洛伦兹力大题计算5

合集下载

(完整版)洛伦兹力经典例题

(完整版)洛伦兹力经典例题

洛仑兹力典型例题〔例1〕一个带电粒子,沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示,径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定[ ]A.粒子从a到b,带正电B.粒子从b到a,带正电C.粒子从a到b,带负电D.粒子从b到a,带负电R=mv/qB,由于q不变,粒子的轨道半径逐渐减小,由此断定粒子从b到a运动.再利用左手定则确定粒子带正电.〔答〕B.〔例2〕在图中虚线所围的区域内,存在电场强度为E的匀强电场和磁感应强度为B的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转,设重力可忽略不计,则在这区域中的E和B的方向可能是[ ]A.E和B都沿水平方向,并与电子运动的方向相同B.E和B都沿水平方向,并与电子运动的方向相反C.E竖直向上,B垂直纸面向外D.E竖直向上,B垂直纸面向里〔分析〕不计重力时,电子进入该区域后仅受电场力F E和洛仑兹力F B作用.要求电子穿过该区域时不发生偏转电场力和洛仑兹力的合力应等于零或合力方向与电子速度方向在同一条直线上.当E和B都沿水平方向,并与电子运动的方向相同时,洛仑兹力F B等于零,电子仅受与其运动方向相反的电场力F E作用,将作匀减速直线运动通过该区域.当E和B都沿水平方向,并与电子运动的方向相反时,F B=0,电子仅受与其运动方向相同的电场力作用,将作匀加速直线运动通过该区域.当E竖直向上,B垂直纸面向外时,电场力F E竖直向下,洛仑兹力F B动通过该区域.当E竖直向上,B垂直纸面向里时,F E和F B都竖直向下,电子不可能在该区域中作直线运动.〔答〕A、B、C.〔例3〕如图1所示,被U=1000V的电压加速的电子从电子枪中发射出来,沿直线a方向运动,要求击中在α=π/3方向,距枪口d=5cm的目标M,已知磁场垂直于由直线a和M所决定的平面,求磁感强度.〔分析〕电子离开枪口后受洛仑兹力作用做匀速圆周运动,要求击中目标M,必须加上垂直纸面向内的磁场,如图2所示.通过几何方法确定圆心后就可迎刃而解了.〔解〕由图得电子圆轨道半径r=d/2sinα.〔说明〕带电粒子在洛仑兹力作用下做圆周运动时,圆心位置的确定十分重要.本题中通过几何方法找出圆心——PM的垂直平分线与过P点垂直速度方向的直线的交点O,即为圆心.当带电粒子从有界磁场边缘射入和射出时,通过入射点和出射点,作速度方向的垂线,其交点就是圆心.〔例4〕两块长为L、间距为d的平行金属板水平放置,处于方向垂直纸面向外、磁感强度为B的匀强磁场中,质量为m、电量为e的质子从左端正中A处水平射入(如图).为使质子飞离磁场而不打在金属板上,入射速度为____.〔分析〕审清题意可知,质子临界轨迹有两条:沿半径为R的圆弧AB及沿半径为r的圆弧AC.〔解〕根据R2=L2+(R-d/2)2,得〔说明〕若不注意两种可能轨迹,就会出现漏解的错误.〔例5〕三个速度大小不同的同种带电粒子,沿同一方向从图1长方形区域的匀强磁场上边缘射入,当它们从下边缘飞出时对入射方向的偏角分别为90°、60°、30°.则它们在磁场中运动时间之比为[ ]A.1∶1∶1B.1∶2∶3C.3∶2∶1〔分析〕同种粒子以不同速度射入同一匀强磁场中后,做圆运动的周期相同.由出射方向对入射方向的偏角大小可知,速度为v1的粒子在磁场中的为了进一步确定带电粒子飞经磁场时的偏转角与时间的关系,可作一般分析.如图2,设带电粒子在磁场中的轨迹为曲线MN.通过入射点和出射点作速度方向的垂线相交得圆心O.由几何关系知,圆弧MN所对的圆心角等于出射速度方向对入射速度方向的偏角α.粒子通讨磁场的时间因此,同种粒子以不同速度射入磁场,经历的时间与它们的偏角α成正比,即t1∶t2∶t3=90°∶60°∶30°=3∶2∶1.〔答〕C.〔例6〕在xoy平面内有许多电子(质量为m、电量为e),从坐标O不断以相同速率v0沿不同方向射入第一象限,如图1所示.现加一个垂直于xoy平面向内、磁感强度为B的匀强磁场,要求这些电子穿过磁场后都能平行于x轴向x 正方向运动,求符合该条件磁场的最小面积.从O点射入的电子做1/4圆周运动后(圆心在x轴上A点)沿x正方向运动,轨迹上任一点均满足坐标方程(R-x)2 + y2 = R2,①如图2中图线I;而沿与x轴任意角α(90°>α>0°)射入的电子转过一段较短弧,例如OP或OQ等也将沿x正方向运动,于是P点(圆心在A′)、Q 点(圆心在A″)等均满足坐标方程x2 +(R-y)2 = R2.②更应注意的是此方程也恰是半径为R、圆心在y轴上C点的圆Ⅱ上任一点的坐标方程.数学上的相同规律揭示了物理的相关情景.〔解〕显然,所有射向第一象限与x轴成任意角的电子,经过磁场一段圆弧运动,均在与弧Ⅱ的交点处开始向x轴正方向运动,如图中P、Q点等.故该磁场分布的最小范围应是Ⅰ、Ⅱ两圆弧的交集,等效为图3中两弓形面积之和,即〔例7〕如图1所示,一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场.现从矩形区域ad边的中点O处垂直磁场射入一速度方向跟ad边夹角为30°、大小为v0的带电粒子.已知粒子质量为m,电量为q,ad边长为L,重力影响忽略不计.(1)试求粒子能从ab边上射出磁场的v0的大小范围?(2)问粒子在磁场中运动的最长时间是多少?)