纳米碳酸钙填充聚合物改性和应用

合集下载

纳米碳酸钙-水性聚氨酯

纳米碳酸钙-水性聚氨酯

涂层具有自洁和杀菌能力 如 纳米TiO2与PU复合、TiO2在紫外光照射 纳米TiO2与PU复合、TiO2在紫外光照射 下产生自由电子—空穴对, 下产生自由电子—空穴对,它们使空气中的 氧活化,产生活性氧和自由基,活性氧和OH 氧活化,产生活性氧和自由基,活性氧和OH 自由基具有很高的反应 活性,当污染物吸附 活性, 于表面时,就会与自由电子或空穴结合, 于表面时,就会与自由电子或空穴结合,发生 氧化还原反应,从而达到消除污染的目的, 氧化还原反应,从而达到消除污染的目的,也 具杀菌作用。纳米材料与树脂经过特殊复 合,其表面 同时存在疏水、疏油现象,也能产 同时存在疏水、疏油现象, 生自洁能力。
纳米碳酸钙纳米碳酸钙-水性聚氨酯
水性聚氨酯简介 纳米碳酸钙改性水性聚氨酯在皮 革涂饰方面的应用 纳米CaCO3改性水性聚氨酯在电 纳米CaCO3改性水性聚氨酯在电 泳涂料方面的应用 其他应用
水性聚氨酯简介
水性聚氨酯(WPU)是指聚氨酯(PU)溶 水性聚氨酯(WPU)是指聚氨酯(PU)溶 于水或分散于水中所形成的稳定乳液或分 散体,因为其中的挥发性有机物低,具有 无毒、不污染、不燃、节能和易加工等特 点,因而广泛用于涂料、胶粘剂、皮革涂 饰剂、织物整理等行业,是各国关注和研 究的热点
提高涂层的遮盖力 聚氨酯乳液皮革涂饰剂和综合性能较全面, 聚氨酯乳液皮革涂饰剂和综合性能较全面, 不足之处是遮盖力较差, 不足之处是遮盖力较差,如能使用纳米氧化 锌和PU复合,就可提高遮盖力。此外, 锌和PU复合,就可提高遮盖力。此外,纳米与 高分子基复合皮革涂饰剂还能提高涂层的 耐磨性、防水性、耐热耐寒等性能,以及出 耐磨性、防水性、耐热耐寒等性能, 现未预料到的特性。应用纳米CaCO 现未预料到的特性。应用纳米CaCO3来改性 水性聚氨酯材料,在提高涂层的遮盖力, 以及涂层的耐磨性、防水性、耐热耐寒等 性能, 性能,有着一定的研究价值

纳米碳酸钙

纳米碳酸钙

纳米碳酸钙纳米碳酸钙又称超微细碳酸钙。

标准的名称即超细碳酸钙。

纳米碳酸钙应用最成熟的行业是塑料工业主要应用于高档塑料制品。

可改善塑料母料的流变性,提高其成型性。

用作塑料填料具有增韧补强的作用,提高塑料的弯曲强度和弯曲弹性模量,热变形温度和尺寸稳定性,同时还赋予塑料滞热性。

纳米碳酸钙用于油墨产品中体现出了优异的分散性和透明性和极好的光泽、及优异的油墨吸收性和高干燥性。

纳米碳酸钙在树脂型油墨中作油墨填料,具有稳定性好,光泽度高,不影响印刷油墨的干燥性能.适应性强等优点。

北方最大的纳米碳酸钙生产基地盖尔克斯(Gerks)年产纳米碳酸钙系列产品12万t,其中纳米碳酸钙5万t,纳米碳酸钙助剂2万t,亚纳米碳酸钙3万t,造纸涂布碳酸钙2万t。

产品广泛应用于各种胶黏剂、PVC软硬制品、电线电缆、涂料、油墨、造纸、医药等工业领域。

纳米碳酸钙的应用范围纳米碳酸钙应用最成熟的行业是塑料工业主要应用于高档塑料制品。

造纸业是纳米碳酸钙最具开发潜力的市场。

目前,纳米碳酸钙还主要用于特殊纸制品,如女性用卫生巾、婴儿用尿不湿等。

纳米活性碳酸钙作为造纸填料具有以下优点:高蔽光性、高亮度、可提高纸制品的白度和蔽光性;高膨胀性,能使造纸厂使用更多的填料而大幅度降低原料成本;粒度细、均匀,制品更加均匀、平整;吸油值高、能提高彩色纸的预料牢固性.纳米碳酸钙在涂料工业作为颜料填充剂,具有细腻、均匀、白度高、光学性能好等优点。

