工程力学--组合变形
工程力学第十一章 组合变形

土建工程中的混凝土或砖、石偏心受压柱,往往不 允许横截面上出现拉应力。这就是要求偏心压力只能作 用在横截面形心附近的截面核心内。
要使偏心压力作用下杆件横截面上不出现拉应力, 那么中性轴就不能与横截面相交,一般情况下充其量只能 与横截面的周边相切,而在截面的凹入部分则是与周边外 接。截面核心的边界正是利用中性轴与周边相切和外接时 偏心压力作用点的位置来确定的。
解:拉扭组合:
7kNm T
50kN FN
安全
例11-8 直径为d的实心圆轴,
·B
P 若m=Pd,指出危险点的位置, 并写出相当应力 。
x
m
解:偏拉与扭转组合
z
C P P 例11-9 图示折角CAB,ABC段直径
d=60mm,L=90mm,P=6kN,[σ]=
BA
60MPa,试用第三强度理论校核轴 x AB的强度。
例11-6 图示圆轴.已知,F=8kN,Me=3kNm,[σ]=100MPa, 试用第三强度理论求轴的最小直径.
解:(1) 内力分析
4kNm M
3kNm T
(2)应力分析
例11-7 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。
至于发生弯曲与压缩组合变形的杆件,轴向压力 引起的附加弯矩与横向力产生的弯矩为同向,故只有 杆的弯曲刚度相当大(大刚度杆)且在线弹性范围内 工作时才可应用叠加原理。
A M
F FN
+ ql2/8
+
B
+
=
C 10kN
A 1.6m
1.6m
10kN
1.2m
例11-3 两根无缝钢管焊接 而成的折杆。钢管外径 D=140mm,壁厚t=10mm。求 危险截面上的最大拉应力和 B 最大压应力。
工程力学之组 合 变 形

工程力学第10章组合变形学习目标(1)了解组合变形的概念及其强度问题的分析方法;(2)掌握斜弯曲、拉伸(压缩)与弯曲和偏心压缩的应力及强度计算。
10.1 组合变形的概念例如,烟囱的变形,除自重W引起的轴向压缩外,还有水平风力引起的弯曲变形,同时产生两种基本变形,如图10-1(a)所示。
又如图10-1(b)所示,设有吊车的厂房柱子,作用在柱子牛腿上的荷载F,它们合力的作用线偏离柱子轴线,平移到轴线后同时附加力偶。
此时,柱子既产生压缩变形又产生弯曲变形。
再如图10-1(c)所示的曲拐轴,在力F作用下,AB 段同时产生弯曲变形和扭转变形。
10.1 组合变形的概念图10-110.1 组合变形的概念上述这些构件的变形,都是两种或两种以上的基本变形的组合,称为组合变形。
研究组合变形问题依据的是叠加原理,进行强度计算的步骤如下:(1)将所作用的荷载分解或简化为几个只引起一种基本变形的荷载分量。
(2)分别计算各个荷载分量所引起的应力。
(3)根据叠加原理,将所求得的应力相应叠加,即得到原来荷载共同作用下构件所产生的应力。
(4)判断危险点的位置,建立强度条件。
10.2例如图10-2(a)所示的横截面为矩形的悬臂梁,外力F作用在梁的对称平面内,此类弯曲称为平面弯曲。
斜弯曲与平面弯曲不同,如图10-2(b)所示同样的矩形截面梁,外力F的作用线通过横截面的形心而不与截面的对称轴重合,此梁弯曲后的挠曲线不再位于梁的纵向对称面内,这类弯曲称为斜弯曲。
斜弯曲是两个平面弯曲的组合,本节将讨论斜弯曲时的正应力及其强度计算。
10.2图10-210.210.2.1 正应力计算斜弯曲时,梁的横截面上同时存在正应力和切应力,但因切应力值很小,一般不予考虑。
下面结合图10-3(a)所示的矩形截面梁说明斜弯曲时正应力的计算方法。
图10-310.2.1 正应力计算10.2.1.1 外力的分解由图10-3(a)可知:10.2.1.2 内力的计算如图10-3(b)所示,距右端为a 的横截面上由F y 、F z 引起的弯曲矩分别是:10.2 10.2.1 正应力计算10.2.1.3 应力的计算由M z 和M y (即F y 和F z )在该截面引起K 点的正应力分别为:F y 和F z 共同作用下K 点的正应力为:10.210-110.210.2.1 正应力计算10.2.1.3 应力的计算通过以上分析过程,我们可以将组合变形问题计算的思路归纳为“先分后合”,具体如下:10.210.2.2 正应力强度条件同平面弯曲一样,斜弯曲梁的正应力强度条件仍为:10-2即危险截面上危险点的最大正应力不能超过材料的许用应力[σ]。
12-2 工程力学-组合变形的强度计算