在这种情况下,粒子从磁场区域的某条边射出,试求射出点在这条边上的范围.〔分析〕设带电粒子在磁场中正好经过cd边(相切),从ab边射出时速度为v1,轨迹如图2所示.有以下关系:据几何关系分析得R1=L.②又设带电粒子在磁场中正好经过.ab边(相切),从ad边射出时速度为V2,则〔解〕因此,带电粒子从ab边射出磁场的v0的大小范围为:v1≥v0≥v2,(2)带电粒子在磁场中的周期带电粒子在磁场中运动轨迹占圆周比值最大的,运动时间最长.据几何间.〔例8〕如图所示,在一矩形区域内存在互相垂直的匀强电场和匀强磁场.电场强度为E、磁感应强度为B,复合场的水平宽度d,竖直方向足够长.现有一束电量为q、质量为m的α粒子,初速度v0各不相同,沿电场方向进入场区,能逸出场区的α粒子的动能增量△E k为[ ]A.q(B+E)d B.qEd/B C.Eqd〔分析〕α粒子重力可以忽略不计.α粒子进入电磁场时,除受电场力外还受到洛仑兹力作用,因此α粒子速度大小变化,速度方向也变化.洛仑兹力对电荷不做功,电场力对电荷做功.运动电荷从左进从右出.根据动能定理W=△E k,即△E K=Eqd,选项C正确.如果运动电荷从左进左出,电场力做功为零,那么选项D正确.〔例9〕如图1所示,在空间存在着水平方向的匀强磁场和竖直方向的匀强电场.电场强度为E,磁感应强度为B.在某点由静止释放一个带电液滴a,它运动到最低点处,恰与一个原来处于静止的液滴b相撞.撞后两液体合为一体,沿水平方向做直线运动.已知液滴a的质量是液滴b的质量的2倍,液滴a所带电量是液滴b所带电量的4倍.求两液滴初始位置的高度差h.(设a、b之间的静电力可以不计.)〔分析〕由带电液滴a的运动轨迹可知它受到一个指向曲率中心的洛仑兹力,由运动方向、洛仑兹力方向和磁场方向可判断出液滴a带负电荷.液滴b静止时,静电力与重力平衡,可知它带正电荷.本题包含三个过程,一个是液滴a由静止释放到运动至b处,其间合外力(静电力和重力)对液滴a做功,使它动能增加.另一个是碰撞过程,液滴a与b相碰,动量守恒.第三个过程是水平方向直线运动,竖直方向合外力为零.〔解〕设a的质量为2m,带电量为-4q,b的质量为m,带电量为q.碰撞:2mv1=3mv2,③碰后:3Eq+3mg=3qv2B.(图2c)④〔例10〕如图所示,在x轴上方是垂直纸面向里的磁感应强度为B的匀强磁场,在x轴下方是方向与y轴正方向相反的场强为E的匀强电场,已知沿x轴方向跟坐标原点相距为l处有一垂直于x轴的屏MN.现有一质量m、带电量为负q 的粒子从坐标原点沿y轴正方向射入磁场.如果想使粒子垂直打在光屏MN上,那么:(l)电荷从坐标原点射入时速度应为多大?(2)电荷从射入磁场到垂直打在屏上要多少时间?〔分析〕粒子在匀强磁场中沿半圆做匀速圆周运动,进入电场后做匀减速直线运动,直到速度为零,然后又做反方向匀加速直线运动.仍以初速率垂直进入磁场,再沿新的半圆做匀速圆周运动,如此周而复始地运动,直至最后在磁场中沿1/4圆周做匀速率运动垂直打在光屏MN上为止.〔解〕(1)如图所示,要使粒子垂直打在光屏MN上,必须n·2R+R=l,(1)(2)粒子运动总时间由在磁场中运动时间t1和在电场中运动时间t2两部分构成.〔例11〕如图所示,以正方形abco为边界的区域内有平行于x轴指向负方向的匀强电场和垂直纸面向外的匀强磁场,正方形边长为L,带电粒子(不计重力)从oc边的中点D以某一初速度平行于y轴的正方向射入场区,恰好沿直线从ab 边射出场区.如果撤去磁场,保留电场,粒子仍以上述初速度从D点射入场区,则从bc边上的P点射出场区.假设P点的纵坐标y=h;如果撤去电场,保留磁场,粒子仍以上述的初速度从D点射入场区,在l有不同取值的情况下,求粒子射出场区时,出射点在场区边界上的分布范围.〔分析〕设电场强度为E,磁感应强度为B,粒子的电量为q,质量为m,初速度为v.当电场和磁场同时存在时,带电粒子所受电场力和磁场力平衡,做直线运动.若撤去磁场,则粒子向右做抛物线运动,从bc边上的p点射出场区.若撤去电场,保留磁场,则粒子做反时针方向圆周运动,从y轴上的某点射出场区.也可能从x轴上某点射出.〔解〕当电场和磁场同时存在时,据题意有qBv=qE ①撤去磁场,电偏转距离为撤去电场,磁偏转距离为①~④式联立求得若要从o点射出,则y=0,R=L/4,由⑤式得h=L/2.〔例12〕两块板长l=1.4m、间距d=0.3m水平放置的平行板,板间加有垂直纸面向里,B=1.25T的匀强磁场和如图1(b)所示的电压.当t=0时,有一质量m=2×10-15kg、电量q=1×10-10C带正电荷的粒子,以速度v0=4×103m/s从两板正中央沿与板面平行的方向射入.不计重力的影响,画出粒子在板间的运动轨迹.〔分析〕板间加上电压时,同时存在的匀强电场场强粒子射入后受到的电场力F E和磁场力F B分别为它们的方向正好相反,互相平衡,所以在两板间加有电压的各段时间内(0-1×10-4s;2-3×10-4s;4-5×10-4s;……),带电粒子依入射方向做匀速直线运动.板间不加电压时,粒子仅受洛仑兹力作用,将做匀速圆周运动.〔解〕粒子在洛仑兹力作用下做匀速圆周运动的半径运动.运动周期它正好等于两板间有电压时的时间间隔,于是粒子射入后在两板间交替地做着匀速直线运动和匀速圆周运动,即加有电压的时间内做匀速直线运动;不加电压的时间内做匀速圆周运动.粒子经过两板间做匀速直线运动的时间它等于粒子绕行三周半所需时间,所以粒子正好可作三个整圆,其运动轨迹如图2所示.。

