至略高于大气压力而排出进入冷却池。

汽轮机抽汽回热系统组成

汽轮机抽汽回热系统组成 二期机组汽轮机共设7段非调整抽汽(一期机组抽汽为8段)。第一段抽汽引自高压缸,在全机第6级后,供#1高加;第二段抽汽引自高压缸排汽,在全机第8级后,供给#2高加;第三段抽汽引自中压缸,在全机第11级后,供给#3高加;第四段抽汽引自中压缸排汽,在全机第14级后,供给除氧器、辅汽系统;第五至第七段抽汽均引自低压缸A和低压缸B,第五段抽汽引自全机第16级后,供给#5低加;第六段抽汽引自全机第17级后,供#6低加;第七段抽汽引自全机第18级后,引自低压缸A的抽汽供给#7A低加,引自低压缸B 的抽汽供给#7B低加。 除第七段抽汽外,各抽汽管道均装设有气动逆止阀和电动截止阀,前者作为防止汽轮机超速的一级保护,同时也作为防止汽轮机进水的辅助保护措施;后者是作为防止汽轮机进水的隔离措施。由于四抽连接到辅汽联箱、除氧器、小机等,用户多且管道容积大,管道上设置两道逆止阀。四段抽汽各用汽点的管道上亦设置了一个气动逆止阀和电动截止阀。 抽汽在表面式加热器中放热后的疏水,采用逐级自流方式。#1高加疏水借压力差自流入#2高加,#2高加的疏水自流入#3高加,#3高加的疏水流向除氧器。低压加热器逐级自流后,最后由#7低加流向汽轮机本体疏水扩容器。由于各

级加热器均设有疏水冷却段,可将抽汽的凝结水在疏水冷却段内进一步冷却,使疏水的温度低于其饱和温度,故可以防止疏水的汽化对下级加热器抽汽的排挤。 为防止因加热器故障引起事故扩大,每一加热器均设有保护系统,其基本功能是防止因加热器原因引起的汽轮机进水、加热器爆破和锅炉断水事故,具有异常水位保护、超压保护和给水旁路联动操作的功能。 加热器的保护装置一般有如下几个:水位计,事故疏水门,给水自动旁路,抽汽电动截止门、抽汽逆止门联动关闭装置,汽侧及水侧安全门等。对于7号低加,蒸汽入口处设置防闪蒸的挡板。 各级设计抽汽参数 抽汽项目THA工况T-MCR工况 抽汽级数流量 kg/h 压力 MPa 温 度℃ 流量 kg/h 压力 MPa 温 度℃ 第一级(至1号高加)13968 6 7.217 380. 8 15386 6 7.67 5 388. 2 第二级(至2号高加)16541 9 4.703 324. 3 17943 6 4.98 2 330. 5 第三级(至3号高加)78073 2.291 470. 8 84564 2.42 4 470. 5

600MW机组抽汽回热系统

600MW机组抽汽回热系统 一、综述 对于加热器的性能要求,可归结为尽可能地缩小进入加热器的蒸汽饱和温度与加热器出口给水温度之间的差值,我们称之为加热器端差。为实现这一目的,目前主要通过两种途径。一种途径是采用混合式加热器,从汽轮机抽来的蒸汽在加热器内和进入加热器的给水直接混合,蒸汽凝结成水,其汽化潜热释放到水中,压力温度相同,端差为0,但这种方式需设置水泵为给水提供压力,使其与相应段的抽汽压力一致,这就会消耗一定的能源,除氧器即是一种混合式加热器。另一种途径是采用表面式加热器,在结构上采取必要措施,尽量提高加热器的效果。 某600MW机组汽轮机共设八段非调整抽汽。 第一段抽汽引自高压缸,在全机第6级后,供1号高加;第二段抽汽引自高压缸排汽,在全机第8级后,供给2号高加、给水泵汽轮机及辅汽系统的备用汽源;第三段抽汽引自中压缸,在全机第11级后,供给3号高加;第四段抽汽引自中压缸排汽,在全机第14级后,供给除氧器、给水泵汽轮机、辅汽系统;第五至第八段抽汽均引自低压缸A和低压缸B, 第五段抽汽引自全机第16级后,供给5号低加;第六段抽汽引自全机第17级后,供6号低加;第七段抽汽引自全机第18级后,引自低压缸A的抽汽供给 7A号低加,引自低压缸B 的抽汽供给7B号低加;第八段抽汽引自全机第19级后,引自低压缸A的抽汽供给供给8A 号,引自低压缸B的抽汽供给8B号低加。 除第七、八段抽汽外,各抽汽管道均装设有气动逆止阀和电动截止阀,前者作为防止汽轮机超速的一级保护,同时也作为防止汽轮机进水的辅助保护措施;后者是作为防止汽轮机进水的隔离措施。由于四抽连接到辅汽联箱、除氧器和给水泵汽轮机等,用户多且管道容积大,管道上设置两道逆止阀。四段抽汽各用汽点的管道上亦设置了一个气动逆止阀和电动截止阀。抽汽在表面式加热器中放热后的疏水,采用逐级自流方式。1号高加疏水借压力差自流入2号高加,2号高加的疏水自流入3号高加,3号高加的疏水流向除氧器。低压加热器逐级 自流后,最后由8号低加流向凝汽器。由于各级加热器均设有疏水冷却段,可将抽汽的凝结水在疏水冷却段内进一步冷却,使疏水的温度低于其饱和温度,故可以防止疏水的汽化对下级加热器抽汽的排挤。 二、高加系统 为了减小端差,提高表面式加热器的热经济性,现代大型机组的高压加热器和少量低压加热器采用了联合式表面加热器。 某600MW机组高加为卧式、表面凝结、U型换热器,采用三台高压加热器大旁路配置。此类加热器一般由过热蒸汽冷却段、凝结段、疏水冷却段三部分组成:

