直流辉光放电与射频辉光放电
辉光放电质谱应用和定量分析

辉光放电质谱应用和定量分析作者:吴赫淮鑫斌来源:《商品与质量·学术观察》2013年第04期摘要:辉光放电质谱(GDMS)是利用辉光放电源作为离子源的一种无机质谱方法。
本文作者介绍了GDMS的基本原理和特点,然后在应用和定量方面进行了深入研究。
关键词:辉光放电质谱深度分析应用定量分析辉光放电质谱法(GDMS)被认为是目前对固体导电材料直接进行痕量及超痕量元素分析的最有效的手段。
由于其可以直接固体进样,近20 年来已广泛应用于高纯金属、合金等材料的分析。
1、基本原理辉光放电(G10w Discharge)是一种低压气体放电现象,由于气体放电的操作简单,可以产生很强的离子流,所以在早期的质谱研究中,气体放电就被用作离子源。
在真空火花源发展之前,气体放电源体现了巨大的实用价值。
火花源质谱(SSMS)得到发展后,表现出了很强的分析能力,在相当长的一段时间里,辉光放电淡出了研究者的视野。
然而,随着火花源研究的不断深入,这种离子源的局限性也逐渐显露,而辉光放电源则以自身出色的稳定性重新获得了重视。
2、辉光放电质谱的特点2.1 辉光放电质谱的工作原理辉光放电质谱由辉光放电离子源和质谱分析器两部分组成。
辉光放电离子源(GD源)利用惰性气体(一般是氩气,压强约10-100Pa)在上千伏特电压下电离产生的离子撞击样品表面使之发生溅射,溅射产生的样品原子扩散至等离子体中进一步离子化,进而被质谱分析器收集检测。
辉光放电属于低压放电,放电产生的大量电子和亚稳态惰性气体原子与样品原子频繁碰撞,使样品得到极大的溅射和电离。
同时,由于GD源中样品的原子化和离子化分别在靠近样品表面的阴极暗区和靠近阳极的负辉区两个不同的区域内进行,也使基体效应大为降低。
GD 源对不同元素的响应差异较小(一般在10倍以内),并具备很宽的线性动态范围(约10个数量级),因此,即使在没有标样的情况下,也能给出较准确的多元素半定量分析结果,十分有利于超纯样品的半定量分析。
薄膜太阳能电池介绍

薄膜太阳能电池介绍
薄膜太阳能电池是一种新型的光伏器件,其核心原材料包括硅材料、非晶硅材料、CIGS材料和CdTe材料等。
其中,非晶硅材料是太阳能电池的核心原材料之一,具有降低制造成本、易于实现大面积和大批量连续生产等优点,是降低成本和提高光子循环效率的理想材料。
薄膜太阳能电池除了具有平面结构外,还具有可挠性和可制成非平面构造等特性,使其在应用范围上非常广泛,可以与建筑物结合或变成建筑物的一部分。
薄膜太阳能电池的制造方法包括电子回旋共振法、光化学气相沉积法、直流辉光放电法、射频辉光放电法、溅射法和热丝法等。
其中,射频辉光放电法由于其低温过程、易于实现大面积和大批量连续生产,已成为国际公认的成熟技术。
薄膜太阳能电池在光伏建筑一体化、屋顶并网发电系统以及光伏电站等领域有着广泛的应用前景。
此外,非晶硅薄膜太阳电池在高气温条件下衰减微弱,适合高温、荒漠地区建设电站。
同时,薄膜太阳能电池的原材料来源广泛、生产成本低、便于大规模生产,具有广阔的市场前景。
磁控溅射镀膜技术

暗区的宽度与电子的平均自
由程有关。
14
二、溅射镀膜的基本原理
靶材的位置
(一)直流辉光放电:
(4)负辉光区(辉光最强): 随着电子速度增大,很快获
得了足以引起电离的能量,于是 离开阴极暗区后使大量气体电离, 产生大量的正离子。
正离子移动速度慢,产生积 聚,电位升高;与阴极之间的电 位差成为阴极压降。
30
三、磁控溅射
溅射沉积方法有两个缺点:第一,沉积速率较低;第二,溅射所需 的工作气压较高。为了在低气压下进行高速溅射,必须有效的提高气体 的离化率,发展出了磁控溅射技术。 (一)磁控溅射的工作原理:
(一)直流辉光放电:
直流辉光放电是在真空度约1~10Pa的稀薄气体中,两个电极之间 在一定电压下产生的一种气体放电现象。
气体放电时,两电极之间的电压和电流的关系复杂,不能用欧姆定 律描述。
5
二、溅射镀膜的基本原理
6
二、溅射镀膜的基本原理
7
二、溅射镀膜的基本原理
由巴邢定律知,在气体成分和电极
材料一定的情况下,起辉电压V只与气 体压强P和电极距离d的乘积有关。
磁控溅射镀膜技术
3
二、溅射镀膜的基本原理
溅射镀膜基于高能离子轰击靶材时的溅射效应,整个溅 射过程都是建立在辉光放电的基础上,即溅射离子都来源于 气体放电。
➢ 放电方式: (1)直流溅射——直流辉光放电 (2)射频溅射——射频辉光放电 (3)磁控溅射——环状磁场控制下的辉光放电
4
二、溅射镀膜的基本原理
13
二、溅射镀膜的基本原理
(一)直流辉光放电:
(2)阴极辉光区:
电子通过阿斯顿暗区后,在
电场的作用下获得了足够的能量,
辉光放电发射光谱法在材料分析中的应用