安培力洛伦兹力计算题

安培力洛伦兹力计算题

安培力计算题1.(2011年厦门一中高二检测)如图3-4-20所示,在同一水平面上的两根导轨相互平行,并处在竖直向上的匀强磁场中,一根质量为3.6 kg,有效长度为2 m的金属棒放在导轨上.当金属棒中的电流为5 A时,金属棒做匀速直线运动;当金属棒中的电流增加到8 A时,金属棒的加速度为2 m/s2,求磁场的磁感应强度的大小.2.如图3-4-28所示,在倾角为37°的光滑斜面上有一根长为0.4 m.质量为6×10-2 kg的通电直导线,电流I =1 A,方向垂直纸面向外,导线用平行于斜面的轻绳拴住不动,整个装置放在磁感应强度每秒增加0.4 T,方向竖直向上的磁场中,设t=0,B=0,则需要多长时间斜面对导线的支持力为零?(g取10 m/s2)3.(2011年洛阳市高二检测)如图3-4-29所示,PQ和MN为水平、平行放置的金属导轨,相距1 m,导体棒ab 跨放在导轨上,导体棒的质量m=0.2 kg,导体棒的中点用细绳经滑轮与物体相连,物体质量M=0.3 kg,导体棒与导轨间的动摩擦因数μ=0.5.匀强磁场的磁感应强度B=2 T,方向竖直向下,为了使物体匀速上升,应在导体棒中通入多大的电流?方向如何?4.如图3-4-30所示,两平行光滑导轨相距为L=20 cm,金属棒MN的质量为m=10 g,电阻R=8 Ω,匀强磁场的磁感应强度B=0.8 T,方向竖直向下,电源电动势E=10 V,内阻r=1 Ω,当开关S闭合时,MN恰好平衡,求变阻器R1的取值为多少?设θ=45°,g取10 m/s2.答案1:棒匀速动动,有:BI 1l =μ mg ①棒匀加速运动时,有:BI 2l -μ mg =ma ②联立①、②解得B =ma (I 2-I 1)l=1.2 T. 答案:1.2 T2解析:支持力为0时导线的受力如图所示,由平衡条件得:F 安=mg tan37°=6×10-2×100.75N =0.8 N 由F 安=BIL 得B =F 安IL =0.81×0.4T =2 T 由B =0.4t 得t =B 0.4=20.4s =5 s. 答案:5 s3.解析:为了使物体匀速上升,导体棒所受安培力方向应向左,由左手定则可知,导体棒中的电流方向应为a →b .由平衡条件得:BIL =Mg +μmg解得:I =Mg +μmg BL=2 A答案:2 A 方向a →b4.解析:MN 受力分析如图所示,因MN 平衡,所以有mg sin θ=BIL cos θ①由闭合电路欧姆定律得I =E R +R 1+r② 由①②并代入数据得:R 1=7 Ω.答案:7 Ω5.一个质量为m ,电荷量为q 的带电粒子从x 轴上的P (a ,0)点以速度v ,沿与x 正方向成60º的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴的S 点射出第一象限。

