PWM波直流电机速度调节系统

合集下载

直流电机-PWM调速

直流电机-PWM调速
直流电机
PWM调速
脉冲宽度调制 - Pulse Width Modulation
• 利用微处理器的数字输出来对模拟电路进行控制的 一种非常有效的技术 • 应用:测量、通信、功率控制与变换
PWM
V T T/2
0
t
PWM
PWM变换器和PWM-M系统开环机械特性 脉宽调制原理
脉冲宽度调制(PWM)是通过功率管的开关作用,将恒定 直流电压转换成频率一定,宽度可调的方波脉冲电压,通过 调节脉冲电压的宽度而改变输出电压平均值的一种功率变换 技术。由脉宽调制器向电机供电的系统称为脉宽调速系统, 简称PWM-M调速系统。
(二)可逆PWM变换器 其主电路结构有H型,T型等,常用H型变换器,它由4个 电力晶体管和 4个续流二极管组成桥式电路。在控制方式上 分双极式、单极式和受限单极式三种。着重分析双极式H型 PWM变换器,然后再简要说明其它方式的特点。 1、双极式可逆PWM变换器
+
Us
(1)构成特点 4个VT的基极驱动分两组。 VTl 和 VT4 同时导通和关断,
n0
U s
Ce
调速系统的空载转速,与占空比成正比;
n
Id R 负载电流造成的转速降。 Ce
9
2、有制动作用的PWM变换器 (1)电路组成 需制动时须有反向电流-id的通路,应设置控制反向的第 二个电力晶体管,形成VT1和VT2交替开关的电路,如图(a) 所示。电路由VT1和VT2,VD1和VD2组成。VT1是主管,起 控制作用;VT2是辅助管,构成电机的制动电路。
8
Ud
ton U s U s T
图3-2(b)中绘出了电枢的脉冲端电压ud、平均电压Ud和 电枢电流id的波形。id 是脉动的。因开关频率较高,电流脉 动幅值不会很大,影响到转速n和反电动势E的波动就更小了。

基于51单片机的PWM直流电机调速系统的开题报告

基于51单片机的PWM直流电机调速系统的开题报告

基于51单片机的PWM直流电机调速系统的开题报告一、选题背景无人机、智能小车、智能家居等智能设备的出现给我们的生活带来了很多便利,这些设备中大多数都是由直流电机驱动,而直流电机的速度控制非常关键。