纳米级超细碳酸钙具有空间位阻效应.在制漆中,能使配方中密度较大的立德粉悬浮,起防沉降作用.制漆后,漆膜白度增加,光泽度高,而遮盖力却不降低,主要用于高档轿车漆。

橡胶工业纳米碳酸钙的主要应用市场之一。

添加钠米碳酸钙的橡胶,其硫化胶升长率、撕断性能、压缩变形和耐屈性能,都比添加一般碳酸钙的高。

加入用树脂酸处理的纳米碳酸钙后,有的豫胶制品撕裂强度提高4倍以上纳米碳酸钙在饲料行业中可作为补钙剂,增加饲料含钙量;在化妆品中使用,由于其纯度高、白度好、粒度细,可以替代钛白粉。

聚合物-纳米碳酸钙复合材料研究进展

聚合物-纳米碳酸钙复合材料研究进展

聚合物/纳米碳酸钙复合材料研究进展摘要: 综述了表面处理对聚合物/纳米碳酸钙复合材料力学性能的影响、纳米碳酸钙在聚合物基体中的分散机理和对聚合物结晶行为的影响,并展望了聚合物/纳米碳酸钙复合材料的发展方向和前景。

关键词:聚合物基复合材料纳米碳酸钙表面处理分散机理结晶行为聚合物的填充改性已经有很长的历史了。

其最初的目的只是为了增量,以降低成本;后来发展到增韧增强基体树脂以代替某些工程塑料,从注重力学性能的提高进而开发功能性填充塑料。

大量的研究表明,在相同的填充条件下,超细填充体系的力学性能明显高于普通填料填充体系,即超细填料的填充改性效果更好、效率更高。

近年来,纳米材料的制备技术已经有了很大的突破,特别是纳米材料与常规材料相比具有一些特有的效应,如小尺寸效应、表面效应和宏观量子隧道效应等,因此其宏观理化性能将明显不同于且在许多特性上优于常规粒状或块状材料。

正因为如此,有学者预测以无机纳米粒子填充聚合物对于新型功能复合材料的开发和聚合物的填充改性具有重要意义;同时也是目前乃至今后几十年的研究热点之一[1]。

但是纳米粒子具有粒径小、粒子比表面积大、孔隙率大和表面能很高的特点,因此纳米粒子本身极易团聚,用通常的熔融共混方法想得到真正的纳米复合材料几乎是不可能的。

所以,在聚合物基纳米复合材料的研究中,主要采用插层聚合[2-4]、溶胶-凝胶法[5-6]等方法,将纳米粒子以纳米尺度均匀分散于聚合物基体中。

但是,这些方法都不利于实现工业化生产。

如果在纳米粒子表面覆盖一层单分子的界面活性剂就可以防止它们凝聚,使其在树脂基体中以原生粒子形态均匀分散成为可能,就可以采用常规的熔融共混法来制备聚合物/无机纳米粒子复合材料。

如果填料在聚合物基体中的分散程度达到了纳米尺度(<100nm),聚合物和填料之间的界面积将非常大,会产生很强的界面相互作用;这样,就有可能将无机物的刚性、尺寸稳定性和热稳定性与聚合物的韧性、可加工性和介电性能等完美的结合起来,获得综合性能优异的纳米复合材料。

纳米碳酸钙的原位包覆及应用

纳米碳酸钙的原位包覆及应用

h n e o rp r e p lm r ee rhs o e a 9 n S O : ( H ) 1l n ( A O / C C 3 = .x a c me o et s f o e. sac w dt t 0o ( A+ A) O 一 = : a dn S + A) s p i o y R h h C, n m( a O ) 1 O
硅 烷 ( P E ) 工 业 级 ( 一 0 1 ; 一 羟 基 聚 二 AT S, Z 6 1 ) , 二
位” 覆 的沉 淀碳 酸钙 。 由于表 面活性 剂 的存 在 . 包 碳
酸化反 应 时产生 大量不 易 消除 的气泡 .而且 这种方
3 2
无 机 盐 工 业
第4 4卷 第 1 0期
1 mo/ e et es i b ec n i o s o e i -i n a s lt n o a o sz d c li m ab n t . 0 l w r ut l o d t n r h st e c p u a i f n —ie acu c r o a e g h a i f t n u o n Ke r s: a o sz dc li m a b n t ;n st n a s l t n; t c d y wo d n n — i a cu c r o ae i — i e c p u a i f t a i e u o ay