洛伦兹力-习题

洛伦兹力-习题

三、单边界磁场1.如图所示,x 轴上方有垂直纸面向里的匀强磁场.有两个质量相同,电荷量也相同的带正、负电的离子(不计重力),以相同速度从O 点射入磁场中,射入方向与x 轴均夹θ角.则正、负离子在磁场中A.运动时间相同B.运动轨道半径相同C.重新回到x 轴时速度大小和方向均相同D.重新回到x 轴时距O 点的距离相同2、 如图直线MN 上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?解:由公式知,它们的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距2r ,由图还可看出,经历时间相差2T /3。

答案为射出点相距Be mv s 2=,时间差为Bqm t 34π=∆。

关键是找圆心、找半径和用对称。

3. 如图所示,直线边界MN 上方有垂直纸面向里的匀强磁场,磁感应强度为B,磁场区域足够大.今有质量为m,电荷量为q 的正、负带电粒子,从边界MN 上某点垂直磁场方向射入,射入时的速度大小为v,方向与边界MN 的夹角的弧度为θ,求正、负带电粒子在磁场中的运动时间.答案 带正电粒子:2m (π-θ)/qB 带负电粒子:qB m θ24. 如图所示,在x 轴上方存在着垂直于纸面向里、磁感应强度为B 的匀强磁场,一个不计重力的带电粒子从坐标原点O 处以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x 轴正方向成120°角,若粒子穿过y 轴正半轴后在磁场中到x 轴的最大距离为a,则该粒子的荷质比和所带电荷的正负是( ) A .aB 23v ,正电荷 B .aB2v ,正电荷MC .aB 23v ,负电荷D . aB2v ,负电荷 答案 C5、如图3-6-9所示,一个带负电的粒子以速度v 由坐标原点射入充满x 正半轴的磁场中,速度方向与x 轴、y 轴均成45°角.已知该粒子电量为-q ,质量为m ,则该粒子通过x 轴和y 轴的坐标分别是多少?mv/qB -mv/qB6、如图3-6-2所示,在y<0的区域内存在匀强磁场,磁场方向垂直平面并指向纸面外,磁感应强度为B .一带正电的粒子(不计重力)以速度v 0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为,求该粒子的电荷量与质量之比q/m .解析:洛伦兹力提供向心力Bqv=mv 2/r ……①几何关系如图3-6-3所示,l/2=rsinθ……②整理得q/m=2v 0sinθ/lB ……③四、双边界磁场1、平行边界1. 三个速度大小不同的同种带电粒子,沿同一方向从如图所示的长方形区域的匀强磁场上边缘射入强磁场,当它们从下边缘飞出时对入射方向的偏角分别为90°、60°、 30°,则它们在磁场中的运动时间之比( ) A .1∶1∶1B .1∶2∶3C .3∶2∶1D .1∶2∶3答案 C(1)速度垂直边界1.如图所示,比荷(荷质比)为e / m 的电子从左侧垂直于界面、垂直于磁场射入宽度为d 、磁感受应强度为B 的匀强磁场区域,要从右侧面 穿出这个磁场区域,电子的速度应满足的条件是 。