基于此,本次毕业设计选题基于51单片机实现PWM控制直流电机转速。

通过选题研究,可以学习到单片机控制电机的基本原理、PWM技术的应用、电机控制电路的搭建、硬件电路的设计等方面的知识。

二、选题意义本次设计选题的实现可以为直流电机的调速提供有效的解决方案。

同时,通过研究不同类型的电机控制方法,可以有效提高电机控制的精度和灵活性,丰富我们的电子知识储备。

三、研究内容通过研究,本次设计的具体内容包括以下几个方面:1. 了解直流电机的基本工作原理及其特性。

2. 介绍51单片机的基本原理,编写程序控制单片机输出PWM信号。

3. 建立电机控制电路,使用PWM信号控制直流电机转速。

4. 通过实验对电机的控制效果进行验证,分析控制效果与不同参数的关系,优化控制方法。

四、研究方法本次设计选题的研究方法主要包括理论分析和实验验证两个部分。

1. 理论分析:通过学习相关理论知识,了解控制电路的原理、调速器的设计方法等。

2. 实验验证:建立实验平台进行实验验证,通过实验数据分析调试电路、程序。

五、预期目标通过本次毕业设计的研究,预期达到以下目标:1. 掌握51单片机的编程基本知识。

2. 了解 PWM 技术的原理,掌握 PWM 频率、占空比的调节方法。

3. 了解直流电机的基本工作原理及其特性,建立电机控制电路进行控制。

4. 能够根据实验数据分析控制效果与不同参数的关系,优化控制方法并提高控制效果。

六、论文结构本次毕业设计选题所涉及的论文结构如下:第一章:绪论1.1 研究背景及选题意义1.2 研究目的和意义1.3 研究现状和发展趋势1.4 研究内容和方法第二章:理论分析2.1 直流电机的基本原理2.2 51单片机的基本原理2.3 PWM技术的基本原理2.4 电机控制电路设计第三章:系统设计3.1 硬件设计3.2 调速器设计3.3 程序设计第四章:系统实现与测试4.1 数据采集与实验测试4.2 实验结果分析4.3 结果优化与改进第五章:总结与展望5.1 工作总结5.2 未来研究方向参考文献。

PWM单闭环直流调速控制系统设计方案稿

PWM单闭环直流调速控制系统设计方案稿

PWM单闭环直流调速控制系统设计方案稿一、概述本文将介绍一种基于PWM单闭环直流调速控制系统的设计方案。

该控制系统采用先进的数字信号处理技术,结合现代控制理论,实现了对直流电机的速度闭环控制。

通过控制电机的输入电压和电流,可以实现对电机的速度和转矩的调节。

二、系统组成系统由控制器、电源、电机、位置传感器等组成。

1. 控制器控制器采用单片机作为核心,结合高性能数字信号处理器(DSP)实现对直流电机的控制。

控制器的输入信号包括电机的速度信号和电流信号,输出信号为PWM波形输出信号。

控制器还可以接受外部命令,以实现自动控制。

2. 电源电源模块主要提供DC电压和电流,以驱动电机运转。

电源还需要具备良好的稳定性和可靠性,以确保电机的顺畅运行。

3. 电机电机是系统中最重要的组成部分,它产生的动力能够驱动机械系统的运动。

电机主要由电路板、转子和定子组成。

电机所选定子是具有良好导电、高强度、低热膨胀系数、低扭矩波动等性能的材料。

4. 位置传感器位置传感器主要用于检测电机的运动状态和位置。

这里采用霍尔效应传感器,它可以通过感应磁场的变化来检测转子位置和转速。

三、控制原理PWM(Pulse Width Modulation)可以用来控制电机的速度和转矩,可实现大功率的低损耗控制,是电动汽车等应用领域的重要技术。

PWM单闭环直流调速控制系统采用电流控制和速度控制两个环节,实现对直流电机的闭环控制。

电流控制环节主要用来控制电流大小和方向。

在此环节中,通过对电机的PWM控制信号来控制电机的输入电流,可以实现对电机转矩的调节。

2. 速度控制环节本系统的控制器选用TI的C2000系列数字信号处理器作为核心,主要用于PWM输出信号的实现和电机控制功能的实现。

该数字信号处理器具有高性能、低功耗、高可靠性等优点,能够满足本系统的控制要求。

控制器主要由PWM模块、ADC模块、PID控制器、位置检测器等组成。

其中,PWM模块用来实现电机的PWM信号输出,ADC模块用来实现电机的电流量测和速度量测,PID控制器用来根据电机的速度信号和目标速度信号计算出PWM信号,位置检测器用来检测电机的位置。

简述pwm直流调速原理

简述pwm直流调速原理

PWM(Pulse Width Modulation,脉宽调制)直流调速是一种常用的电调速方法,通过调整电源电压的占空比来控制直流电机的转速。

其基本原理如下:
脉宽调制:PWM调速通过调整电源电压的占空比来控制电机的平均电压。

占空比是指高电平脉冲信号的持续时间与一个完整周期的时间比例。

当占空比较高时,电机接收到较高的平均电压,转速相应增加;当占空比较低时,电机接收到较低的平均电压,转速相应减小。

控制电路:PWM调速系统通常由控制电路和功率电路两部分组成。

控制电路根据所需转速通过逻辑电路或微控制器生成PWM信号,控制电源电压的占空比。

控制电路中的反馈系统可以测量电机的转速或其他参数,以便对PWM信号进行实时调整和闭环控制。

功率电路:功率电路用于将PWM信号转换为对电机的实际控制。

典型的功率电路是使用电子开关器件(如MOSFET或IGBT)组成的半桥或全桥电路,它们能够根据PWM信号的状态开关电源电压的连接与断开,从而调整电机接收到的电压。