两级射汽抽气器

作者:admin 来源:本站发表时间:2011-9-28 10:06:15 点击:27 凝汽器多级射汽抽气器,汽轮机两级射汽抽气器,射汽抽气器生产厂家具有效率高,耗能低的优点,该产品系国内的射水抽气器最新型式,用于火力发电厂汽轮机组抽吸凝汽器真空和其它需要抽真空的设备之用,用于新机组设计的中的辅机配套及现有机组的节能改造均为适宜。同时可根据需要设计出任何抽气量的抽气设备,亦可对汽抽实施改造,适用范围3MW-600MW机组。 凝汽器多级射汽抽气器,汽轮机两级射汽抽气器,射汽抽气器生产厂家优点为: 1、抽吸能力强,安全裕量大,电机耗功低。 2、寿命长,抽吸内效率不受运行时间影响,检修间隔期长。 3、启动性好,无需另配辅抽。对工作水所含杂质的质量浓度及体积浓度要求低。 4、该射水抽汽器喉管出口设置余速抽气器,可同时供汽机抽吸轴封加热器之不凝结气体。 5、因无气相偏流,所以射水抽气器运行中震动磨损极小。 凝汽器多级射汽抽气器,汽轮机两级射汽抽气器,射汽抽气器生产厂家结构原理:新一代射水抽气器结构原理打破了传统的水、气垂直交错流动的设计模式,大家知道气相运动所需能量全来自水束,那么要让水质点裹胁更多的气体来提高凝汽器真空,保证安全运行就必须: 1、在吸入室中选取水的最佳流速及单股水束的最佳截面,以期水束能实现最佳分散度,同时分散后的水质点又具最佳动量,以最小的水量裹胁最多的气体,这是达到低耗高效的起码条件。 2、吸入室内水质点与空气的接触达到最均匀。且使水束所裹胁的气体能全部压入喉管。 3、制止初始段的气相返流偏流,以免造成冲击四壁而发生震动磨损。这一点单靠加长喉管是难以实现的。这是吸入室几何结构,喉口形状,喉径喷咀面积比,喉长喉咀径比,进水参数(水量水压)等实现的。 4、喉管的结构分气体压入段,旋涡强化段及增压段三部份。能实现两相流的均匀混合,降低气阻,消除气相偏流,增加两相质点能量交换,又能利用余速使排出的能量损失达到最少。

汽轮机抽气系统

汽机抽汽回热系统 1、概述:回热抽气系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。采用回热循环的主要目的是:提高工质在锅炉内吸热过程的平均温度,以提高级组的热经济性。 2、抽汽回热系统作用:抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少。综合以上原因说明抽汽回热系提高了机组循环热效率。因此,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。 3、影响抽汽回热系统经济型地主要参数:影响给水回热加热经济性的主要参数为回热加热分配、相应的最佳给水温度和回热级数,三者紧密联系,互有影响。 在求解最佳回热分配的计算分析中,以Z级理想回热循环的循环效率最大值求其最佳回热分配,(所谓理想回热循环,即假定为混合式加热器,端差为零,不计新蒸汽,抽汽压损和泵功、忽略散热损失)求得理想回热循环的最佳回热分配通式后,根据忽略一些次要因素,进一步简化,即可获得其它近似的最佳回热分配通式。如“焓降分配法”,这种分配方法是将每一级加热器的焓升取作等于前一级至本级的蒸汽在汽轮机中的焓降;又如“平均分配法”,这种回热分配方法的原则是每一级加热器的焓升相等;其他还有“等焓降分配法”等。可见给水回热总加热量在各级中的分配是在一定的给水温度和一定级数的条件下,使循环热效率最高为原则,由此对应的各级抽汽回热参数,即为最有利分配的参数。 4、提高系统循环热效率的措施:将给水加热到多少温度,才能使循环热效率达到最高值?以单级抽汽回热为例,回热时给水温度从汽轮机排汽压力下的饱和温度开始逐渐增加,热效率也逐渐增加,热效率达最大值时的给水温度称为最佳给水温度,再提高给水加热温度时,热效率反会减小,热经济性就降低。这是因为给水加热温度提高后,相应的抽汽压力也提高,对该部分的抽汽而言,每千克抽汽在汽轮机中热变功的量减少了,若发电量不变,则要增加进入汽轮机中的新蒸汽量,以弥补因抽汽而减少的发电量,抽汽压力愈高,增加的新蒸汽量就愈多,因而汽耗率也愈大,相应的排向低温热源的热量也就越大,锅炉加热的数值虽不断降低,但汽耗率增加较快,以致使热耗率相应增大,从而使循环热效率降低。理论上,加热级数愈多,最佳给水温度愈高。