磁学力练习题洛伦兹力与磁场强度计算

磁学力练习题洛伦兹力与磁场强度计算

磁学力练习题洛伦兹力与磁场强度计算磁学力是物理学中的一个重要概念,涉及到洛伦兹力和磁场强度的计算。

本文将通过一些练习题来详细讨论洛伦兹力和磁场强度的计算方法。

1. 练习题一假设有一个电荷为q的粒子在磁场B中运动,速度为v,试计算洛伦兹力的大小。

解析:根据洛伦兹力公式F = qvBsinθ,其中θ为磁场B与粒子速度v之间的夹角。

若粒子速度与磁场方向垂直,则θ = 90°,此时洛伦兹力的大小为F = qvB。

2. 练习题二有一段导线长度为L,通过电流I,位于磁场B中。

试计算整段导线所受的洛伦兹力大小。

解析:将导线分割成若干小段,每段长度为dl,该段所受的洛伦兹力dF = I(dl × Bsinθ),其中θ为磁场B与该小段的夹角。

将所有小段洛伦兹力相加可得整段导线所受的洛伦兹力F = ∫I(dl × Bsinθ)。

3. 练习题三一个移动电荷在磁场B中受到洛伦兹力为F,速度v垂直于磁场方向。

试计算磁场B强度。

解析:由洛伦兹力公式F = qvBsinθ,若速度与磁场方向垂直,则θ = 90°,此时sinθ = 1。

将F = qvB代入可得B = F / (qv)。

4. 练习题四一组平行导线间距为d,通过电流I。

试计算其中一根导线所受的其他导线洛伦兹力之和。

解析:取其中一根导线为例,该导线上某一小段长度为dl,与其他导线的夹角θ为90°,洛伦兹力dF = I(dl × B)。

将所有小段洛伦兹力之和相加可得一根导线所受的其他导线洛伦兹力之和F = ∑I(dl × B)。

5. 练习题五一个磁场强度为B的匀强磁场垂直于一个矩形回路,回路边长分别为a和b。

试计算矩形回路受到的洛伦兹力大小。

解析:将矩形回路分割成若干小段,每段长度为dl,矩形回路元素受到的洛伦兹力dF = Idl × Bsinθ,其中θ为磁场B与该小段的夹角。

将所有小段洛伦兹力相加可得矩形回路所受的洛伦兹力F = ∫Idl × Bsinθ。

高三物理洛伦兹力公式与方向试题答案及解析

高三物理洛伦兹力公式与方向试题答案及解析

高三物理洛伦兹力公式与方向试题答案及解析1.如图,光滑半圆形轨道与光滑曲面轨道在B处平滑连接,前者置于水平向外的匀强磁场中,有一带正电小球从A静止释放,且能沿轨道前进,并恰能通过半圆形轨道最高点C.现若撤去磁场,使球从静止释放仍能恰好通过半圆形轨道最高点,则释放高度H′与原释放高度H的关系是A.H′<HB.H′=HC.H′>HD.无法确定【答案】 C【解析】有磁场时,设小球刚好通过最高点C时的速度为v,则小球在最高点有:,显然,R为半圆形轨道半径,根据动能定理得,解得.没有磁场时,小球刚好通过最高点时的速度,根据动能定理有:,,所以,选项C正确.2.如图所示,边长为L的等边三角形ABC为两有界匀强磁场的理想边界,三角形内的磁场方向垂直纸面向外,磁感应强度大小为B,三角形外的磁场(足够大)方向垂直纸面向里,磁感应强度大小也为B.把粒子源放在顶点A处,它将沿∠A的角平分线发射质量为m、电荷量为q、初速度为v0的带电粒子(粒子重力不计).若从A射出的粒子:①带负电,v=,第一次到达C点所用时间为t1;②带负电,v=,第一次到达C点所用时间为t2;③带正电,v=,第一次到达C点所用时间为t3;④带正电,v=,第一次到达C点所用时间为t4.则()A.t1=T B.t2=T C.t3=T D.t4=T【答案】AB【解析】若从A射出的粒子带负电,v=,向右偏转,其轨迹半径等于L,第一次到达C点所用时间为t1=,选项A正确;若从A射出的粒子带负电,v=,向右偏转,其轨迹半径等于,经后进入理想边界外向下偏转,再经后第一次到达C点所用时间为t2=,选项B正确;若从A射出的粒子带正电,v=,向左偏转,其轨迹半径等于L,第一次到达B点所用时间为,进入理想边界向下偏转,再经后第一次到达C点,所用总时间为t3=T,选项C错误;若从A射出的粒子带正电,v=,向左偏转,其轨迹半径等于,经后进入理想边界外向下偏转,再经后第一次到达B点所用时间为,再经T后第一次到达C点,所用总时间=,选项D错误.为t43.如图所示,在以坐标原点O为圆心.半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。

高二物理洛伦兹力公式与方向试题

高二物理洛伦兹力公式与方向试题

高二物理洛伦兹力公式与方向试题1.下图中,电荷的速度方向、磁场方向和电荷的受力方向之间关系正确的是()【答案】C【解析】选项A、B中粒子速度方向与磁感线平行,不受洛伦兹力,故选项A、B错误;由左手定则知C选项正确;选项D中负粒子受洛伦兹力向上,故D错误。

【考点】洛伦兹力2.如图所示,一个带正电的物体,从固定的粗糙斜面顶端沿斜面滑到底端时的速度为v,若加上一个垂直纸面向外的匀强磁场,则物体沿斜面滑到底端时的速度A.不变B.变小C.变大D.不能确定【答案】C【解析】当没有加磁场时,物体从斜面上滑下时,重力做正功,摩擦力做负功,合外力做的功使物体的动能增大;当加上磁场时,带正电的物体滑下时要受到洛伦兹力,洛伦兹力垂直斜面向上,使得物体与斜面间的压力减小,摩擦力减小,摩擦力做的负功减小,故合外力做的功变大,物体滑到底端时的动能增大,速度也会变大,C是正确的。

【考点】洛伦兹力,动能定理。

3.如图,将一阴极射线管置于一通电螺线管的左方,则A.通电螺线管内部的磁场方向向右B.通电螺线管内部的磁场方向向左C.阴极射线管中的电子束将向纸面外偏转D.阴极射线管中的电子束将向纸面内偏转【答案】BD【解析】由安培定则知通电螺线管产生的磁场方向向左,螺线管左为N极,故A选项错误,B选项正确;由左手定则阴极射线管中的电子束将向纸面内偏转,故C选项错误,D选项正确。

【考点】安培定则左手定则4.如图,水平导线中有电流I通过,导线正下方的电子初速度的方向与电流I的方向相同,则电子将()A.沿路径a运动,轨迹是圆B.沿路径a运动,轨迹半径越来越大C.沿路径a运动,轨迹半径越来越小D.沿路径b运动,轨迹半径越来越小【答案】B【解析】由右手螺旋定则可知,在直导线的下方的磁场的方向为垂直纸面向外,根据左手定则可以得知电子受到的力向下,所以电子沿路径a运动;通电直导线电流产生的磁场是以直导线为中心向四周发散的,离导线越远,电流产生的磁场的磁感应强度越小,由半径公式r=可知,电子的运动的轨迹半径越来越大,所以B正确.【考点】本题考查带电粒子在磁场中的运动。

洛伦兹力(题库)

洛伦兹力(题库)