转速调节:通过改变PWM信号的占空比,可以调节电机的转速。

增加占空比会增加电机的平均电压,从而提高转速;减小占空比则会减小平均电压,使转速降低。

通过不断调整占空比,可以实现直流电机的精确调速。

PWM直流调速具有调速范围广、响应快、效率高等优点,被广泛应用于各种需要电机调速的领域,如工业生产、机械设备、电动车辆等。

单片机课程设计PWM直流电动机调速控制系统方案

单片机课程设计PWM直流电动机调速控制系统方案

单片机原理及应用—— P W M直流电机调速控制系统概括直流电动机具有良好的启动性能和调速特性。

具有起动转矩大、调速平稳、经济大范围、调速容易、调速后效率高等特点。

本文设计的直流电机调速系统主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路和独立按键组成的电子产品组成。

电源采用78系列芯片,采用PWM波方式实现电机+5V、+15V调速,PWM为脉宽调制,通过51单片机改变占空比实现。

通过独立的按键实现电机的启停、调速和转向的手动控制,LED实现测量数据(速度)的显示。

电机转速采用霍尔传感器检测输出方波,通过51单片机统计1秒内方波脉冲个数,计算电机转速,实现直流电机的反馈控制。

关键词:直流电机调速; H桥驱动电路; LED显示屏; 51单片机目录摘要2摘要错误!未定义书签。

目录3第 1 章引言41.1 概述41.2 国外发展现状41.3 要求51.4 设计目的及6第 2 章项目论证与选择72.1 电机调速模块72.2 PWM调速工作模式72.3 PWM脉宽调制方式错误!未定义书签。

2.4 PWM 软件实现错误!未定义书签。

第三章系统硬件电路设计83.1 信号输入电路83.2 电机PWM驱动模块电路9第 4 章系统的软件设计104.1 单片机选型104.2 系统软件设计分析10第 5 章 MCU 系统集成调试135.1 PROTEUS 设计与仿真平台错误!未定义书签。

