教学设计 选修4-5-《不等式的基本性质》教学设计
不等式的基本性质教案

不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生对数学的兴趣。
3. 引导学生通过观察、分析、归纳等方法,自主学习不等式的性质。
二、教学内容:1. 不等式的概念及表达方式。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式性质在实际问题中的应用。
三、教学重点与难点:1. 教学重点:不等式的基本性质及其应用。
2. 教学难点:不等式性质的推导和理解。
四、教学方法:1. 采用自主学习、合作探讨的教学方法,让学生在实践中掌握不等式的基本性质。
2. 利用多媒体课件,直观展示不等式的性质,提高学生的学习兴趣。
3. 结合生活实例,让学生感受不等式在实际问题中的应用。
五、教学过程:1. 导入新课:通过简单的例子,引导学生认识不等式,激发学生的学习兴趣。
2. 自主学习:让学生自主探究不等式的基本性质,教师巡回指导。
3. 课堂讲解:讲解不等式的概念、表达方式,详细阐述不等式的性质1、性质2、性质3。
4. 巩固练习:布置相关练习题,让学生巩固所学的不等式性质。
5. 应用拓展:结合实际问题,让学生运用不等式性质解决问题。
6. 课堂小结:总结本节课的主要内容,强调不等式性质的重要性。
7. 作业布置:布置适量作业,巩固所学知识。
8. 课后反思:教师对本节课的教学情况进行反思,为下一节课的教学做好准备。
六、教学评价:1. 通过课堂提问、练习题和课后作业,评估学生对不等式基本性质的理解和掌握程度。
2. 观察学生在解决问题时的思维过程和方法,评价其应用能力和创新意识。
3. 收集学生对教学过程的意见和建议,以促进教学方法的改进和教学质量的提高。
七、教学反馈:1. 课后及时批改学生作业,了解学生对不等式基本性质的掌握情况。
2. 根据学生作业中出现的问题,进行有针对性的辅导和讲解,确保学生理解透彻。
3. 定期与学生交流,了解他们在学习不等式过程中的困惑和问题,及时给予解答和指导。
不等式的基本性质教学设计教案

不等式的基本性质教学设计-教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解不等号(>,<,≥,≤)的含义举例说明不等式的表示方法1.2 不等式的基本性质性质1:如果a>b,a+c>b+c(加法性质)性质2:如果a>b且c>0,ac>bc(乘法性质,正数)性质3:如果a>b且c<0,ac<bc(乘法性质,负数)性质4:如果a>b且c≥0,a-c>b-c(减法性质)第二章:不等式的运算2.1 不等式的加减法运算展示不等式的加减法运算规则,举例说明练习题:求解下列不等式组的解集2.2 不等式的乘除法运算介绍不等式的乘除法运算规则,注意正负数的处理练习题:求解下列不等式组的解集第三章:不等式的解法3.1 简单不等式的解法介绍简单不等式的解法,如直接解、移项、合并同类项等练习题:求解下列简单不等式的解集3.2 不等式组的解法介绍不等式组的解法,如图像法、区间法等练习题:求解下列不等式组的解集第四章:不等式的应用4.1 实际问题中的不等式举例说明不等式在实际问题中的应用,如距离问题、分配问题等练习题:解决下列实际问题中的不等式4.2 不等式的优化问题介绍不等式在优化问题中的应用,如最大值、最小值问题练习题:解决下列优化问题中的不等式第五章:不等式的综合练习5.1 不等式的综合应用综合运用不等式的基本性质、运算和解法解决实际问题练习题:解决下列综合应用问题中的不等式5.2 复习与总结复习不等式的概念、基本性质、运算和解法总结不等式的重要性和在数学中的应用第六章:不等式的标准形式6.1 不等式的标准形式介绍不等式的标准形式:x ≤a 或x ≥a说明标准形式在解不等式组中的重要性6.2 标准形式的不等式解法展示如何将不等式转换为标准形式练习题:将给定的不等式转换为标准形式并求解第七章:不等式的绝对值7.1 不等式中的绝对值解释绝对值在不等式中的含义和作用举例说明绝对值不等式的解法7.2 绝对值不等式的解法展示绝对值不等式的解法步骤练习题:求解含有绝对值的不等式第八章:不等式的函数关系8.1 不等式与函数的关系探讨不等式与函数之间的关系举例说明如何通过函数图像解决不等式问题8.2 函数图像下的不等式解法介绍如何利用函数图像求解不等式练习题:利用函数图像解决给定的不等式问题第九章:不等式的不等式系统9.1 不等式系统的概念介绍不等式系统的概念及其解法说明不等式系统在实际问题中的应用9.2 不等式系统的解法展示如何解不等式系统练习题:求解给定的不等式系统第十章:不等式的拓展与应用10.1 不等式的拓展探讨不等式在其他数学领域的应用介绍不等式的相关拓展知识10.2 不等式的实际应用分析不等式在现实生活中的应用练习题:解决实际生活中的不等式问题教案总结:本教案涵盖了不等式的基本概念、性质、运算、解法、应用以及拓展等内容。