汽轮机三段抽汽系统的问题

汽轮机三级抽汽系统的问题 一简要说明 汽轮机的抽汽回热加热系统,共有六级管道及阀门等组成,其中,第三级抽汽,取自汽轮机中压缸的低部,主要作用是加热除氧器中的锅炉给水;在其进入除氧器之前,和来自机组辅助蒸汽加热系统中,用于机组启动初期使用的加热除氧器给水的管道合并,共用一根管道进入除氧器系统。 二存在的问题 1)机组运行期间,三级抽汽出口压力经常小于或者等于除氧器压力,此时,三级抽汽系统不能正常供汽。 2)机组运行期间,控制机组辅助蒸汽加热系统中的辅助联箱压力偏高,经常大于三级抽汽出口的压力,此时,三级抽汽系统不 能正常供汽。 三潜在危害 1)三段抽汽系统不能正常供汽,造成管道内蒸汽滞留,容易凝结形成积水,特别是机组在低负荷下长期运行时,蒸汽滞留加聚, 形成的积水也会更严重。 2)三段抽汽管道位于中压蒸汽进口处的中压缸低部,管道内的滞留蒸汽很容易反流进入中压缸低部,造成中压缸下部/上部的温 差增大,如果存在积水,温差将会更大,其结果必会造成机组 受力不均匀,引起机组振动,甚至跳机。

四采取的措施 1)虽然三段抽汽系统有自动检测管道积水打开疏水阀组的功能,但是,按照运行实践经验,这些是有滞后的。也就是说,不能 等到其自动打开,最好是要提前采取措施,比如,机组低负荷 下运行时间较长时,手动开启相应的疏水阀组减少积水现象。2)严密监视三级抽汽压力,除氧器压力,以及辅助蒸汽联箱的压力,保证压差,确保三段抽汽系统正常供汽。 3)改变辅助蒸汽加热系统的供汽汽源,把目前使用的锅炉低温过热器出口蒸汽汽源,切换为再热蒸汽冷段蒸汽汽源,降低辅助 联箱的供汽压力。如不能满足汽轮机轴封供汽系统的压力温度 时,退入辅助蒸汽加热除氧器系统运行。 4)机组低负荷(35%额定负荷以下)下长期运行时,要求锅炉增加热负荷,强化燃烧,提高锅炉出口蒸汽压力和温度等参数,尽量保证机组接近额定参数运行,保证三级抽汽压力正常。 刘大力 2017年3月7日星期二

抽气回热系统五六段抽气

课程设计报告 ( 2012-- 2013 年度第 1 学期) 名称:过程参数检测及仪表课程设计题目:抽气回热系统的五,六段 院系:控制与计算机工程 班级:测控1001班 学号:1101160119 学生姓名:王亚为 指导教师:邱天 设计天数:一天半 成绩: 日期:2013 年 6 月27 日

一、课程设计的目的与要求 本课程设计为检测技术与仪器、自动化专业《过程参数检测及仪表》专业课的综合实践环节。通过本课程设计,使学生加深对抽气回热系统基本概念的理解,以及掌握一定关于抽气回热系统创新与改进的基本能力。 二、设计正文 抽气回热系统的五六段抽气回热 1.抽气回热系统的现代背景 2. 简述系统的工作原理 3.介绍设备及参数 4.画出热工检测图 5.列出仪表设备清册 具体解答过程 1. 抽气回热系统的背景 抽气回热系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少提高工质在锅炉内吸热过程的平均温度。综合以上原因说明,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。 2. 简介系统的基本工作原理 图7-1 原则性热力系统图 如图所示,在汽轮机高中低压气缸做完功的蒸汽凝结为水进入凝汽器,然后凝结水从凝汽器