18传统开发流程对比错误!未定义书签。

第一章简介1.1 概述现代工业的电驱动一般要求部分或全部自动化,因此必须与各种控制元件组成的自动控制系统相联动,而电驱动可视为自动电驱动系统的简称。

在这个系统中,生产机械可以自动控制。

随着现代电力电子技术和计算机技术的发展以及现代控制理论的应用,自动电驱动正朝着计算机控制的生产过程自动化方向发展。

以实现高速、高质量、高效率的生产。

在大多数集成自动化系统中,自动化电力牵引系统仍然是不可或缺的组成部分。

基于FPGA的直流电机PWM调速系统设计实现分析

基于FPGA的直流电机PWM调速系统设计实现分析

基于FPGA的直流电机PWM调速系统设计实现分析1.引言直流电机广泛应用于各个领域,如工业控制、机器人等。

调速系统是直流电机应用中非常重要的一部分,直流电机的调速在一定范围内能够满足不同负载需求。

本文将介绍基于FPGA的直流电机PWM调速系统的设计实现分析。

2.系统设计2.1系统架构设计基于FPGA的直流电机PWM调速系统主要包括FPGA、PWM控制器、驱动电路和直流电机。

其中,FPGA负责进行调速算法的运算和时序控制,PWM控制器用于生成PWM信号,驱动电路控制直流电机的转速和方向。

2.2算法设计调速算法一般采用PID控制算法,通过测量直流电机的转速和负载情况,计算出PWM占空比,并调整PWM信号的频率和占空比以实现电机的调速。

在FPGA中,可以使用硬件描述语言(HDL)进行算法实现。

使用VHDL或Verilog等HDL语言,编写PID控制器、计数器和状态机等模块,实现调速算法的运算和时序控制。

3.系统实现3.1FPGA的选择FPGA是可编程逻辑芯片,具有灵活性和高性能的特点。

在选择FPGA 时,需要考虑系统的性能需求、资源使用和开发成本等因素。

常用的FPGA型号包括Xilinx系列和Altera(Intel)系列等。

3.2PWM控制器设计PWM控制器的设计主要包括频率和占空比的控制。

可以使用计数器和状态机实现PWM信号的生成。

计数器用于计数并产生PWM控制信号的频率,状态机用于控制计数器并调整PWM占空比。

3.3驱动电路设计驱动电路主要负责将FPGA生成的PWM信号转化为适合驱动直流电机的电压和电流信号。

驱动电路一般包括功率放大器、H桥驱动模块和电流反馈模块等。

通过控制H桥驱动模块的开关,可以实现直流电机的正反转和调速功能。

4.总结本文介绍了基于FPGA的直流电机PWM调速系统的设计实现分析。

通过使用FPGA进行调速算法的运算和时序控制,实现了对直流电机的精确调速。

系统设计包括FPGA选择、PWM控制器设计和驱动电路设计等。

基于PWM控制的直流电机自动调速系统设计

基于PWM控制的直流电机自动调速系统设计

基于PWM控制的直流电机自动调速系统设计一、引言直流电机是工业中最常见的电动机之一,其工作原理简单,结构紧凑,控制方便,广泛应用于各行各业。

为了满足不同工况下的运行需求,需要设计一个自动调速系统来调整直流电机的转速。

本文将基于PWM控制方法设计一个直流电机自动调速系统。

二、系统设计1.系统结构直流电机自动调速系统的基本结构包括传感器、控制器、电源和执行器。

传感器用于检测电机的转速,控制器根据检测到的转速信号进行处理,并通过PWM控制方法调整电机的输入电压,从而实现自动调速。

2.传感器选择直流电机的转速检测一般使用霍尔效应传感器来实现。

霍尔传感器可以直接测量电机转子的位置,并根据位置变化来计算转速。

传感器输出的信号经过放大和处理后,可以作为控制器的输入信号。

3.控制器设计控制器是整个自动调速系统的核心部分。

控制器接收传感器的转速信号,并通过PID算法对电机的转速进行调节。

PID算法是一种经典的控制方法,可以根据当前的偏差、偏差变化率和偏差积分值来计算控制量。

在本系统中,控制器输出的控制量即为PWM信号。

4.PWM控制方法PWM(Pulse Width Modulation)控制方法是一种通过调整脉冲宽度来控制输出电压的方法。

在本系统中,PWM控制方法可以通过改变PWM信号的占空比来调整电机的输入电压。

当需要提高电机转速时,增加PWM信号的占空比;当需要降低电机转速时,减小PWM信号的占空比。

通过反馈控制,控制器可以根据实际转速信号不断调整PWM信号的占空比,从而实现电机的自动调速。

5.电源选择在直流电机自动调速系统中,电源需要提供稳定的直流电压以供电机正常工作。

一般可选择线性稳压器或开关稳压器来提供所需的直流电压。