2016-2017学年度???学校11月月考卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.如图所示为一速度选择器,内有一磁感应强度为B、方向垂直纸面向外的匀强磁场,一束粒子流以速度v水平射入,为使粒子流经过磁场时不偏转(不计重力),则磁场区域内必须同时存在一个匀强电场,关于此电场强度大小和方向的说法中,正确的是()ABC.大小为Bv,方向向下,与粒子带何种电荷无关D.大小为Bv,方向向上,与粒子带何种电荷无关【答案】D【解析】当粒子所受的洛伦兹力和电场力平衡时,粒子流匀速直线通过该区域,有qvB =qE,所以E=Bv。

假设粒子带正电,则受向下的洛伦兹力,电场方向应该向上。

粒子带负电时,电场方向仍应向上。

故正确答案为D。

2.为了测量某化肥厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计,该装置由绝缘材料制成,长、宽、高分别为a、b、c,左右两端开口,在垂直于上下表面方向加磁感应强度为B的匀强磁场,在前后两个内侧面固定有金属板作为电极,污水充满管口从左向右流经该装置时,电压表将显示两个电极间的电压U。

若用Q 表示污水流量(单位时间内排出的污水体积),下列说法正确的是()A.若污水中正离子较多,则前内侧面比后内侧面电势高B.前内侧面的电势一定低于后内侧面的电势,与哪种离子多无关C.污水中离子浓度越高,电压表的示数将越大D.污水流量Q与电压U成正比,与a、b有关【答案】B【解析】由左手定则可判断:若流动的是正离子,则正离子向里偏,前内侧面电势低于后内侧面电势;若流动的是负离子,则负离子向外偏,仍然是前内侧面电势低于后内侧面的电势,故A错,B对;污水稳定流动时,对任一离子有:qvB=qE U=Bbv,电势差与离子浓度无关,故选项C错;流量Q=Sv出流量与a、b均无关,故D错。

正确答案为B。

3.如图甲、乙、丙所示,三个完全相同的半圆形光滑绝缘轨道置于竖直平面内,左右两端点等高,其中图乙轨道处在垂直纸面向外的匀强磁场中,图丙轨道处在竖直向下的匀强电场中,三个相同的带正电小球同时从轨道左端最高点处由静止释放.则三个带电小球通过圆轨道最低点时()A.速度相同B.所用时间相同C.对轨道的压力相同D.均能到达轨道右端最高点处【答案】D【解析】试题分析:在乙图中,因为洛仑兹力总是垂直于速度方向,故洛仑兹力不做功;滑块下落时只有重力做功,故甲和乙两次机械能均守恒,故两次滑块到最低点的速度相等,中,小球下滑的过程中电场力做正功,重力做正功,所以小球在最低点的速度大于甲图和乙图中的速度,故A错误;甲图和丙图比较可得,丙图中,小球的加速度比较大,所以达到最低点的时间要短,故B错误;小球在最低点时,甲图中重力和支持力提供向心力,而乙图中是重力、支持力和洛伦兹力提供向心力,所以小球受到的支持力大小不相等,对轨道的压力也不相等,故C错误;三个小球的运动过程中,重力做功,动能和重力势能之间转换;洛伦兹力不做功;电场力做功,电势能与动能之间转换;由于没有其他的能量损失,所以三种情况下,小球均能到达轨道右端最高点处,故D正确;考点:考查了动能定理的应用;牛顿第二定律;向心力;洛仑兹力.【名师点睛】分析物体受力情况及各力做功情况,由动能定理可求得小滑块到达最低点时的速度;由滑块的运动可知滑块滑到最低点时的速度变化;由洛仑兹力公式可知大小关系;由向心加速度公式可知向心加速度的大小关系.4.如图所示,一束电子流沿管的轴线进入螺线管,忽略重力,电子在管内的运动应该是()A.当从a端通入电流时,电子做匀加速直线运动B.当从b端通入电流时,电子做匀加速直线运动C.不管从哪端通入电流,电子都做匀速直线运动D.不管从哪端通入电流,电子都做匀速圆周运动【答案】C【解析】不管通有什么方向的电流,螺线管内部磁场方向始终与轴线平行,带电粒子沿着磁感线运动时不受洛伦兹力,所以应一直保持原运动状态不变。

物理高二洛伦兹力测试题及答案

物理高二洛伦兹力测试题及答案

洛伦兹力测试1、一个电子以一定初速度进入一匀强场区(只有电场或只有磁场不计其他作用)并保持匀速率运动,下列说法正确的是()A.电子速率不变,说明不受场力作用B.电子速率不变,不可能是进入电场C.电子可能是进入电场,且在等势面上运动D.电子一定是进入磁场,且做的圆周运动2、如图—10所示,正交的电磁场区域中,有两个质量相同、带同种电荷的带电粒子,电量分别为q a、q b.它们沿水平方向以相同的速率相对着匀速直线穿过电磁场区,则()A.它们带负电,且q a>q b. B.它们带负带电,q a<q bC.它们带正电,且q a>q b. D.它们带正电,且q a<q b. . 图-103、如图—9所示,带正电的小球穿在绝缘粗糙直杆上,杆倾角为θ,整个空间存在着竖直向上的匀强电场和垂直于杆斜向上的匀强磁场,小球沿杆向下运动,在a点时动能为100J,到C点动能为零,而b点恰为a、c的中点,在此运动过程中()A.小球经b点时动能为50J 图—9B.小球电势能增加量可能大于其重力势能减少量C.小球在ab段克服摩擦所做的功与在bc段克服摩擦所做的功相等D.小球到C点后可能沿杆向上运动。