收稿日期 : 2007212228
作者简介 :杨 明 ( 19782) ,男 ,湖北人 ,助研 ,主要从事元素分析及 ICP2AES实验室的管理和测试工作 ,发表
0. 2
Mo
1
0. 8
Nb
2
0. 6
Ni
3
0. 1
Si
3
0. 4
Ti
1
0. 6
V
1
1. 0
Zr
2
1. 5
图 1 辉光放电阴极溅射光源示意图 Fig. 1 Scheme of glow discharge cathodic sputtering
1. 3 应用特点 由于辉光放电属于低气压放电 ,具有高度的稳
型及镀层表观厚度的概念 [ 17 ] 。 Zdenek W eiss等人用辉光放电光谱法对硬涂层
近年来 ,科学家发现在许多情况下 ,材料表层组 成及结构对材料的性质有特殊的作用 ,因此表层分 析和逐层分析的重要性日益为分析家所关注 。通常 用于表面分析的手段有俄歇电子能谱 (AES) 、X 射 线光电子能谱 (XPS) 、二次离子质谱 ( SIM S)和辉光 放电发射光谱 ( GD 2OES) 等 [ 1 ] 。由于设备价格 、分 析准确度和精密度等不同 ,在日常分析中的应用也 不一定相同 。辉光放电发射光谱分析技术 ,近几年 来正在被广泛应用于新材料的研究开发和产品的质 量控制中 [ 2~6 ] 。
和放电气压对元素谱线发射强度及相对强度稳定性 的影响 ;测定了中低合金钢标准样品中 C、Si、M n、
(整理)电容感应耦合放电

2.2 电容耦合射频放电为了维持直流辉光放电,电极必须是可导电的。
如果其中一端或两端电极都不可导电,如当辉光放电用于绝缘材料的光谱化学分析或介质薄膜的沉积,此时电极表面附着绝缘材料,电极因正负电荷的积累而充电,辉光放电熄灭。
为了解 决这个问题,可以在电极间加交流电压,这样,每个电极都可以充当阳极和阴极,在电压正半周期时积累的部分电荷将会在电压负半周期时被抵消。
通常,电压频率为射频范围(1kHz-310kHz ,常见频率为13.56MHz )。
严格的说,在其他电压频率时,也会产生电容耦合放电,所以称其为交流放电更合适。
另外,频率应该很高,这样半个周期才会比绝缘体充满电的时间短。
否则,电极将会相继呈相反极性,引起短暂放电,而不是持续放电。
由计算可得,当所加电压频率大于100kHz 时,放电能持续。
实际上,很多射频辉光放电过程产生于13.56MHz 。
因为该频率是国际通信局规定的,其在传播一定能量的时候不会对通信产生干扰。
此时需要强调,所谓电容耦合,指的是将输入功率耦合为放电一种方式,也就是说,利用两个电极及其鞘层形成一个电容。
后面会讲到,射频功率也可以利用其它方法耦合放电。
在典型射频频率下,电子和离子的行为完全不同,这可通过它们不同的质量解释。
电子质量小,可以跟得上射频电压产生的时变电场的变化。
实际上,电子的固有频率,或所谓的电子等离子体频率为:;02εe e pe m e n w = e pe n f 9000=(Hz ) (1) e n 用3-cm 表示。
当电子密度从1010变化到31310-cm 时,等离子体频率由9×810变化至3×1010Hz ,比13.56MHz 大很多。
如果电压频率小于离子等离子体频率,离子可以跟得上鞘层内的电场的变化。
由于离子等离子体频率与质量呈反比,电子可以跟的上典型射频时电场的变化,而离子只能跟得上随时间均匀变化的电场。
电容耦合射频放电的另一个重要的方面是,自给偏压现象,也是由电子和离子质量的不同引起的。
薄膜物理与技术题库