回热抽汽系统

回热抽汽系统 回热抽汽系统指与汽轮机回热抽汽有关的管道及设备。汽轮机采用回热循环的主要目的是提高工质在锅炉内吸热过程的平均温度以提高机组的热经济性。 本机组具有八级非调整抽汽。一段抽汽从高压缸的一段抽汽口抽汽至#1高加;二段抽汽从再热蒸汽冷段引出,为#2高加供汽;三段抽汽从中压缸三段抽汽口抽出,供给#3高加;四段抽汽从中压缸四段抽汽口至抽汽总管,然后再由总管上引出三路,分别供给除氧器、两台给水泵驱动汽轮机和辅助蒸汽系统;五、六、七、八段抽汽分别供汽至四台低压加热器。 除回热抽汽及给水泵汽轮机用汽外,机组能供给厂用蒸汽量: 低温再热蒸汽抽汽量暂按20t/h,四级抽汽量暂按50t/h,五级抽汽量暂按30t/h,此工况下汽轮机能带额定负荷(600MW)。汽轮机在带额定负荷(600MW)、平均背压0.0049MPa(a)时,单抽冷段最大值115t/h、单抽四段最大值170t/h、单抽五段最大值70t/h、抽四段和五段最大值分别为110t/h和70t/h。 一、系统的保护措施 汽轮机各段抽汽管道将汽机与各级加热器或除氧器相连。当汽轮机突降负荷或甩负荷时,蒸汽压力急剧降低,这些加热器和除氧器内的饱和水将闪蒸成蒸汽,与各抽汽管道内滞留的蒸汽一同返回汽机。

这些返回汽机的蒸汽可能在汽轮机内继续做功而造成汽机超速。另外,加热器管束破裂,管子与管板或联箱连接处泄漏,以及加热器疏水不畅造成水位过高等情况,都会使水倒入汽轮机,发生事故。 因此回热抽汽系统必须满足汽轮机超速保护、汽轮机进水保护和除氧器水箱及加热器水位过高的要求。 为防止汽机超速,除了最后两级抽汽管道外,其余的抽汽管上均装设气动控制逆止阀和电动隔离阀。四级抽汽管道上靠近汽轮机处装设一个电动隔离阀和两个气动控制逆止阀。由于除氧器水箱热容量大,一旦汽机甩负荷或除氧器满水事故时,防止汽水倒流入抽汽管道再灌入汽轮机。其它凡是从抽汽系统接出的管道去加热设备都装有逆止阀。抽汽逆止阀尽可能靠近汽轮机的抽汽口安装,以便当汽轮机跳闸时,可以降低抽汽系统能量的贮存,为防汽机超速保护。同时抽汽逆止阀亦作为防止汽轮机进水的二级保护。 具有快关功能的电动隔离阀的安装位置靠近加热器,作为防止汽轮机进水的一级保护,另一个作用是在加热器切除时,切断加热器的汽源。 在各抽汽管道的顶部和底部分别装有热电偶,作为防进水保护的预报警,便于运行人员预先判断事故的可能性。 给水泵汽轮机的正常工作汽源从四段抽汽管道上引出,装设有流量测量喷嘴、电动隔离阀和止回阀。逆止阀是为了防止高压汽源切换时,高压蒸汽串入抽汽系统。当给水泵汽轮机在低负荷运行使用高压汽源时,该管道亦将处于热备用状态。

射水、射汽抽气器工作原理介绍

射水、射汽抽气器工作原理介绍 余热发电新线建设培训教材 射水、射汽抽气器结构组成、工作原理介绍 一、凝汽设备的作用 凝汽设备的作用是增大蒸汽在汽轮机中的理想焓降?h,提高机组的循环热效率。另一个作用是将排汽凝结成水,以回收工质,重新送回锅炉作为给水使用。 增大汽轮机的理想焓降,可通过提高蒸汽的初参数和降低排汽参数来获得。 二、凝汽器内真空的形成 凝汽器内真空的形成可分为两种情况来讨论。在启动或停机过程中,凝汽器内的真空是由抽气器将其内部空气抽出而形成的。而在正常情况下,凝汽器内的真空是由汽轮机排汽在凝汽器内骤然凝结成水时,其比容急剧缩小而形成的,抽气器将不凝结的气体和空气连续不断地抽出,起到维持真空的作用,此时真空的形成主要靠蒸汽的凝结。 发电机组在夏季高温季节,由于受环境温度升高影响,冷却水温度上升,凝汽器内冷凝蒸汽效果下降,换热效率下降,导致凝汽器内排汽压力上升,真空下降,从而使汽轮机排汽焓升高,汽轮机做功能力下降,效率降低,发电机输出功率下降。这就是真空低影响发电负荷的原因。 但真空度也不是越高越好,有一个控制范围,如一线余热电站真空度控制范围为-92.0kPa,-98.0kPa。从汽轮机末级叶片出口截面来 分析,在每台汽轮机末级叶片出口截面处,都有一个确定的极限背压,若汽轮机背压降至低于其极限背压时,则蒸汽在汽轮机中的可用焓降增值再也不会提高,因此,凝汽器内的真空是根据汽轮机设备和当地的气候条件来选定的,称为最有利真空,如一线电站最有利真空为-95.6kPa。