故,安全。
3 2 4 2
6.37 2 435.7 2 71.7 MPa
[例7] 方形截面杆的横截面面积在 mn 处减少一半,试求由 轴向载荷 P 引起的 mn 截面上的最大拉应力。
解:
N M m ax A W
a2 a a a2 P P/ P / 8 2 2 4 4 6 a
§12–3
拉(压)弯组合 偏心拉(压)
一、拉(压)弯组合变形:杆件同时受横向力和轴向力的作用而产
生的变形。
P P R
x z
P
x y z Mz
P
My
y My
二、应力分析: x z Mz P
P
MZ
My
y My
P xP A
Mzy xM z Iz
xM
y
Myz Iy
P Mz y Myz x A Iz Iy
max
F1 M max A Wz F1 F e A Wz
m
m
4)强度计算 因危险点的应力是单向应力 状态,所以其强度条件为:
F1 F e max 135MPa [ ] A Wz
例11-11 如图所示为一起重支架。已知a =3.0m, b=1.0m,F=36.0kN,AB梁材料的许用应力[ ]=140 MPa。试确定AB梁槽钢的型号。
拉压与弯曲组合变形的分析步骤
(1)、外力分析:
y
x
y P1
y
y P
x
=
P1
x
+
x P2
P2
P
P1 P cos
P2 P sin
(2)、内力分析:
工程力学第15章组合变形

32(1.0103)20.75(1.0103)2
M 20.010.21kNm 3 160106
max
2 2 r4M2W0.75T232M2d30.75T2
d3
32
M2 0.75T2
由内力图及强度公式可判断危险截面在E 处 ⑶ 确定AB 轴的直径 所以AB 轴的直径d = 44mm 。
例:图所示齿轮传动轴,用钢制成。在齿轮1 上作用有径
tmax
Mymax Wy
Mzmax Wz
F2l bh2 /
6
2F1l hb2 /6
90118605201109/618029082001019/6 cmax(MWymyaxMWzmzax)9.98MPa
例:图所示一矩形截面悬臂梁,截面宽度b = 90mm ,高度h = 180mm , 两在两个不同的截面处分别承受水平力F1和铅垂力F2。已知F1 = 800N , F2 = 1650N ,l = 1m ,求梁内的最大正应力并指出其作用位置。
FN
N
FN A
F S y F S z (对实心截面引起切应力很小,忽略)
M y Mz
M
My Iy
z
Mz Iz
y
T
T
IP
1
1(
2
242)
3
1(
2
242)
强度条件
弯扭组合受力的圆轴一般由塑性材料制成,采用第三或第四强度理论建立强 度条件。分析危险截面A A
3
T 410 A W
20MPa 20103 (10103)2(8103)2
6
W 20010 85104 100106
P
强度校核 由内力图及强度公式可判断危险截面距B 端2m 处, 计算危险点在横截面的应力值 所以AB 段强度满足要求。
组合变形(工程力学课件)

偏心压缩(拉伸)
轴向拉伸(压缩)
偏心压缩
F2 F2e
轴向压缩(拉伸)和 弯曲两种基本变形组合
偏心压缩(拉伸)
单向偏心压缩(拉伸)
双向偏心压缩(拉伸)
单向偏心压缩(拉伸)
外力
内力
平移定理
应力
+
=
弯矩
轴力
max
min
FN A
Mz Wz
【例 1】求横截面上的最大正应力
F 50 kN
e 10 mm
组合变形的概念 及其分析方法
杆件的四种基本变形
轴向拉压 剪切 扭转
F
F
F
F
Me
Me
沿轴线的伸长或缩短 相邻横截面相对错动 横截面绕轴线发生相对转动
Me
弯曲
Me
F
轴线由直线变为曲线 横截面发生相对的转动
两种或两种以上基本变形的组合,称为组合变形
常见的 组合变形
(1)拉(压)弯组合 (2)斜弯曲(弯、弯组合) (3)偏心压缩(拉伸) (4)弯扭组合
24 106 401.88 103
64
4.3 59.7 64 [ ] 满足强度要求
59.7 55.4
斜弯曲
平面弯曲
作用线与截面的 纵向对称轴重合
梁弯曲后挠曲线位于外力F所在的纵向对称平面内
斜弯曲
作用线不与截面 的对称轴重合
梁弯曲后挠曲线不再位于外力F所在的纵向平面内
图示矩形截面梁,应用叠加原理对其进行分析计算:
3、应力分析
( z,y)
横截面上任意一点 ( z, y) 处 的正应力计算公式为
Mz
z
O
x
1.拉伸正应力
N
工程力学-组合变形课程课件