教学设计 不等式的基本性质第一课时

课 题: 不等式的基本性质三维目标:1.知识与技能:掌握不等式的基本性质,会应用基本性质进行简单的不等式变形。
2.过程与方法:通过实例探究不等式基本性质应用3.情感态度与价值观:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 教学重点:探索不等式的基本性质,并能灵活地掌握和应用 教学难点:能根据不等式的基本性质进行简单应用教学设计:一、引入:不等关系是自然界中存在着的基本数学关系。
《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为ma mb ++,只要证m a m b ++>ab 即可。
怎么证呢? 二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
人教版高中选修4-51.不等式的基本性质课程设计

人教版高中选修4-51.不等式的基本性质课程设计一、教学目标1. 知识与技能•掌握不等式的定义和基本性质;•掌握一次不等式和二次不等式的解法;•能够解决实际问题中的不等式问题。
2. 过程与方法•通过讲解和练习,学生能够熟练掌握不等式及其解题方法;•通过实例分析让学生能够运用所学知识解决实际问题;•通过课堂互动等方式,激发学生的学习兴趣和积极性。
3. 态度与价值观•培养学生的逻辑思维能力和数学思维能力;•让学生认识到数学对实际生活的重要性和应用价值;•培养学生的创新思维和解决问题的能力。
二、教学重点和难点1. 教学重点•不等式的定义和基本性质;•一次不等式和二次不等式的解法;•实际问题中的不等式问题的解决方法。
2. 教学难点•对不等式的理解与掌握;•二次不等式的解法;•实际问题中的不等式问题的应用。
三、教学方法1. 教学内容整合将课堂教学、练习操作、实际应用等内容整合在一起,以便学生能够更好地理解不等式及其应用方法。
2. 提供实例在课堂上提供大量的实例,让学生通过分析解题,理解不等式的基本性质和应用方法。
3. 积极互动通过课堂互动、小组活动等方式,积极引导学生参与课堂,以提高学生对数学知识的兴趣和掌握程度。
4. 制定练习制定一系列练习,以帮助学生更好地巩固和应用所学知识。
四、教学步骤步骤一:不等式的定义和基本性质1.小组讨论,了解学生对不等式的理解;2.讲解不等式的定义及其基本性质;3.通过几个具体实例帮助学生理解。
步骤二:一次不等式及其解法1.讲解一次不等式的解法;2.指导学生通过实例进行练习和掌握。
步骤三:二次不等式及其解法1.讲解二次不等式及其解法;2.指导学生通过实例进行练习和掌握。
步骤四:实际问题中的不等式1.讲解如何将实际问题转化为不等式问题;2.通过实例讲解不等式的应用方法;3.指导学生通过实例进行练习和掌握。
步骤五:查漏补缺,巩固提高1.综合练习和测试;2.帮助学生查漏补缺,巩固提高。
人教版高中选修4-51.不等式的基本性质教学设计 (2)

人教版高中选修4-51.不等式的基本性质教学设计一、教学目标1.理解不等式的含义,知道不等式中的符号及其意义。
2.掌握不等式的性质,包括加减不等式、倍数不等式、倒数不等式、移项变号不等式和乘方不等式。
3.在解决实际问题时,能够用不等式来描述和解决问题。
二、教学内容1.不等式的含义2.不等式的符号及其意义3.不等式的性质4.实际问题的应用三、教学重难点1.不等式中符号的区分与理解。
2.不等式性质的掌握与实际应用。
四、教学方法1.案例分析法2.经验引入法3.解题法五、教学过程1. 不等式的含义(10分钟)1.引入不等式的概念及符号。
2.解释不等式的含义——在两个数(或算式)之间,用符号表示它们的大小关系。