三、凝汽器射水、射汽抽气器的工作原理 抽气器的任务是将漏入凝汽器的空气和不凝结的气体连续不断地抽出,保持凝汽器始终在较高真空下运行。抽气器可分为射水、射汽抽气器两种,区别主要是工作介质的不同。 抽气器的工作原理:抽气器是由喷嘴、混合室、扩压管等组成,见附图。工作介质通过喷嘴,由压力能转变为速度能,在混合室中形成了高于凝汽器内的真空,达到把气、汽混合物从凝汽器内抽出的目的。在扩压管内,工质的速度能再转变为压力能,以略高于大气压力将混合物排入大气。 射汽抽气器的工作原理: 射汽抽气器所使用的工质是过热蒸汽,故称之为射汽抽气器。新线热力设计将射汽抽气器用于汽封蒸汽凝汽器,减少了汽轮机轴封漏汽损失,并利用漏汽的热量加热凝结水,回收热量和工质,提高了机组热经济性,防止了由于轴封漏汽过大时漏汽进入轴承润滑油,导致油中进水和轴承高温事故。工作原理:工作蒸汽进入喷嘴,膨胀加速进入混合室,在混合室内形成了高度真空,从而把凝汽器内的气、汽混合物抽了出来,混合后进入扩压管,升压至比大气压略高,经冷却器冷凝后,大部分蒸汽冷凝成疏水回到凝汽器,少量汽、气混合物排入大气。 尽管射汽式抽气器抽气效率较低,但其结构简单,能回收工作蒸汽的热量和凝结水,仍被广泛应用。 射水抽气器的工作原理: 射水抽气器工作原理基本与射汽抽气器相同,不同的是它以水代替蒸汽作为工作介质。 工作水压保持在0.2,0.4MPa,由专用的射水泵供给,压力水由水室进入喷嘴,喷嘴将压力水的压力能转变为速度能以高速射出,在混合室内形成高度真空,使凝

汽轮机表面式凝汽器抽气设备

附 录 C (资料性附录) 抽气设备 C.1 抽气设备能力的确定 C.1.1 凝汽器中需要抽出的不凝结气体的来源包括但不仅限于以下几项: ——低于大气压下运行的系统部件中漏进的空气; ——进入凝汽器的疏水和排汽释放的气体; ——进入凝汽器的补给水释放的气体; ——循环冷却中所使用的凝结水平衡箱内所产生的气体; ——在某些形式的核燃料的循环中,从给水中解析出来的氧气、氢气及其他不凝结气体。 C.1.2 除不凝结气体外,还应抽出一定量的附带蒸汽,以确保凝汽器的正常性能,并产生合理的气流速度,使凝汽器汽侧的腐蚀减少到最小程度。 C.2 设计吸入压力 抽气设备的吸入压力应符合下列要求: ——电站汽轮机凝汽器的设计吸入压力为3.386 kPa (a )或凝汽器设计压力,取二者中的较小值。最终选择还应考虑到在整个预期的运行压力内的凝汽器与其抽气设备的协调运行。此外,当选择设计吸入压力时,还应考虑抽气设备的实际位置。 ——工业和船用汽轮机或泵等其他机械动力设备用凝汽器的设计吸入压力为凝汽器设计压力减去 3.386 kPa 或为运行所要求的最低压力,取二者中的较小值,但不得低于3.386 kPa (a )。 C.3 设计吸入温度 设计吸入温度(即抽吸的汽-气混合物温度),应为抽气设备设计压力相对应的饱和蒸汽温度t vs (℃)减去0.25(t s -t w1)或4.16 ℃中的较大值(t s 为蒸汽凝结温度,t w1为冷却水进口温度)。 运行中抽气口的蒸汽实际温度受到运行特性、不凝结气体负荷和抽气设备容量特性的影响,不一定等于设计吸入温度。 C.4 水蒸汽量的计算 混合气体中饱和水蒸汽量与不凝结气体的比值按公式(C.1)计算: w VS w g g w 18 P P P M W W -? = .................................. (C.1) 式中: W w ——混合气体中的饱和水蒸汽质量,单位为千克(kg ); W g ——混合气体中的不凝结气体质量,单位为千克(kg ); P w ——与凝汽器抽气口处温度相对应的水蒸汽的饱和压力,单位为千帕[kPa (a )]; M g ——不凝结气体的平均分子量。不凝结气体为干空气时其分子量为29;