在选择电源时,需要考虑电机的功率和电源的效率,以确保系统的稳定性和可靠性。

6.执行器选择执行器是将控制信号转换为实际操作的部分。

在直流电机自动调速系统中,执行器可选择光耦隔离器和驱动芯片来实现PWM信号控制。

PWM直流电机调速系统设计

PWM直流电机调速系统设计

PWM直流电机调速系统设计PWM(脉宽调制)直流电机调速系统设计是通过改变电机输入电压的有效值和频率,以控制电机转速的一种方法。

本文将介绍PWM直流电机调速系统的原理、设计过程和实施步骤。

一、PWM直流电机调速系统原理1.电机:PWM直流电机调速系统使用的电机一般是带有永磁励磁的直流电机,其转速与输入电压成正比。

2.传感器:传感器主要用于检测电机转速和转速反馈。

常用的传感器有霍尔传感器和编码器。

3.控制器:控制器通过接收传感器反馈信号,并与用户输入信号进行比较来调整电机输入电压。

控制器一般包括比较器、计数器、时钟和PWM 发生器。

4.功率电源:功率电源负责提供PWM信号的电源。

PWM直流电机调速系统的工作原理是:先将用户输入转速转化为电压信号,然后通过比较器将输入信号与传感器反馈信号进行比较,再将比较结果输入给计数器,由计数器根据输入信号的边沿通过时钟控制PWM发生器,最后通过功率电源提供PWM信号给电机。

二、PWM直流电机调速系统设计过程1.确定电机类型和参数:根据实际需要确定使用的直流电机类型和技术参数,包括额定电压、额定转速、功率等。

2.选择传感器:根据调速要求选择合适的传感器,常用的有霍尔传感器和编码器。

3.设计控制器:根据电机类型和传感器选择合适的控制器,设计比较器、计数器、时钟和PWM发生器电路,并进行连线连接。

4.设计功率电源:根据控制器和电机的电压和电流要求设计适当的功率电源电路。

5.总结设计参数:总结所选器件和电路的技术参数,确保设计完整。

三、PWM直流电机调速系统实施步骤1.进行电路连线:根据设计图将所选器件和电路进行连线连接,包括控制器、传感器、电机和功率电源。

2.进行参数调整:根据需要进行控制器参数的调整,如比较器的阈值、计数器的初始值等。

3.进行调速测试:连接电源后,通过用户输入信号和传感器反馈信号进行调速测试。

根据测试结果进行参数调整。

4.优化系统性能:根据测试结果优化系统性能,如改进控制器参数、调整电机参数等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计设计题目: PWM波直流电机速度调节系统学院:专业:班级:姓名:学号:指导老师:日期:目录一引言 (1)1.1开发背景 (2)1.2数字控制器D(z) (5)二直流电动机调速概述 (4)2.1直流电机调速原理 (4)2.2直流调速系统实现方式 (5)2.3 8051单片机简介……………………………………………………………三硬件电路设计............................................................................................ (7)3.1 PWM波形的程序实现 (7)3.2直流电动机驱动 (8)3.3续流电路设计 (9)四软件设计 (10)4.1主程序设计 (10)4.2 数码显数设计 (11)4.3 功能程序设计 (12)4.4仿真图 (17)4.5 仿真结果分析 (18)五心得体会 (18)摘要:在国民生产中,随着现代技术的发展,电力电子技术已得到了全面的发展,其技术已应用到各个领域。

在各类机电系统中,由于直流电机具有良好的启动、制动和调速性能,直流电机调速系统已广泛运用于工业、航天领域的各个方面,最常用的直流调速技术是脉宽调制(PWM)直流调速技术,具有调速精度高、响应速度快、调速范围宽和损耗低的特点.而利用计算机数字控制也成了直流调速的一种手段,数字控制系统硬件电路的标准化程度高,控制软件能够进行复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律,此外还拥有信息存储、数据通信和故障诊断等模拟系统无法实现的功能。

关键字:80c51单片机;PWM调速技术;直流电动机一引言1.1开发背景1 绪论1.1课题的研究背景和意义直流电动机是最早出现的电动机,也是最早能实现调速的电动机。

长期以来,直流电动机一直占据着调速控制的统治地位。

由于它具有良好的线性调速特性,简单的控制性能,高的效率,优异的动态特性;尽管近年来不断受到其他电动机(如交流变频电机、步进电机等)的挑战,但到目前为止,它仍然是大多数调速控制电动机的优先选择。