2. 不等式的符号及其意义(30分钟)1.掌握不等式中的符号“<”、“≤”、“>”、“≥”及其意义。
2.通过例子消除学生对符号的掌握障碍。
3. 不等式的性质(50分钟)3.1 加减不等式1.引入加减不等式的概念和基本原理。
2.通过例子来帮助学生理解和掌握加减不等式的性质。
3.2 倍数不等式1.引入倍数不等式的概念和基本原理。
2.通过例子来帮助学生理解和掌握倍数不等式的性质。
3.3 倒数不等式1.引入倒数不等式的概念和基本原理。
2.通过例子来帮助学生理解和掌握倒数不等式的性质。
3.4 移项变号不等式1.引入移项变号不等式的概念和基本原理。
2.通过例子来帮助学生理解和掌握移项变号不等式的性质。
3.5 乘方不等式1.引入乘方不等式的概念和基本原理。
2.通过例子来帮助学生理解和掌握乘方不等式的性质。
4. 实际问题的应用(30分钟)1.引入实际问题,帮助学生运用所学知识解决实际问题。
2.通过例子来帮助学生更好地掌握不等式的性质和应用。
六、教学评价1.课堂练习2.讨论答题3.知识测试4.作业七、教学资源1.人教版高中数学选修4教材2.视频、PPT等多媒体资源八、教学反思本节课通过引入实例和案例,帮助学生更好地掌握不等式的性质和应用。
不等式的基本性质(教案)

不等式的基本性质一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生对数学的兴趣。
二、教学内容:1. 不等式的定义及表示方法2. 不等式的基本性质:a. 不等式两边加(减)同一个数(式子),不等号方向不变。
b. 不等式两边乘(除)同一个正数,不等号方向不变。
c. 不等式两边乘(除)同一个负数,不等号方向改变。
三、教学重点与难点:1. 教学重点:不等式的基本性质及运用。
2. 教学难点:不等式性质的灵活运用,解决实际问题。
四、教学方法:1. 采用启发式教学,引导学生发现不等式的基本性质。
2. 利用例题讲解,让学生学会运用不等式性质解决实际问题。
3. 小组讨论,培养学生的合作意识。
五、教学准备:1. 课件、黑板、粉笔2. 例题及练习题3. 学生分组合作的材料教案内容:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学的相关知识。
2. 提问:不等式有什么特点?如何表示不等式?二、新课讲解(15分钟)1. 讲解不等式的基本性质,引导学生发现规律。
2. 通过例题讲解,让学生学会运用不等式性质解决实际问题。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 教师点评答案,解答学生疑问。
四、小组讨论(10分钟)1. 教师给出讨论题目,让学生分组合作解决问题。
2. 各小组汇报讨论成果,教师点评并总结。
五、课堂小结(5分钟)1. 让学生总结不等式的基本性质及运用。
2. 教师补充讲解,强调重点知识点。
六、课后作业(课后自主完成)1. 巩固不等式的基本性质,提高解题能力。
2. 结合生活实际,解决相关问题。
六、教学拓展(10分钟)1. 引导学生思考:不等式性质在实际生活中的应用。
2. 举例说明:如购物时比较价格、比赛成绩排名等。
七、巩固练习(10分钟)1. 让学生完成一些巩固不等式性质的习题。
2. 教师点评答案,解答学生疑问。
八、课堂互动(10分钟)1. 教师提出问题,让学生分组讨论、回答。
不等式的基本性质(教案)

不等式的基本性质一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生对数学逻辑思维的认知。
二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质1) 不等式的两边加减同一个数,不等号的方向不变。
2) 不等式的两边乘除同一个正数,不等号的方向不变。
3) 不等式的两边乘除同一个负数,不等号的方向改变。
3. 运用不等式的基本性质解决实际问题。
三、教学重点与难点1. 教学重点:不等式的基本性质及其运用。
2. 教学难点:不等式性质3的理解与应用。
四、教学方法1. 采用启发式教学,引导学生发现不等式的基本性质。
2. 通过例题讲解,让学生学会运用不等式解决实际问题。
3. 利用小组讨论,培养学生合作学习的能力。
五、教学过程1. 导入:复习相关知识点,如实数、比较大小等,为学生学习不等式打下基础。