05第五章_汽轮机抽汽系统详解

第1章汽轮机抽汽回热系统 1.1. 概述 在蒸汽热力循环中,通常要从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)以及用于各种厂用汽如给水泵汽轮机用汽等。 抽汽回热系统是原则性热力系统最基本的组成部分,采用抽汽加热锅炉给水的目的在于减少冷源损失,即避免了蒸汽的热量被循环冷却水带走,使蒸汽热量得到充分利用,热耗率下降;同时提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热过程的不可逆损失。综合以上原因,抽汽回热系统提高了循环热效率,因此抽汽回热系统的正常投运对提高机组的热经济性具有决定性的影响。 理论上抽汽回热的级数越多,汽轮机的热循环过程就越接近卡诺循环,汽热循环效率就越高。但回热抽汽的级数受投资和场地的制约,不可能设置的很多,而随着级数的增加,热效率的相对增长随之减少,相对得益不多,因此,600MW机组的加热级数一般为7~8级。 给水回热总加热量在各级中的分配是在一定的给水温度和一定级数的条件下,使循环热效率最高为原则,由此对应的各级抽汽回热参数,即为最有利分配的参数,抽汽参数的安排应当是:高品味(高焓、低熵)处的蒸汽少抽,而低品味(低焓、高熵)处的蒸汽则尽可能多抽。确定了分配方式,也就确定了汽轮机的抽汽点,通常,用于高压加热器和除氧器的抽汽由高、中压缸或它们的排汽管引出,而用于低压加热器的抽汽由低压缸引出。 对于加热器的性能要求,可归结为尽可能地缩小进入加热器的蒸汽饱和温度与加热器出口给水(凝结水)温度之间的差值,我们称之为给水(凝结水)端差,为实现这一目的,目前主要通过两种途径。一种途径是采用混合式加热器,从汽轮机抽来的蒸汽在加热器内和进入加热器的给水(凝结水)直接混合,蒸汽凝结成水,其汽化潜热释放到水中,压力温度相同,端差为0,但这种方式需设置水泵为给水(凝结水)提供压力,使其与相应段的抽汽压力一致,这就会消耗一定的能源,除氧器即是一种混合式加热器。另一种途径是采用表面式加热器,在结构上采取必要措施,尽量提高加热器的效果。 抽汽回热系统是原则性热力系统最基本的组成部分,我公司的原则性热力系统主要由下列各局部热力系统组成:连接锅炉、汽轮机的主、再热蒸汽管道;抽汽回热系统;主凝结水系统;除氧器和给水泵的连接系统;补充水系统等。对抽汽回热系统而言,习惯上,以除氧器为分界,把除氧器范围内的输入输出系统称为除氧器系统;除氧器以后,至进入锅炉省煤器的给水加热系统称为高压回热加热系统;凝汽器输出至除氧器的凝结水系统,称为低压回热加热系统。 我公司原则性热力系统图见图5-1

射汽式抽气器的工作原理及故障分析

发电机抽汽器工作原理及真空低故障分析 摘要:本文以低压发电射汽式抽气器为例阐述了发电机真空低故障的分析及处理办法。 关键词:凝结器、膨胀节、空气管道、抽气器等。 1、真空低的危害:蒸汽在气轮机中膨胀较大,减小了焓降和循环热的效率,汽轮机做功少等。 2、影响真空的部位:冷却器冷却效果差、膨胀结及相关的阀门管道泄漏、抽气器工作效率差等。 3、射汽式抽气器的工作过程具体描述与分析: 射汽式抽气器主要由工作喷嘴、混合室及扩压管三部分组成,其基本结构如图所示。在结构上,工作喷嘴采用了缩放喷嘴的结构形式,这种结构可以在其出口处获得超音速汽流,在混合室与扩压管之间还设有一段等截面的喉管,其作用是使工作蒸汽和被抽吸气体充分混合,以减少突然压缩损失和余速动能的损失。为突出射汽抽气器工作过程中的主要特点,将抽气器流动的工质当作理想气体处理,并假设工质在抽气器内的流动是一维稳态绝热流动。射汽抽气器内工质的压力、速度变化曲线如图所示。 ***********************************************************************

在上述假设的前提下,射汽抽气器的整个工作过程可以为三个阶段,具体描述如下: (1)、P点截面→2点截面为工作蒸汽在工作喷嘴内的膨胀增速阶段。 较高压力的工作蒸汽在工作喷嘴入口处(P点)以低于声速的汽流速度进入射汽抽气的工作喷嘴。在工作喷嘴的渐缩段流动时,其压力不断减少,速度不断增加。在工作喷嘴的喉部(最小截面处1点),汽流速度达到音速,即马赫数等于1。工作蒸汽在进入喷嘴的渐扩段后,压力进一步下降,汽流速度进一步增加,达到超音状态,在工作喷嘴出口截面处,工作蒸汽的汽流速度可达到900-1200m/s. (2)、2点截面→3点截面为工作蒸汽与被吸入气体的混合阶段。 工作蒸汽在工作喷嘴出口截面处所形成的高速汽流会在工作喷嘴出口附近形成真空区域,这样压力相对较高的被抽吸气体就会在压力差的作用下,被吸入到混合室内,被吸气体在e点被吸入抽气器,从e点流动到3点的过程中,速度不断增加,压力在e点→2点不断下降到工作蒸汽在工作喷嘴出口截面处(2点)的压力,此后在混合室段和喉管前段(2→ ***********************************************************************