离中性轴最远的点,这就是危险点。
令 y0 , z0 代表中性轴上任一点的坐标,
即得中性轴方程
中性轴
z
1 ez z ey y 0
O
Iy
Iz
中性轴在 y , z 两轴上的截距为 D2
ay
D1
az y
ay
iz2 ey
az
iy2 ez
工程力学
第12章 组合变形
例12.6 螺旋夹紧装置如图所示,已知 F 2kN ,
800
D
C
A
2500
B
1500
F
工程力学
第12章 组合变形
1、先计算出CD 的杆长
800
D
C
A
2500
1500
FCD
FAx A
FCDx
FAy
FCDy
l 25002 8002 2620mm 2.62m
2、取AB为研究对象,画受力简图
B
MA 0
F
FCD
2.5 2.5 2.62
F
(2.5 1.5)
中性轴与y 轴的夹角q 为
tanq z0 I y M z I y tan
y0 I z M y I z
式中, 为合弯矩与轴的夹角。
Iz Iy Iz Iy
q q
斜弯曲 平面弯曲
工程力学
中性轴将横截面分为两部分,一部分受 拉应力,一部分受压应力。作平行于中 性轴的两直线,分别与横截面的周边相 切,这两个切点D1,D2就是该截面上拉应 力和压应力为最大的点。将危险点的坐 标代入(12.1)式,即可求得横截面上的 最大拉应力和最大压应力。危险点的应 力状态为单向应力状态或近似当作单向 应力状态,故其强度条件为
工程力学组合变形

取=0 ,以y0、z0代表中性轴上任一点的坐标,则可得中性轴方程
y
O
z
中性轴
*
可见,在偏心拉伸(压缩)情况下,中性轴是一条不通过截面形心的直线。
求出中性轴在y、z两轴上的截距
对于周边无棱角的截面,可作两条与中性轴平行的直线与横截面的周边相切,两切点D1、D2,即为横截面上最大拉应力和最大压应力所在的危险点。相应的应力即为最大拉应力和最大压应力的值。
添加标题
01
弯矩Mz=Mez 引起的正应力
添加标题
03
A为横截面面积;Iy、Iz分别为横截面对y轴、z轴的惯性矩。
添加标题
05
弯矩My=Mey 引起的正应力
添加标题
02
按叠加法,得C点的正应力
添加标题
04
在任一横截面n-n上任一点 C(y,z) 处的正应力分别为
添加标题
06
*
利用惯性矩与惯性半径间的关系
*
*
危险点:m-m截面上
角点 B 有最大拉应力,D 有最大压应力; E、F点的正应力为零,EF线即是中性轴。 可见B、D点就是危险点,离中性轴最远
中性轴:正应力为零处,即求得中性轴方程
强度条件:B、D角点处的切应力为零,按单向应力状态来建立强度条件。设材料的抗拉和抗压强度相同,则斜弯曲时的强度条件为
边长为h和b的矩形截面,y、z两对称轴为截面的形心主惯性轴。
得
若中性轴与AB 边重合,则中兴轴在坐标轴上的截距分别为
b
6
6
h
C
z
y
b
h
B
A
D
h
6
6
b
工程力学 第11章组合变形