一、填空题在离子镀膜成膜过程中,同时存在沉积和溅射作用,只有当前者超过后者时,才能发生薄膜的沉积薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与结合生长过程薄膜形成与生长的三种模式:层状生长,岛状生长,层状-岛状生长在气体成分和电极材料一定条件下,起辉电压V只与气体的压强P和电极距离的乘积有关。
1.表征溅射特性的参量主要有溅射率、溅射阈、溅射粒子的速度和能量等。
2. 溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在 1~100nm之间。
3.薄膜的组织结构是指它的结晶形态,其结构分为四种类型:无定形结构,多晶结构,纤维结构,单晶结构。
4.气体分子的速度具有很大的分布空间。
温度越高、气体分子的相对原子质量越小,分子的平均运动速度越快。
二、解释下列概念溅射:溅射是指荷能粒子轰击固体表面(靶),使固体原子(或分子)从表面射出的现象气体分子的平均自由程:每个分子在连续两次碰撞之间的路程称为自由程,其统计平均值:称为平均自由程,饱和蒸气压:在一定温度下,真空室内蒸发物质与固体或液体平衡过程中所表现出的压力。
凝结系数:当蒸发的气相原子入射到基体表面上,除了被弹性反射和吸附后再蒸发的原子之外,完全被基体表面所凝结的气相原子数与入射到基体表面上总气相原子数之比。
物理气相沉积法:物理气相沉积法(Physical vapor deposition)是利用某种物理过程,如物质的蒸发或在受到粒子轰击时物质表面原子的溅射等现象,实现物质原子从源物质到薄膜的可控转移的过程真空蒸发镀膜法:是在真空室内,加热蒸发容器中待形成薄膜的源材料,使其原子或分子从表面汽化逸出,形成蒸气流,入射到固体(称为衬底、基片或基板)表面,凝结形成固态溅射镀膜法:利用带有电荷的离子在电场加速后具有一定动能的特点,将离子引向欲被溅射的物质作成的靶电极。
在离子能量合适的情况下,入射离子在与靶表面原子的碰撞过程中将靶原子溅射出来,这些被溅射出来的原子带有一定的动能,并且会沿着一定的方向射向衬底,从而实现薄膜的沉积。
直流辉光放电与射频辉光放电

t = T/2
Vb = 1200 V,
C‘
t = T/2 时,Va 跳变为 +1000 V, 由于 C 上存有 –200 V电压(下正上负), Vb = 1200 V。
射频辉光放电>射频电极的自偏压(产生过程四)
T/2 < t < T
Vb → +100 V,
eee
C‘
T/2 < t < T 区间, 电子迅速中和C 上正电荷,Vb 快速下降至 +100 V, 相应地 Vb – Va = -900 V。
射频辉光放电>射频电极的自偏压(六)
实用中采用的正弦波电压及所产生 的直流自偏压。
summary
气体放电的伏安特性与分类 气体的击穿电压与气压的关系—帕邢定律 直流辉光放电 (放电区结构和分布、放电过程,空心阴极放电) 射频辉光放电 (射频放电的特点、自偏压的产生)
Appendix: 弹性碰撞界面与电子速度的关系
射频辉光放电>射频电极的自偏压(产生过程五)
V阿 ≈ -1000 V,
t=T
Vb ≈ -1900 V,
C‘
t = T 时,Va跳变为 -1000 V,由于 C 上存有 900 V电压(上正下负), Vb = -1900 V。
如上所示每经历一周期, Va都将更负一些。到若干周期以后,电压波形趋于稳定,整体向负 电位偏移而产生负的直流分量,即负的自偏压。
射频辉光放电的特点
击穿电压低,放电气压低,放电 易自持,电极可以放在放电室外 面等。
实际用于气体放电的射频源频率统一 为13.56 MHz,以避免干扰正常通讯。
射频辉光放电>射频电极的自偏压(产生过程一)
t=0
第四章_溅射镀膜