2. 新课讲解:介绍不等式的定义及表示方法,讲解不等式的基本性质,并通过例题展示运用。
3. 课堂练习:布置练习题,让学生巩固不等式的基本性质。
4. 实际问题解决:引导学生运用不等式解决实际问题,如分配问题、排序问题等。
5. 课堂小结:总结不等式的基本性质及运用方法。
6. 课后作业:布置相关作业,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对不等式基本性质的理解程度。
2. 练习题解答:检查学生运用不等式解决实际问题的能力。
3. 课后作业:评估学生对课堂所学知识的掌握情况。
七、教学拓展1. 对比等式的性质,引导学生发现等式与不等式的异同。
2. 介绍不等式的其他性质,如不等式的传递性、同向不等式的可加性等。
八、课堂互动1. 小组讨论:让学生分组讨论不等式性质的应用,分享解题心得。
2. 教学游戏:设计有关不等式的游戏,提高学生的学习兴趣。
九、教学策略调整1. 根据学生掌握情况,针对性地讲解不等式的难点知识点。
2. 对于学习困难的学生,提供个别辅导,帮助他们跟上课堂进度。
课题不等式的基本性质教案

课题不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学内容:1. 不等式的概念及表示方法。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式的应用。
三、教学重点与难点:1. 教学重点:不等式的概念,不等式的基本性质。
2. 教学难点:不等式的应用,不等式性质的推导。
四、教学方法:1. 采用自主学习、合作交流的教学方法,让学生在探究中掌握不等式的基本性质。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 结合生活实例,培养学生运用不等式解决实际问题的能力。
五、教学过程:1. 导入新课:通过复习数轴,引入不等式的概念。
2. 自主学习:学生自主探究不等式的表示方法,了解不等式的基本性质。
3. 合作交流:分组讨论,让学生在实践中归纳总结不等式的基本性质。
4. 课堂讲解:教师讲解不等式的性质1、性质2、性质3,并通过例题演示。
5. 应用拓展:学生运用不等式解决实际问题,培养运用能力。
6. 课堂小结:教师引导学生总结不等式的基本性质及应用。
7. 课后作业:布置相关练习题,巩固所学知识。
8. 教学评价:通过课堂表现、作业完成情况,评价学生对不等式知识的掌握程度。
六、教学设计:1. 教学目标:让学生能够理解并应用不等式的传递性质。
2. 教学内容:不等式的传递性质及其应用。
3. 教学重点与难点:理解不等式的传递性质,并能够运用到具体问题中。
4. 教学方法:采用案例分析法,让学生通过具体例子理解并掌握不等式的传递性质。
5. 教学过程:1) 导入:通过一个具体的例子,引导学生思考不等式传递性质的概念。
2) 自主学习:学生通过自学了解不等式传递性质的定义和证明。
3) 合作交流:分组讨论,让学生通过案例分析来应用不等式的传递性质。
4) 课堂讲解:教师通过讲解进一步巩固学生对不等式传递性质的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《不等式的基本性质》教学设计
课 题: 不等式的基本性质
教学目标:
1. 理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础。
2. 掌握不等式的基本性质,并能加以证明;会用不等式的基本性质判断不等关系和用
比较法,分析法证明简单的不等式。
教学重点:应用不等式的基本性质推理判断命题的真假;利用不等式的性质求范围。
教学难点:灵活应用不等式的基本性质。
教学过程:
一、引入:
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
二、不等式的基本性质:
1、实数的运算性质与大小顺序的关系:
数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知: 0>-⇔>b a b a
0=-⇔=b a b a
0<-⇔<b a b a
得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:
.对称性:a>b ⇔b<a.