第三节
偏心压缩
三.截面核心的概念 ——若外力作用在截面形心附近的某一个区域,使 得杆件整个截面上全为压应力而无拉应力,这个 外力作用的区域称为截面核心。
第三节
偏心压缩
例2. 起重机支架的轴线通过基础的中心。 起重机自重180kN,其作用线通过基础 底面QZ轴,且有偏心距e=0.6m.已知基 础混凝土的容重等于22kN/m3,若矩形 基础的短边长3m。 试计算:(1)其长边的尺寸为 多少时使基础底面不产生拉应力? (2)在所选的值之下,基础底面上的 最大压应力为多少?
Mzy M cosy Iz Iz
Myz Iy
M sin z Iy
(4)应力叠加——危险点应力
Mz y Myz cos sin M ( y z) IZ Iy IZ Iy
第二节
危险点的应力为:
max
斜弯曲
工程力学
第十一章 组合变形
主要内容
第一节 组合变形的概念 第二节 斜弯曲 第三节 偏心压缩
第一节
组合变形的概念
牛腿柱
第一节
组合变形的概念
F F F
试分析受压立柱的变形形式
压缩-弯曲变形
压缩变形
压缩-弯曲变形
第一节
组合变形的概念
一.组合变形的概念 1.组合变形——由两种或两种以上的基本变形组合 而成的变形称为组合变形 。 2.组合变形杆件的强度计算方法——叠加原理。 二.叠加原理解题步骤: (1)分解:将作用于组合变形杆件上的外力分解或简化 为基本变形的受力方式; (2)叠加:对各基本变形进行应力计算后,将各基本变形 同一点处的应力进行叠加,以确定组合变形时各点的应力; (3)强度条件:分析确定危险点的应力,建立强度条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章 组合变形
§11.3 拉伸(压缩)与弯曲的组合
一、横向力与轴向力共同作用
q
F
F
A
B
l
轴向拉力会因杆件有弯曲变形而产生附加弯矩,但它与 横向力产生的弯矩总是相反的,故在工程计算中对于拉—弯 组合变形的构件可不计轴向拉力产生的弯矩而偏于安全地应 用叠加原理来计算杆中的应力。
第11章 组合变形
F
A
τ
B
a
L
F
Fa
A
B
τ
max
Mmax W
τ
max
T WP
FL
ττ
τ
Fa
第11章 组合变形
τ
max
Mmax W
max
T WP
r3 1 3
2 4 2
Mm2 ax T 2 W
r4
1 2
1
2 2
2
3 2
3
1 2
2 3 2
M
2 max
0.75T
2
K1
W
K2
§11.2 斜弯曲
具有双对称截 面的梁,它在任何 一个纵向对称面内 弯曲时均为平面弯 曲。
具有双对称截面的梁在两个纵向对称面内同时承受 横向外力作用时,在线性弹性且小变形情况下,可以分 别按平面弯曲计算每一弯曲情况下横截面上的应力和位 移,然后叠加。
第11章 组合变形
悬臂梁m-m截面上的弯矩和任意点C处的正应力为:
C
1.外力分析 2.内力分析
FN F
M y Fez
A
B
Mz Fey
3.应力计算
FN M y z Mz y
A Iy
Iz
A
FN A
My Wy
Mz Wz
B
FN A
My Wy
Mz Wz
D
FN A
My Wy
Mz Wz
C
FN A
My Wy
Mz Wz
第11章 组合变形
§11.4 弯曲与扭转的组合
q
F
A
l
M F
FN
+ ql2/8
+
z
Mz
F
FN
B
+
=
N
FN A
M
Mmax y IZ
max
min
FN A
M max Wz
第11章 组合变形
二、偏心拉伸(压缩)
eF
偏心拉伸或偏心压缩是指外力的作用 线与直杆的轴线平行但不重合的情况。
F
第11章 组合变形 单向偏心拉伸(压缩)
eF
F Me Fe
A
F Me Fe
第11章 组合变形
组合变形分析步骤: ① 外力分析:外力向形心(或弯心)简化并沿主惯性轴
分解,确定各基本变形; ② 内力分析:求每个外力分量对应的内力方程和内力
图,确定危险面;
③ 应力分析:画危险面应力分布图,确定危险点, 叠加求危险点应力;
④ 强度计算:建立危险点的强度条件,进行强度计算。
第11章 组合变形
水平力F1
竖直力F2
弯矩 M y ( x) F1 x
M z ( x) F2 ( x a)
弯曲正 应力
' My zFra bibliotekIy'' M z y
Iz
C处的正应力
' '' M y z M z y
Iy
Iz
第11章 组合变形
A
z
B
y 对于横截面具有外棱角的梁,求任何横截面上最大拉应 力和最大压应力时,可直接按两个平面弯曲判断这些应力 所在点的位置,而无需定出中性轴的方向角θ。 工程计算中对于实体截面的梁在斜弯曲情况下,通常不 考虑剪力引起的切应力。
r3 2 4 2
6.372 4 35.72
71.7MPa
安全
第11章 组合变形
第十一章 组合变形
11.1 组合变形的概念 11.2 斜弯曲 11.3 拉伸(压缩)与弯曲的组合 11.4 弯曲与扭转的组合
第11章 组合变形
11.1 组合变形的概念
一、组合变形基本概念
在复杂外载作用下,构件的变形会包含几种基本 变形,当几种基本变形所对应的应力属同一量级时,不 能忽略,这类构件的变形称为——组合变形(combined deformation)。
FN My
A IZ
FN M Fe
z B y
F
A
B
e
F
Me Fe
单向偏心压缩时,距偏心力较近的一侧边缘总是产生压应力,
而最大正应力总是发生在距偏心力较远的另一侧,其值可能是拉
应力,也可能是压应力。
第11章 组合变形 双向偏心拉伸(压缩)
ey z F
ez
y
F
z
Mz Fey
y
M
D
y
Fez
Ey, z
第11章 组合变形
例11-7 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。
T P
A
T
7kNm T
50kN FN
A
P 解:拉扭组合:
P A
4 50
0.12
103
6.37MPa
T Wp
16 7000
0.13
35.7MPa
第11章 组合变形
三、组合变形的研究方法 —— 叠加原理
对于组合变形下的构件,在线弹性范围内、小变形 条件下,可先将荷载简化为符合基本变形外力作用条件 的外力系,分别计算构件在每一种基本变形下的内力、 应力或变形。然后利用叠加原理,综合考虑各基本变形 的组合情况,以确定构件的危险截面、危险点的位置及 危险点的应力状态,并据此进行强度计算。