近年来,直流电动机的结构和控制方式都发生了很大变化。

随着计算机进入控制领域以及新型的电力电子功率元件的不断出现,使1采用全控型的开关功率元件进行脉宽调制(PulseWidthModulation,简称PWM)控制方式已成为绝对主流。

这控制方式很容易在单片机控制中实现,从而为直流电动机控制数字化提供了契机。

五十多年来,直流电气传动经历了重大的变革。

首先,实现了整流器件的更新换代,从50年代的使用己久的直流发电机一电动机组(简称G-M系统)及水银整流装置,到60年代的晶闸管电动机调速系统(简称V-M系统),使得变流技术产生了根本的变革。

再到脉宽调制,变换器的产生,不仅在经济性和可靠性上有所提高,而且在技术性能上也显示了很大的优越性,使电气传动完成了一次大的飞跃。

另外,集成运算放大器和众多的电子模块的出现,不断促进了控制系统结构的变化。

随着计算机技术和通信技术的发展,数字信号处理器单片机应用于控制系统,控制电路己实现高集成化,小型化,高可靠性及低成本。

以上技术的应用,使系统的性能指标大幅度提高,应用范围不断扩大。

由于系统的调速精度高,调速范围广,所以,在对调速性能要求较高的场合,一般都采用直流电气传动。

技术迅速发展,走向成熟化、完善化、系统化、标准化,在可逆、宽调、速、高精度的电气传动领域中一直居于垄断地位。

目前,国内各大专院校、科研单位和厂家也都在开发直流数字调速装置。

姚勇涛等人提出直流电动机及系统的参数辨识的方法。

该方法依据系统或环节的输入输出特性,应用最小二乘法,即可获得系统或环节的内部参数,所获的参数具有较高的精度,方法简便易行。

张井岗等人提出直流电动机调速系统的内模控制方法。

该方法依据内模控制原理,针对双闭环直流电动机调速系统设计了一种内模控制器,取代常规的PI调节器,成功解决了转速超调问题,能使系统获得优良的动态和静态性能,而且设计方法简单,控制器容易实现。

董芳英等人提出采用模糊控制方法,对模糊控制理论在小惯性系统上对其应用进行了尝试。

经 1.SKW电机试验证明,模糊控制理论可以用于直流并励电动机的限流起动和恒速运行控制,并能获得理想的控制曲线。

由于单片机以数字信号工作,控制手段灵活方便,抗干扰能力强。

所以,数字系统的控制精度和可靠性比模拟系统大大提高。

而且通过系统总线,数字控制系统能与管理计算机、过程计算机、远程电控装置进行信息交换,实现生产过程的分级自动化控制。

所以,直流传动控制采用单片机实现数字化,使系统进入一个崭新阶段。

PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。

直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。

随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展,到目前为止,已经出现了多种PWM控制技术。

1.2数字控制器D(z)假设直流电机和PWM控制与变换器传递函数如图所示,用最少拍方法设计直流电机调速系统的数字控制器D(z),二直流电动机调速概述2.1直流电机调速原理直流电动机根据励磁方式不同,直流电动机分为自励和他励两种类型。

不同励磁方式的直流电动机机械特性曲线有所不同。

但是对于直流电动机的转速有以下公式:n=U/C cφ-TR内/C r C cφ其中:U—电压;R内—励磁绕组本身的电阻;φ—每极磁通(Wb);C c—电势常数;Cr—转矩常量。

由上式可知,直流电机的速度控制既可采用电枢控制法,也可采用磁场控制法。

磁场控制法控制磁通,其控制功率虽然较小,但低速时受到磁极饱和的限制,y图2 晶闸管直流电机速度调节系统简化框图高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差。

所以在工业生产过程中常用的方法是电枢控制法。

图1-1 直流电机的工作原理图电枢控制是在励磁电压不变的情况下,把控制电压信号加到电机的电枢上,以控制电机的转速。

在工业生产中广泛使用其中脉宽调制(PWM)应用更为广泛。

脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速,因此,PWM 又被称为“开关驱动装置”。

图1-2电枢电压占空比和平均电压的关系图根据上图,如果电机始终接通电源时,电机转速最大为max V ,占空比为D=1t /T ,则电机的平均速度为:D max V =V *D ,可见只要改变占空比D ,就可以得 到不同的电机速度,从而达到调速的目的。