②.传递性:a>b ,b>c ⇒a>c.
③.(1)可加性:a>b ⇔a +c>b +c.
(2)同向可加性:a>b ,c>d ⇒a +c>b +d.
④.(1)可乘性:a>b ,c>0⇒ac>bc; a>b ,c<0⇒ac<bc.
(2)同向同正可乘性:a>b>0,c>d>0⇒ac>bd.
⑤.乘、开方法则:a>b>0⇒n
n b a >,n n b a >(n ∈N ,n ≥2).
2)
≥n ,N ∈(n ,b >a 有,b >a 为奇数时,n 地,当特n n n n b a >也条件可放宽为:别⑥.倒数性质:a>b ,且ab>0⇒b a 11<.
三、典型例题:
例1、设A=x 3+3,B=3x 2+x,且x>3,。
试比较A 和B 的大小。
分析:通过考察它们的差与0的大小关系,得出这两个多项式的大小关系。
解 :)
(x x x B A +-+=-233)3( )
1)(1)(3()1(3)1(22-+-=---=x x x x x x 01,01,033>->+>-∴>x x x x
0>-∴B A
B A >故
归纳:“差比法”的四个步骤:作差、变形化简、定号、下结论。
变式训练:
的大小。
与试比较且设a b b a b a b a b a b a ,,0,0≠>>
(引导学生利用“差比法”和“商比法”)
点拨:两实数的大小比较方法:
1. “差比法”:A>B ⇔A -B>0;A =B ⇔A -B=0;A<B ⇔A -B<0.
2. “商比法”:若A>0,B>0,则A>B ⇔
1>B
A
例2、判断下列命题是否正确,并说明理由。
;bc >ac ,则b >a 若)1(22 (×)
;)2(2
2b a c b c a >>,则若
(√) ;11,0)3(b
a a
b b a <≠>则,若 (×) ;则,若bd a
c
d c b a <>>,)4( (×) ;11,0)5(b
a b a ><<则,若 (√) ;,||)6(22b a b a >>则,若 (×)
.||||,)7(c b c a c b a >>>则,若 (×)
(目的:让学生回答,训练学生对不等式性质的准确理解,方便以后的应用)
例3、.0b c b a c a b a c ->->>>:
,试用不等式性质证明已知 利用“分析法”,得出证题思路。
教师再输出过程。
证明:∵b a
> ∴b a -<- 又0>>>b a c
∴b c a c -<-<
0 011>->-⇒b
c a c . 又0>>b a ∴b
c b a c a ->-.
例4、.2-222-的范围,,求已知β
αβαπ
βαπ
+≤<≤
解:∵-π2 ≤α < β ≤π2
, ∴-π4 ≤ α2 < π4,-π4 < β2 ≤π4⇒2
22πβαπ<+<-. ∴-π4 ≤-β2 < π4
. ∴-π2 ≤ α-β2 < π2
. 又∵α<β,∴α-β<0,∴-π2≤α-β2
<0. 误区警示: 1.2
222-πβππαπ≤<-<≤,,等号没完全传递. 2.不要忽略隐含条件α<β,而得出错误结论-π2≤α-β2≤π2
.
变式训练:
的求值范围。
,分别求,已知b
a b a b a ,3286--<<<< 注意:不等式性质的准确应用,没有同向相减性和同向相除性。
本题中特别讲清“同向同正可乘性”与“可乘性”的区别。
四、课堂练习:
1:已知3>x ,比较x x 113+与662+x 的大小。
2:已知a>b>0,c<d<0,求证:d b a c
a b -<-。
五、课后作业:
课本9P 第1、2、3、4题
六、教学后记:。