合 物相 容性 问题 的重要 途径 用 于纳米碳 酸钙 表 面 改 性剂 一般都 是具 有双 亲结构 的低 分子有 机化 合物
或 低聚 物 。硬脂 酸 (A) S 是应用 最 为普遍 的碳 酸钙表
面改性 剂 但要 形 成 改性 剂 S A对 纳米 碳 酸钙 的较 均 匀包 覆须用 较长 时 间在较 高机械 力和 较高 温度作

纳米碳酸钙改性技术研究进展及代表性应用综述

纳米碳酸钙改性技术研究进展及代表性应用综述

纳米碳酸钙改性技术研究进展及代表性应用综述吕津辉/文【摘要】碳酸钙是一种重要的无机粉体填充材料,由于其原料来源丰富且成本低,生产方法简单,性能比较稳定,被广泛的应用于橡胶、涂料、胶黏剂、造纸、塑料、食品等行业。

按照生产方法的不同,碳酸钙可分为重质碳酸钙和轻质碳酸钙。

而活性碳酸钙,又称改性碳酸钙,是通过加入表面处理剂对重钙或轻钙进行表面改性制得[1]。

【关键词】纳米碳酸钙;改性剂;改性技术;纳米碳酸钙应用;填加纳米碳酸钙是20世纪80年代发展起来的一种新型超细固体粉末材料,其粒度介于0.001~0.1um(即1~100nm)之间等。

由于纳米碳酸钙粒子的超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不具有的表面效应、小尺寸效应、量子尺寸效应和宏观量子效应[1]。

为了使具有良好性能的纳米碳酸钙发挥优良性能,使用者对纳米碳酸钙进行表面改性,使其成为了一种具有多功能性的补强填充改性材料。

改性后的碳酸钙表面吸油值明显降低,凝聚粒子的粒径减小,粒子分散性增强,作为填料用于生产后的制品塑化时间缩短,塑化温度下降,溶体流动指数上升,流动性得到显著改善[2]。

1.表面改性的理论1.1 化学键理论偶联剂一方面可以与纳米碳酸钙表面质子形成化学键,另一方面要与高聚物有较强的结合界面,进而提高纳米粒子的力学性能[1]。

1.2 表面浸润理论因为复合材料的性能受高分子物质对纳米填料浸润能力的影响,若填料能完全被浸润,那么树脂对高能表面的物理吸附将提供高于有机树脂内聚强度的粘结强度[1]。

1.3 可变形层理论吸附树脂会优先选择偶联剂改性填料的表面作配合剂,一个范围的固化不均会生成变形层,变形层是一个比偶联剂在聚合物和填料之间的单分子层厚得多的柔树脂层,它能防止界面裂缝的扩图1流化床造粒工艺流程展,松弛界面应力,加强界面的结合强度[1]。

1.4 约束层理论模量在高模量粉体和低模量粉体之间时,传递应该是最均匀的[1]。

纳米碳酸钙的改性及其在硅酮胶中的应用

纳米碳酸钙的改性及其在硅酮胶中的应用

纳米碳酸钙的改性及其在硅酮胶中的应用采用微孔分散碳化法合成了微纳米碳酸钙(CaCO3),通过添加油酸对纳米CaCO3进行了表面改性,研究了改性纳米CaCO3对硅酮密封胶性能的影响。

试验结果表明,适量的油酸可以降低颗粒粒径,并能改善分散性,过量的油酸虽然能够降低颗粒粒径,但会使粉体的分散性变差;与添加普通纳米CaCO3相比,当添加油酸质量分数为1.5%时,改性纳米CaCO3不仅减小了所制硅酮胶的表干时间,其固化性能、拉伸伸长性能和粘接性能也得到极大改善,且纳米CaCO3的相对最佳添加量为35%。

标签:纳米碳酸钙;硅酮胶;油酸;微孔分散碳化法CaCO3作为无机填料在橡胶工业中有着广泛的应用,这种填料既可降低橡胶制品的成本,又能提高其性能。

在橡胶制品中添加纳米CaCO3作为无机填料时,制品的抗撕裂性能、耐屈挠性能、压缩变形以及硫化胶伸长率等都比添加普通CaCO3时要提高很多。

但是CaCO3颗粒的粒径越小,比表面积越大,其在橡胶中的分散也就越困难,尤其是当颗粒的粒径在0.1 μm以下时,由于表面能增大,在与橡胶共混时容易因生热而引起粘混。