2.2直流调速系统实现方式PWM 为主控电路的调速系统:基于单片机类由软件来实现PWM ,在PWM 调速系统中占空比D 是一个重要参数在电源电压d U 不变的情况下,电枢端电压的平均值取决于占空比D 的大小,改变D 的值可以改变电枢端电压的平均值从而达到调速的目的。

改变占空比D 的值有三种方法:A、定宽调频法:保持t不变,只改变t,这样使周期(或频率)也随之改变。

1B、调宽调频法:保持t不变,只改变t,这样使周期(或频率)也随之改变。

1C、定频调宽法:保持周期T(或频率)不变,同时改变t和t。

12.3 8051单片机简介1.8051单片机的基本组成8051单片机由CPU和8个部件组成,它们都通过片内单一总线连接,其基本结构依然是通用CPU加上外围芯片的结构模式,但在功能单元的控制上采用了特殊功能寄存器的集中控制方法。

其基本组成如下图所示:8051基本结构图2.8051单片机引脚图8051单片机引脚图三硬件电路设计本系统采用80C51控制输出数据,由PWM信号发生电路产生PWM 信号,送到直流电机,从而实现对电机速度和转向的控制,达到直流电机调速的目的。

3.1 PWM波形的程序实现随计算机技术及电力电子技术的发展,PWM波形采用软件方法实现显得非常灵活和实用以89C51单片机为控制核心,晶振频率为12MHz定时计数器TO,T1作定时器使用,工作在方式1,定时时间为比为1:1,则和 R0载入30H和31H单元的值初始100,若在程序中利用按键产生中断调用来改变30H和31H单元的值就可以改变占空比.系统流程图如图2-1所示:图 2-1 程序流程图3.2直流电动机驱动在直流电动机的驱动中对大功率的电动机常采用IGBT作为主开关元件,对中小功率的电机常采用功率场效应管作为主开关元件.另外还可以采用集成电路来完成对电机的驱动,系统采用集成电路L298来驱动电机L298内部结构和功能引脚图L298是双H高电压大电流功率集成电路.直接采用 L逻辑电平控制,可以驱动继电器、直流电动机、步进电动机等电感性负载。

其内部有两个完全相同的功率放大回路。

L298 引脚符号及功能SENSA、SENSB:分别为两个H桥的电流反馈脚,不用时可以直接接地ENA 、ENB:使能端,输入PWM信号IN1、IN2、IN3、IN4:输入端,TTL逻辑电平信号OUT1、OUT2、OUT3、OUT4:输出端,与对应输入端同逻辑VCC:逻辑控制电源,4.5~7V GND:地VSS:电机驱动电源,最小值需比输入的低电平电压高当使能端为高电平时,输入端IN1为PWM信号,IN2为低电平信号时,电机正转;输入端IN1为低电平信号,IN2为PWM信号时,电机反转;;IN1与IN2相同时,电机快速停止。