抽气器

抽气器 1、抽气器的作用抽气器的作用是将漏入凝汽器内空气不断地抽出,以维持凝汽器内的高度真空。故抽气器工作的好坏对凝汽器工作的影响很大。任何一种抽汽器,不论其结构和工作原理如何,都是一种压气器,它将汽气混合物从凝汽器抽气口的压力压缩到高于大气压的出口压力。 2、抽气器的型式抽气器的型式有机械式和喷射式两种。喷射式抽气器结构简单、工作可靠、制造成本低、维护方便、建立真空快。常用的喷射式抽气器有射汽抽气器和射水抽气器两种,工作原理相同工质不同。前者用蒸汽做工质,后者用水做工质。 (一)射汽抽气器 1.启动抽气器的结构和工作原理: 启动抽气器的作用是在汽轮机启动前给凝汽器建立真空,以缩短机组启动时间。图5--8为启动抽气器示意图,它主要由工作喷嘴A、混合室B和扩压管C 所组成。工质是新蒸汽,新蒸汽进入工作喷嘴A,在喷嘴A膨胀加速造成一个远高于音速的高速汽流射入混合室。高速汽流有很强的空吸作用,从而将从抽气口 来的汽气混合汽流带走,并进入扩压管C。混合汽流在扩压管C中不断扩压,直到压力稍大于大气压力后排入大气。 启动抽气器功率大建立真空快,但工质和工质的热量不能回收,有经济损失。故它只作为启动时用。一旦汽轮机正常工作以后,主抽气器便投入工作,启动抽气器停止工作。 2. 主抽气器

主抽气器的作用:是在汽轮机正常工作时使用,以维持凝汽器的高度真空。主抽气器一般都采用带中间冷却器的多级型式。其目的在于可以得到更高的真空度,同时也可以回收工质和热量,提高经济性。图5-- 9为两级射汽抽气器工作原理图。凝汽器内的汽 气混合物由第一级抽气 器抽出,并压缩到某一 中间压力(低于大气压 力),然后进入中间冷却 器2。在中间冷却器2 中,混合物中的部分蒸 汽被凝结成水,而未凝 结的汽气混合物又被第 二级抽走。在第二级抽 气器中,汽气混合物被 压缩到略高于大气压力, 再经第二级冷却器4进 一步凝结并回收工质和热量。最后的空气和少量未凝结的蒸汽一起排入大气。(二)射水抽气器 射水抽气器的工作原理:射水抽气器的工作原理同射汽抽气器相同,如图5--12所示。它主要由工作水进口1,喷嘴2,混合室5,扩压管7和逆止阀6等部件所组成。压力水由射水泵供给,经喷嘴形成高速射流射出,从而将凝汽器中的汽气混合物抽出。 不同的是它以水代替蒸汽作为上作介质。工作水压保持在0.2~0.4MPa,由专用的射水泵供给,压力水由水室进入喷嘴,喷嘴将压力水的压力能转变为速度能以高速射出,在混合室内形成高度真空,使凝汽器内的气、汽混合物被吸入混合室进入扩压管,流速逐渐下降,最后在扩压管出口其压力升至略高于大气压力而排出进入冷却池。 为了防止喷嘴内的工作水倒吸入凝汽器内,在抽气器的气汽混合物的入口处装有逆止阀(近年来,为减小管道阻力可拆除逆止阀,在抽空气的管道上装置一