4、如图所示,竖直向下的匀强磁场穿过光滑的绝缘水平面,平面上一个钉子O固定一根细线,细线的另一端系一带电小球,小球在光滑水平面内绕O做匀速圆周运动.在某时刻细线断开,小球仍然在匀强磁场中做匀速圆周运动,下列说法一定错误的是()A.速率变小,半径变小,周期不变B.速率不变,半径不变,周期不变C.速率不变,半径变大,周期变大D.速率不变,半径变小,周期变小5、如图所示,x轴上方有垂直纸面向里的匀强磁场.有两个质量相同,电荷量也相同的带正、负电的离子(不计重力),以相同速度从O点射入磁场中,射入方向与x轴均夹θ角.则正、负离子在磁场中()A.运动时间相同B.运动轨道半径相同C.重新回到x轴时速度大小和方向均相同D.重新回到x轴时距O点的距离相同6、质量为0.1kg、带电量为2.5×10—8C的质点,置于水平的匀强磁场中,磁感强度的方向为南指向北,大小为0.65T.为保持此质量不下落,必须使它沿水平面运动,它的速度方向为_____________,大小为______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理磁场洛伦兹力计算题训练 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失.(1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少?(2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来?1题 2.如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求:(1)带电粒子的速度v 为多大时,能够打到E 点?(2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少?(3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10133( L .要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值?2题 3.在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q ,质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小.34.如图所示,真空中有一半径为R 的圆形磁场区域,圆心为直纸面向内,磁感强度为B ,距离O 为2R 处有一光屏MN ,置,AO 过半径垂直于屏,延长线交于C 0方向进入圆形磁场区域,最后打在屏上D 点,DC 相距2R,不计粒子的重力.若a b c d AC FD (a ) (b )该粒子仍以初速v0从A点进入圆形磁场区域,但方向与AC成600角向右上方,粒子最后打在屏上E点,求粒子从A到E所用时间.4题5.如图所示,3条足够长的平行虚线a、b、c,ab间和bc间相距分别为2L和L,ab间和bc间都有垂直于纸面向里的匀强磁场,磁感应强度分别为B和2B。

质量为m,带电量为q的粒子沿垂直于界面a的方向射入磁场区域,不计重力,为使粒子能从界面c射出磁场,粒子的初速度大小应满足什么条件?6. 如图所示宽度为d均为B的匀强磁场,现有一质量为m,带电量为+v从此区域下边缘上的A件时,粒子能回到A。

6题7.在受控热核聚变反应的装置中温度极高,因而带电粒子没有通常意义上的容器可装,而是由磁场将带电粒子的运动束缚在某个区域内。

现有一个环形区域,其截面内圆半径R1=33m,外圆半径R2=1.0m磁场(如图所示)。

已知磁感应强度B=1.0T,被束缚带正电粒子的荷质比为mq =4.0×107C/kg,不计带电粒子的重力和它们之间的相互作用.⑴若中空区域中的带电粒子由O点沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度v0。

⑵若中空区域中的带电粒子以⑴中的最大速度v0沿圆环半径方向射入磁场,求带电粒子从刚进入磁场某点开始到第一次回到该点所需要的时间。

7题8.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B,一带电量为+q、质量为m的粒子,在P点以某一初速开始运动,初速方向在图中纸面内如图中P点箭头所示。

该粒子运动到图中Q点时速度方向与P点时速度方向垂直。

如图中Q点箭头所示。

已知P、Q间的距离为l。

若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P点时的速度方向垂直,在此电场作用下粒子也由P点运动到Q点。

不计重力。

求:⑴电场强度的大小。

⑵两种情况中粒子由P运动到Q点所经历的时间之差。

8题9.如图所示,竖直绝缘杆处于彼此垂直,大小分别为E和B的匀强电磁场中,电场方向水平向右,磁场方向垂直a b cQ纸面向外,一个质量为m ,带正电为q 的小球从静止开始沿杆下滑,且与杆的动摩擦因数为μ,问:⑴小球速度多大时,小球加速度最大?是多少?⑵小球下滑的最大速度是多少?9题10.如下左图所示,空间存在着以x=0左右两边磁场的磁感应强度分别为B1和B 2,且在原点O a 带正电荷,分裂时初速度方向沿x 轴正方向。

若a 粒子在第4次经过y 轴时,恰与b 粒子相遇。

(1)在右图中,画出a 粒子的运动轨迹及用字母c 标出a 、b 两粒子相遇的位置(2)a 粒子和b 粒子的质量比m a ∶m b 为多少。

10题11.如图所示,两个几何形状完全相同的平行板电容器PQ 和MN ,竖直置于区域足够大的水平方向匀强磁场中,两电容器极板上端和下端分别在同一水平线上。

已知P 、Q 和M 、N 板间距都是d ,板间电压都是U ,极板长度均为l 。

今有一电子从极板边缘的O 点以速度v 0沿P 、Q 两板间的中心线进入并匀速直线运动穿过电容器,此后经过磁场偏转又沿竖直方向进入并匀速直线运动穿过电容器M 、N 板间,穿过M 、N 板间电场后,再经过磁场偏转又通过O 点沿竖直方向进入电容器P 、Q 极板间,循环往复。