本试验采用微孔分散法合成了微纳米CaCO3,通过添加油酸对CaCO3进行表面改性,以减小纳米CaCO3的表面自由能,提高其分散性,进而改善纳米CaCO3在硅酮胶中的共混效果。

1 实验部分1.1 主要原材料氢氧化钙[Ca(OH)2],工业级,国药集团化学试剂有限公司;油酸(C17H33COOH),工业级,北京化工厂;室温硫化硅橡胶,工业级,苏州恒源集团股份有限公司;其他助剂为工业级,市售。

1.2 主要仪器与设备试验所用主要仪器如表1所示。

1.3 改性纳米碳酸钙及硅酮密封胶的生产流程改性纳米CaCO3及硅酮密封胶的生产流程如图1、图2所示。

1.4 表面改性纳米碳酸钙的制备将油酸溶于无水乙醇中制备成浓度为0.1 mol/L的油酸乙醇溶液;将Ca(OH)2加入到适量蒸馏水中溶解制取Ca(OH)2悬浊液,并加入适量的油酸乙醇溶液,迅速搅拌均匀;安装好微孔分散器后打开CO2储气罐阀门,调节流量为100 mL/min,通气一段时间,将仪器内的杂质气体排尽;用制备好的Ca(OH)2悬浊液加入到微孔反应器中,开始碳化反应,反应过程中不断搅拌,并且用pH计实时测量溶液的pH值,当pH下降到7时停止通入CO2,反应结束。

纳米碳酸钙及其表面处理对等规聚丙烯结晶行为的影响

纳米碳酸钙及其表面处理对等规聚丙烯结晶行为的影响

纳米碳酸钙及其表面处理对等规聚丙烯结晶行为的影响篇一纳米碳酸钙及其表面处理对等规聚丙烯结晶行为的影响摘要:本文研究了纳米碳酸钙(nano-CaCO₃)及其表面处理对等规聚丙烯(iPP)结晶行为的影响。

通过熔融共混法制备了不同含量和表面处理的纳米碳酸钙/iPP复合材料,并利用差示扫描量热法(DSC)、X射线衍射(XRD)、偏光显微镜(POM)等手段对复合材料的结晶行为进行了详细研究。

结果表明,纳米碳酸钙的加入可以显著促进iPP的结晶,且表面处理对复合材料结晶行为具有重要影响。

一、引言等规聚丙烯(iPP)是一种广泛应用的热塑性塑料,具有优良的机械性能、热性能和加工性能。

然而,iPP的结晶速率较慢,限制了其在某些领域的应用。

因此,提高iPP的结晶速率对于改善其性能具有重要意义。

纳米碳酸钙(nano-CaCO₃)作为一种常见的无机纳米填料,被广泛应用于聚合物复合材料中,以改善聚合物的性能。

本文旨在研究纳米碳酸钙及其表面处理对iPP结晶行为的影响,为开发高性能iPP复合材料提供理论指导。

二、实验部分材料与试剂本实验所用的等规聚丙烯(iPP)为工业级原料,纳米碳酸钙(nano-CaCO₃)购自某公司,平均粒径为50 nm。

表面处理剂分别为硬脂酸(SA)和硅烷偶联剂(KH-550)。

复合材料制备采用熔融共混法制备纳米碳酸钙/iPP复合材料。

将iPP、纳米碳酸钙和表面处理剂按一定比例混合,加入双螺杆挤出机中熔融共混,然后经冷却、切粒得到复合材料颗粒。

将颗粒在真空烘箱中干燥后,用于后续实验。

测试与表征利用差示扫描量热法(DSC)研究复合材料的结晶行为和熔融行为;通过X射线衍射(XRD)分析复合材料的晶体结构;采用偏光显微镜(POM)观察复合材料的球晶形态和结晶过程。