汽轮机多通道射水抽气器的技术改造

汽轮机多通道射水抽气器的技术改造 发表时间:2009-12-07T10:34:30.750Z 来源:《中小企业管理与科技》2009年11月上旬刊供稿作者:张赞李亮齐河亮[导读] 当时电网周波低,致使射水泵出口压力偏低也是造成射水抽气器工作异常的原因之一。张赞李亮齐河亮(大唐鲁北发电有限责任公司) 摘要:本文分析了某厂#4汽轮机多通道射水抽气器技术改造原因和必要性,对如何提高#4汽轮机原高效节能多通道射水抽气器的安全、经济、可靠运行的技术处理方式方法进行了叙述,为处理同类型设备提供了办法和借鉴。关键词:多通道抽气器电耗处理 0 引言 某厂现有两台300MW纯凝式汽轮机,#4、5汽轮机组,分别于1997年、1998年投产。其维持汽轮机真空运行的现使用的射水抽气器为高效节能改进型多通道射水抽气器,其使用的工质为水塔来的循环水(但受到夏季温度的影响),效果较为理想,为某厂机组的安全经济运行提供了可靠的保证。 1 多通道射水抽气器结构及工作原理介绍 该种射水抽气器为近年来作为原长径喷嘴射水抽气器的更新换代产品,在同等抽空气量的条件下要比长径喷嘴单通道抽气器的电耗降低30~45%,维持汽轮机真空度要优于单通道射水抽气器1~2%。其主要技术要点:①把原来单通道水柱外圆裹挟空气方式变为多通道水柱外圆裹挟方式,增加了水柱外圆接触空气的面积,也就是增加了裹挟空气量;其余速利用也是采用此方式。②增加了工作水压,从而增加了抽空气能力,把水柱裹挟的空气顺利排出。③由于增加了工作水压,从而提供了汽轮机的真空值。④由于提高了工作水压和降低射水流量,从而降低了射水泵组的电耗,节约了能源。 2 多通道射水抽气器升级改造的起因 某厂于2003年-2004年期间,在#4 、5汽轮机的主射水抽气器(其抽吸空气能力为25kg/h,为长径喷嘴单通道射水抽气器,配套射水泵电机功率为95kW)旁边各购置安装了一台高效节能多通道射水抽气器(其抽吸空气能力为32kg/h,配套射水泵电机功率为75kW),欲替代主射水抽气器,其目的是为了汽轮机的真空值和降低电耗。另一个原因为原来两台95kW立式射水泵组经常出现振动大以及设备老化,欲用双吸卧式循环水泵替代原来立式射水泵,以提高设备的安全可靠性。 因当时对多通道射水抽气器在工作原理、射水抽气器喷嘴前改造水压和安装技术要求认识上不够充分,以及生产现场场地的限制(多通道射水抽气器的排水出口管与主射水抽气器的出口管相连接,射水自出抽气器的扩压管后经过两个弯头和十几米长的管道方排到机房外面的循环水沟中,即其排水口扎到2米深的循环水里),以致排水管中水所裹挟的空气排不出去。经试几次试验失败后到99年一直闲置不用。 于2007年提出了改进这两套设备的技术措施。主要有以下三个办法:①利用空气阻力比较小的原理,把多通道射水抽气器移到室外,直接安放到循环水来水沟的上部,把射水抽气器的排水管口直接插到水里350~500mm深处,以便于空气排出,又把凝结器的抽空气管到接到室外。②把进入射水抽气器喷嘴室前面的进水竖管的直管段加长到1.5米,尽量保证进入射水抽气器喷嘴室前面的水是层流状态,并保证喷嘴射水流的垂直度,尽量不发生偏斜角。③增加了多通道射水抽气器距离循环水沟水面地高度,增加落水的高度以增加其吸空气的能力和余速利用效果。多通道射水抽气器经按以上三项技术措施安装后,投入运行并一次取得了成功,每年节约电能30万度。 2008年7月12日16时35分,#5汽轮机真空突然由0.086MPa降低至0.066MPa,排汽温度由45℃升高至67℃,机组负荷由270MW降低至220MW。经过查找分析原因是多通道射水抽气器工作异常造成。因在该时间段循环水温度是最高的,达到了37~38℃。根据多通道射水抽气器工作原理,当工作水温度高到一定程度时,在其混合室内要发生汽化现象,此时抽气器将出现短暂的不工作现象,当真空降到一定值后其又开始工作,在这期间真空会急剧下降,而影响机组的真空和带负荷出力。通过对比发现#4汽轮机当时并没有发生该现象,原因何在?由于场地所限,#5汽轮机多通道射水抽气器的进水管和出水管段均比#4汽轮机的要长。因而,虽然两机的多通道射水抽气器和射水泵型号一样,但是#5汽轮机射水抽气器喷嘴室的工作压力比#4汽轮机的低。另外,轴封加热器的抽空气门开度得比较大也是容易引起多通道射水抽气器工作异常的原因(即增加射水抽气器的负荷)。当时电网周波低,致使射水泵出口压力偏低也是造成射水抽气器工作异常的原因之一。 以上几个方面的因素是造成这次真空降低的主要原因。 3 处理方法 经过研究和做试验,发现某厂使用的这两台多通道(6个通道)射水抽气器抽吸能力过剩(即抽吸空气32kg/h,在汽轮机严密性试验合格的情况下,即小于667Pa/分,实际产生的不凝结空气量为23.6~25kg/h),只是由于射水泵的工作水压达不到其多通道射水抽气器的设计压力值(0.33~0.39MPa),实际压力只有0.316MPa。 运用流体力学中的伯努利原理和方程,使用特制做的空气流量试验孔板,通过堵塞1个、2个及3个通道(即同时堵塞喷嘴、主通道和余速利用通道),求出多通道射水抽气器在各个工作水压下的真空值的临界点(即最佳工作点)。各种状态试验数据见附件。 4 处理技术方案 同时堵塞多通道射水抽气器其中2个通道的喷嘴、主通道和余速利用通道;由于其工质使用的是循环水,水中杂物比较多,在射水泵与射水抽气器之间加装了滤网装置;为防止射水抽气器的排水管口露出循环水面,加装了循环水水沟水面水位监测标尺;把#3、4、5射水泵并为母管运行,互为备用,简化了系统,增加了经济运行和可靠性。 经过把6通道改为4通道,射水泵电机电流由139A降至98~102A,使该套设备效率又得到了进一步提高,节能降耗效果显著。 提高射水抽气器的工作水压,也就是提高了射水抽气器工作循环水的水压力值,相对于抽气器因循环水温度升高后发生汽化时对应水的饱和压力有一个余量,以避免射水抽气器因夏季循环水温度升高再发生汽化的可能。 #5汽轮机多通道射水抽气器也利用小修的机会进行同样的改造。两台射水抽气器运行至今再也没有发生过汽化现象。参考文献: [1]沈鸿等.机械工程手册.机械工业出版社.1982. [2]王培基等.汽轮机设备及运行.水利电力出版社.1979.

相关文档
最新文档