已知电子质量为m ,电量为e ,重力不计。

(1)Q 板和M 板间的距离x 满足什么条件时,能够达到题述过程的要求?(2)电子从O 点出发至第一次返回到O 点经过了多长时间?11题 12.正负电子对撞机的最后部分的简化示意图如图5-6-19甲所示(俯视图),位于水平面内的粗实线所示的圆环形真空管道是正、负电子做圆运动的“容器”,经过加速器加速后的正、负电子被分别引入该管道时,具有相等的速率v,它们沿着管道向相反的方向运动.在管道内控制它们转弯的是一系列圆形电磁铁,即图中的A1、A2、A3……An共有n个,均匀分布在整个圆环上,每个电磁铁内的磁场都是磁感应强度相同的匀强磁场,并且方向竖直向下,磁场区域的直径为d,改变电磁铁内电流的大小,就可改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确的调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨迹运动,这时电子经过每个电磁场区域时射入点和射出点都是电磁场区域的同一条直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞作好了准备.(1)试确定正、负电子在管道内各是沿什么方向旋转的;(2)已知正、负电子的质量都是m,所带电荷都是元电荷e,重力可不计,求电磁铁内匀强磁场的磁感应强度B的大小.13.核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。

如图5-6-18所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。

设环状磁场的内半径为R 1=0.5m ,外半径R 2=1.0m ,磁场的磁感强度B =1.0T ,若被束缚带电粒子的荷质比为q/m =4×107C/㎏,中空区域内带电粒子具有各个方向的速度。

求:(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。

(2)所有粒子不能穿越磁场的最大速度。

14.图是一种获得高能带电粒子的加速器的示意图.在真空环形区域内存在着垂直于纸面向外、磁感应强度大小可以调节的均匀磁场.被加速的带电粒子质量为m,电荷量为+q ,它在环形磁场中做半径为R 的匀速圆周运动.环形管道中的平行加速电极板A 和B 的中心均有小孔让带电粒子通过.开始时A 、B 的电势均为零,每当带电粒子穿过A 板中心小孔时,A 板的电势立即升高到U (B 板电势始终为零),粒子被电压为U 的电场加速后从B 板中心小孔穿出时,A 板电势降为零;带电粒子在磁场力作用下沿半径为R 的圆形轨道运动,再次穿过A 板中心小孔时,A 板电势又升高到U ,粒子再次被加速;动能不断增加,但做圆周运动的轨道半径不变.(1)设带电粒子从A 板小孔处由静止开始被电场加速,A 板电势升高到U 时开始计时;求粒子沿环形通道绕行n 圈,回到A 板中心小孔时,其动能多大?(2)为了保证带电粒子在环形磁场中能沿半径为R 的圆轨道做匀速圆周运动,磁场的磁感应强度必须周期性地递增;求粒子绕行第n 圈时,磁感应强度多大?(3)带电粒子沿环形通道绕行n 圈回到A 板中心小孔处,共用多少时间?15.如图所示为贝恩布里奇(Bainbridge )设计的用来测量同素荷质比的仪器。

有一束速度相同的同位素离子速(有两种离子)以相同的速度通过狭缝S 1、S 2,向下运动到两极板P 1、P 2之间,在这两极板之间有垂直纸面向外的匀强磁场,磁感应强度为B ,同时加一水平向右的匀强电场,图图7 13题 12题电场强度为E ,调节E 、B ,使离子沿着直线通过狭缝S 3,然后进入半圆形的匀强磁场区域,此区域的磁感应强度为B ˊ,最后离子在此匀强磁场中做匀速圆周运动,经过半个圆周打到照相底片上D 1、D 2两点,测量出S 3D 1=L 1,S 3D 2=L 2。

试求这两种离子的荷质比。

参考答案1、(1)根据题意,小球经bc 、ab 、ad 的中点垂直反弹后能以最短的时间射出框架,如甲图所示. 即小球的运动半径是R = L 2= 0.5 m ① 由牛顿运动定律qv 1B = m v 12R② 得v 1 = qBR m③ 代入数据得v 1 = 5 m/s④ (2)由牛顿运动定律qv 2B = m v 22R 2 ⑤ 得R 2 = mv 2qB= 0.1 m⑥由题给边长知L = 10R 2⑦其轨迹如图乙所示.由图知小球在磁场中运动的周期数n = 9 ⑧根据公式T = 2πm qB= 0.628 s ⑨ 小球从P 点出来的时间为 t = nT = 5.552 s ⑩甲乙2. (1)从S 点发射的粒子将在洛仑兹力作用下做圆周运动, 即Rm v qvB 2=①-------------------(2分) 因粒子圆周运动的圆心在DE 上,每经过半个园周打到DE 上一次,所以粒子要打到E 点应满足:() 3,2,1,221=⋅=n R n L ②-------------------(2分) 由①②得打到E 点的速度为nmqBL v 4=,() 3,2,1=n ------------(2分) 说明:只考虑n=1的情况,结论正确的给4分。

相关文档
最新文档