dnx nxdx
设x=0时,nx=n0,对上式积分
nx n0ex
如果阴极和阳极间的距离为d,在均匀电场中, 到达阳极的电子数为
nx n0ed
10
那么可以算出从阴极逸出的n0个电子所引起的电离次数,即所产生的新电子数 (或等量的正离子数)应为:
n0ed n0 n0 (ed 1)
20
EF段——在E点以后,电流平稳增加,而电压维持不变。这时两极之间出现辉光。“正 常辉光放电区”。在此阶段,放电自动调整阴极轰击面积。最初,轰击不均匀,主要集 中在阴极边缘附近或表面不规则处。但随着电源功率的增加,轰击区逐渐增大,直到阴 极面上的电流密度均匀为止。 辉光放电:随着电压继续增加,电流一直增加直到C点,电压突然降低,此时表明气体 已被击穿,Ub是击穿电压(点燃电压)。被击穿的气体发光放电称为辉光放电。这时的 电子和正离子来源于电子的碰撞和正离子的轰击,而不是自然的游离离子和电子,所以 称为自持放电。此时的电流密度与电压无关,而与极板上产生辉光的表面积有关,与阴 极材料及其形状、气体种类和压强有关。Un即Uzmin 由于正常辉光放电时的电流密度仍比较小,所以有时溅射选择在异常辉光放电区工作。
14
BC段——电压升高后,带电离子和电子获得了足够的能量,与中性气体分子发 生碰撞产生电离,电流平稳增加,但电压在电源高输出阻抗的限制下呈一常数。 “汤森放电区”(Townsend discharge)。 汤森放电:电压继续增加,电子的运动速度越来越快,它与中性气体之间的碰 撞有可能使分子电离出新的离子和电子,这些新的电子又加入向阳极加速的进 程中,从而碰撞电离出更多的气体分子。 B点电压Ub即为点燃电压Uz。 上述两种放电,都以有自然电离源为前提,如果没有游离的电子和正离子存在, 则放电不会发生。即,非自持放电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
During the background ionization stage of the process the electric field applied along the axis of the discharge tube sweeps out the ions and electrons created by ionization from background radiation. Background radiation from cosmic rays, radioactive minerals, or other sources, produces a constant and measurable degree of ionization in air at atmospheric pressure. The ions and electrons migrate to the electrodes in the applied electric field producing a weak electric current. Increasing voltage sweeps out an increasing fraction of these ions and electrons.
The regime between A and E on the voltage-current characteristic is termed a dark discharge because, except for corona discharges and the breakdown itself, the discharge remains invisible to the eye.
实验测得的曲线。 注意对应不同 Pd,Vs 有一极小值。
2. Glow Discharge
The glow discharge regime owes its name to the fact that the plasma is luminous. The gas glows because the electron energy and number density are high enough to generate visible light by excitation collisions.
F – G normal glow discharge
After a discontinuous transition from E to F, the gas enters the normal glow region, in which the voltage is almost independent of the current over several orders of magnitude in the discharge current. The electrode current density is independent of the total current in this regime. This means that the plasma is in contact with only a small part of the cathode surface at low currents. As the current is increased from F to G, the fraction of the cathode occupied by the plasma increases, until plasma covers the entire cathode surface at point G.
H - K Arc Discharges
At point H, the electrodes become sufficiently hot that the cathode emits electrons thermoionically. If the DC power supply has a sufficiently low internal resistance, the discharge will undergo a glow-to-arc transition, H-I. The arc regime, from I through K is one where the discharge voltage decreases as the current increases, until large currents are achieved at point J, and after that the voltage increases slowly as the current increases.
B - C The saturation region
Here radiation induces saturation current change
If the voltage between the electrodes is increased far enough, eventually all the available electrons and ions are swept away, and the current saturates. In the saturation region, the current remain constant while the voltage is increased. This current depends linearly on the radiation source strength, a regime useful in some radiation counters. (e.g. 盖革计数器)
C - D Electron avalanche and the Townsend discharge
If the voltage across the low pressure discharge tube is increased beyond point C, the current will rise exponentially. The electric field is now high enough so the electrons initially present in the gas can acquire enough energy before reaching the anode to ionize a neutral atom. As the electric field becomes even stronger, the secondary electron may also ionize another neutral atom leading to an avalanche of electron and ion production. The region of exponentially increasing current is called the Townsend discharge.
E Electrical breakdown(Paschen’s Law)气体的击穿—帕邢定律
击穿电压
Vs
=
BPd ln( APd
)
ln 1
γ
上式称为帕邢定律,表示击穿
电压 Vs 是气压 P 与极间距离 d 乘积 的函数。其中A和B为常数,γ表示一 个正离子撞击阴极表面时平均从阴极 表面逸出的电子数目(二次电子发 射)。
电源
i
V
-
+
直流辉光放电区的结构
阳极暗区
电流密度
1. 阴极区
阴极区由Aston暗区,阴极辉区和阴极暗区(或称克罗克斯暗区)三部分组成。 极间电压大部分加在这里,电子被加速与气体原子碰撞,使原子激发或电离。
Aston Dark Space – A thin region to the right of the cathode with a strong electric field. The electrons are accelerated through this space away from the cathode. This region has a negative space charge, meaning that stray initial electrons together with the secondary electrons from the cathode outnumber the ions in this region. The electrons are too low density and/or energy to excite the gas, so it appears dark.
D - E Corona discharges
Corona discharges occur in Townsend dark discharges in regions of high electric field near sharp points, edges, or wires in gases prior to electrical breakdown. If the coronal cuurents are high enough, corona discharges can be technically “glow discharges”, visible to the eye. For low currents, the entire corona is dark, as appropriate for the dark discharges.
G – H anormal glow discharge
In the abnormal glow regime above point G, the voltage increases significantly with the increasing total current in order to force the cathode current density above its natural value and provide the desired current.