当使能端为低电平时,电动机停止转动。

3.3续流电路设计由于电机具有较大的感性,电流不能突变,若突然将电流切断,将在功率管两端产生很高的电压,损坏器件。

我们在此电路中应用的是二极管来续流,利用二极管的单向导通性。

二极管的选用要根据PWM的频率和电机的电流来决定,二极管要有足够迅速的恢复时间和足够的电流承受能力。

由于电机具有较大的感性,电流如果突变易损坏功率胳即L298芯片。

为保护芯片加上洗续流电路。

电路的工作原理替如图3.7所示。

电路的工作原理:当电机正转时,若突然掉电,D1、D4导通,D2、D3截止;当电机反转时,突然掉电D2、D3导通,D1、D4截止。

续流电路工作原理图四软件设计4.1主程序设计该主程序主要完成初始化,设置定时常数和中断入口程序,主程序不断的循环处于等待中断状态.ORG 0000HAJMP STARTORG 0003HLJMP INT0; T0中断ORG 000BHLJMP ITT0; T1中断ORG 0030H ;系统初始化START: MOV SP,#60H ;赋初值堆栈指针MOV R0,#00H ;给R0送值0MOV R1,#00H ;给R1送值0CLR P1.5 ;置0CLR P1.6 ;置0CLR P1.7 ;置0MOV TMOD,#01H ;写控制字控制方式MOV TL0,#0FFH ;置定时常数MOV TH0,#0FFHSETB EA ;允许中断SETB EX0 ;允许外部中断0SETB ET0 ;允许TL0中断CLR IT0SETB TR0 ;启动TL0图3-1主流程图4.2 数码显数设计通过P1.1,P1.2口来控制数码,显示通过查表和调用延时实现数的显示程序代码:MOV DPTR,#TABMOV 40H,#0 ;置0MOV 41H,#0 ;置0LED: SETB P1.1 ;P1.1置1CLR P1.2 ;P1.2清0MOV A,40H ;将40H的内容送往AMOVC A,@A+DPTR ;查表MOV P0,A ;查表所得A值送往P0口LCALL TTS ;调用延时CLR P1.1 ;P1.1清0SETB P1.2 ; P1.2置1MOV A,41H ;将41H的内容送往AMOVC A,@A+DPTR ;查表MOV P0,A ;查表所得A值送往P0口LCALL TTS ;调用延时CLR P1.2 ;P1.2口清0LJMP LED ;跳转到LEDORG 2000HTAB: DB 40H,79H,24H,30H,19HDB 12H,02H,78H,00H,10H4.3 功能程序设计结束中断后转入相应的功能键程序,为加速、减速、正转、反转、暂停程序代码:ITT0: CPL P1.5 ;P1.5口取反 JNB P1.5,Z1MOV A,#0FFH ;低电平定时 SUBB A,R0MOV TH0,ASETB TR0 ;启动TL0RETIZ1:MOV TH0,R0 ;高电平定时SETB TR0RETIINT0:CLR EX0 ;实现键盘控制 MOV A,#0FFHMOV P2,AMOV A,P2JNB ACC.0,JIAJNB ACC.1,JIANJNB ACC.2,FF图3-2 数码显示流程图图3-3中断子程序流程图 JNB ACC.3,ZZJNB ACC.4,TZAJMP CCJIA: CJNE R0,#0FFH,AA ;实现电机加速AJMP CCAA: MOV A,R0ADD A,#25MOV R0,AAJMP CCJIAN: CJNE R0,#00,BB ;实现电机减速AJMP CCBB: MOV A,R0SUBB A,#25MOV R0,AAJMP CCCC: MOV A,R0 ;数码显数 MOV B,#25DIV ABMOV B,#10DIV ABMOV 40H,AMOV 41H,BSETB EX0LCALL TTS ;调用延时 LCALL TTS ;调用延时 LCALL TTS ;调用延时 LCALL TTS ;调用延时 RETIFF: SETB P1.6 ;电机反传 CLR P1.7LCALL TTSLCALL TTSLCALL TTSSETB EX0RETIZZ:CLR P1.6 ;电机正转SETB P1.7LCALL TTSLCALL TTSLCALL TTSSETB EX0RETITZ: CLR P1.6 ;实现电机停止 CLR P1.7LCALL TTSLCALL TTSLCALL TTSSETB EX0RETITTS: MOV R3,#0E0H ;延时子程序TT1S: MOV R4,#40HTT0S: DJNZ R4,TT0SDJNZ R3,TT1SRETEND4.4仿真图在该设计中,利用Proteus软件进行仿真。

相关文档
最新文档