三、结果与讨论纳米碳酸钙对iPP结晶行为的影响随着纳米碳酸钙含量的增加,iPP的结晶速率逐渐加快。

这是因为纳米碳酸钙可以作为异相成核剂,提高iPP的成核密度,从而促进结晶。

纳米碳酸钙改性技术进展和应用现状

纳米碳酸钙改性技术进展和应用现状

纳米碳酸钙改性技术进展和应用现状目前用于纳米碳酸钙表面改性的方法重要有:局部化学反应改性、表面包覆改性、微乳液改性、机械改性及高能表面改性。

1纳米碳酸钙表面改性技术优缺点对比局部化学反应改性方法重要通过纳米碳酸钙表面官能团与改性剂间发生化学反应来达到改性目的,分为干法和湿法两种工艺。

将碳酸钙粉和表面改性剂同时投放到捏合机中进行高速捏合的方法称为干法改性。

此法操作简单,出料便于运输且可直接包装。

干法改性所得产品表面不均匀,适合低档碳酸钙粉末的生产,但因操作工艺简单而被广泛采纳。

适合干法改性的改性剂重要有钛酸脂、铝酸脂、磷酸脂等偶联剂。

湿法改性是将碳酸钙和改性剂在液相中共混,通过改性剂在碳酸钙表面包覆形成双膜结构来进行改性的,湿法改性虽然效果很好,但是工艺较为多而杂。

水溶性的表面活性剂较适合湿法改性工艺,这类水溶性表面活性剂重要有高级脂肪酸及其盐等。

表面包覆改性方法是指表面改性剂和纳米碳酸钙表面之间仅依靠范德瓦耳斯力或物理方法连接却没有发生化学反应的改性方法。

这种方法可以在制备纳米碳酸钙的同时在溶液中加入表面活性剂,达到制备和改性同步进行的目的,由于表面活性剂的存在使这种方法生产出来的碳酸钙分散性能得到很好的改善。

微乳液改性方法又称胶囊化改性,这种方法是通过在纳米碳酸钙表面包上一层其他物质的膜,更改粒子表面固有特性来进行改性的。

此法虽然和表面包覆改性方法仿佛,但是这种方法改性后包在纳米碳酸钙表面的一层膜相对表面包覆改性的较为均匀。

机械化学改性方法是利用猛烈机械力作用有目的的激活粒子表面,使分子晶格发生位移,来更改其物理化学结构和表面晶体结构,提高粒子与有机物或无机物的反应活性的改性方法。

对于大颗粒的碳酸钙这种改性方法特别有效,就纳米级碳酸钙来说,由于其本身粒径很小,通过机械粉碎、研磨的机械化学改性方法就不再能发挥出优异的改性效果。

值得一提的是,机械化学改性方法虽不能单独见效,但因其能显著加添纳米碳酸钙的活性基团与表面活性点,因此结合其他改性方法协同作用亦不失为一种有效方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米碳酸钙填充聚合物改性和应用
纳米碳酸钙填充聚合物在纳米碳酸钙的使用过程中,不少采用常规共混复合方法制备的纳米粉体填充聚合物复合材料远远没有达到纳米分散水平,而只属于微观复合材料。

原因在于当填料粒径减小到纳米尺寸时,粒子的表面能如此之大,致使粒子间的自聚集作用非常显著,故采用现有的共混技术难以获得纳米尺度的均匀共混,并且现有的界面改性技术难以完全消除填料与聚合物基体间的界面张力,实现理想的界面粘接。

如果填料在聚合物基体中的分散达到纳米尺度,就有可能将无机填充物的刚性、尺寸稳定性和热稳定性与聚合物的韧性、加工性及介电性完美地结合起来,获得性能优异的聚合物基纳米基复合材料。

一、增强增韧机理
纳米碳酸钙作为聚合物中的功能性填料,其对聚合物性能的影响因素主要是粒子大小、聚集状态和表面活性等方面。

纳米碳酸钙的粒子比普通碳酸钙更细微。

随着粒子的微细化,境料粒子表面原子数目的比例增大,使粒子表面的电子和晶体结构都发生变化,到了纳米级水平,填料粒子将成为有限个原子的集合体,使纳米材料具有一系列优良的理化性能。

最明显最有代表性的体现在比表面积和表面能的变化上,粒子愈小,单位质量的比表面能愈大,增大了填料与聚合物基质的接触面积,为形成物理缠结提供了保证。

根据无机刚性粒子在聚合物中的增韧理论,一个必要条件是分散粒子与树脂界面结合良好。

树脂受到外力作用时,刚性纳米级碳酸钙粒子引起基体树脂银纹化吸收能量,从而提高增韧效果。

从纳米碳酸钙的聚集状态看,有部分纳米粒子形成了链状结构,它属于一次结构。

这种结构越多,填料的结构化水平越高,与聚合物形成缠结的可能性越大。

另外填料的酸碱性也是其表面化学活性的一种反映,可影响胶料的硫化速度和物理性能。

由上述几个方面的分析可知,从无机填料的优化角度看,纳米碳酸钙确是一种优化材料,既具有因粒子微细和链状结构而生成的物理缠结作用,又具有由于表面活性而引起的化学结合作用,在聚合物填充中表现出良好的补强作用。

相关文档
最新文档