确定压力容器安全系数原则

确定压力容器安全系数原则
确定压力容器安全系数原则

确定压力容器安全系数原则

作者邓阳春陈钢杨笑峰徐彤

【摘要】压力容器安全系数与材料参数紧密相关,确定材料许用应力值时,需要同时考虑材料抗拉强度和屈服强度更为合理;奥氏体不锈钢材料具有非常好的应变强化能力和韧性,为充分发挥奥氏体不锈钢材料优良性能,选取奥氏体不锈钢材料许用应力值时,需要特殊考虑。压力容器安全系数的选取建立在经验基础上,在保障压力容器安全性前提条件下,为节省材料和降低成本,随着理论研究深入和科学实验的进步,压力容器安全系数有所降低,这是科学设计和实用成功经验结合的结果。

【关键词】压力容器;材料;许用应力;标准;安全系数

0 引言

压力容器广泛用于工业领域及日常生活领域,一旦破坏,往往造成灾难性事故。为确保公众安全,应用科学技术和使用经验,世界各国制订了压力容器标准,并通过法规等形式强制执行。合理选取材料许用应力值是保障压力容器安全、合理使用的科学基础。

1914年,美国制定了世界上第一部压力容器标准,材料许用应力值仅以抗拉强度为基准。直到1943年,英国压力容器标准选取材料许用应力值时首次引入材料屈服强度为基准。为保证压力容器安全,确定材料许用应力值时,同时考虑材料抗拉强度和屈服强度更为合理。奥氏体不锈钢材料具有非常好的应变强化能力和韧性,为充分发挥奥氏体不锈钢材料优良性能,选取奥氏体不锈钢材料许用应力值时需特殊考虑。

目前,确定压力容器材料许用应力值一般取min{σs/n s,σb/n b,σD/n D,σn/n n}。其中,σs,σb,σD,σn分别为材料的屈服强度、抗拉强度、蠕变强度和疲劳强度,在大多数工况下,压力容器材料主要考虑屈服强度和抗拉强度,在一定条件下,才需考虑材料蠕变强度和疲劳强度;n s,n b,n D,n n为安全系数。

安全系数主要取决于人们对客观规律的理解程度和设备发生事故的危害程度,压力容器安全系数的选取建立在经验基础上,随着理论研究和科学实验的进步,在保障压力容器安全性前提条件下,为节省材料和经济考虑,压力容器安全系数有降低的趋势[1-2]。

欧盟许多国家压力容器标准安全系数过去就较低,2002年制定了统一的压力容器标准,安全系数明显降低[3]。由于国际竞争等原因,美国机械工程师协会在对压力容器标准系统研究基础上,2007年将压力容器标准中的分析设计标准安全系数降低[4-5]。

为保障压力容器安全性与经济性统一[6],针对压力容器标准安全系数降低的国际趋势,笔者提出开展压力容器安全系数方面的研究,重点探讨压力容器材料屈服强度和抗拉强度及其相应的安全系数。

1 材料抗拉强度

美国ASME于1914年制定了世界上第一部压力容器标准,压力容器材料许用应力值仅考虑材料抗拉强度。在20世纪30年代前,该方法为世界各国普遍接受。

20世纪50—60年代,美国ASME针对当时欧洲许多国家压力容器标准材料许用应力值由材料屈服强度取代材料抗拉强度控制,为确定是否保留材料抗拉强度,研究材料趋势曲线(trend curve)——实质为温度与材料性能的关系[7-8]。研究结论:在蠕变温度以下材料许用应力值仍由抗拉强度σb控制;引入屈服强度σs,同时保留抗拉强度σb。主要依据如下:

1)局部应力主要由材料抗拉强度σb和材料硬化指数n控制。

2)低周疲劳(5000次),压力容器失效发生在应力集中系数较大部位,如压力容器接管处,属应变疲劳,按抗拉强度σb考虑更可靠。

3)压力容器爆破压力与材料硬化指数n和塑性变形率有较大关系,与材料抗拉强度σb有较大关系,对于薄壁容器和低强度材料尤为明显。

4)σs不确定:

①弯曲试验屈服点不明显;

②屈服点σ0.2选取较随意。

2 材料屈服强度

在使用锅炉早期,几乎只有低碳钢材料。当时,ASME材料抗拉强度安全系数为5,蒸汽锅炉温度较低,低碳钢材料具有较好的延性。因而,按材料室温下抗拉强度进行设计,比较粗略的满足使用要求。

然而,高效蒸汽循环需要高的工作温度,需要考虑材料高温下的特点。英国国家物理实验室进行了有价值的早期工作。产生了“弹性极限”概念,尽管当时没有标准规定,实际工作下“弹性极限”安全系数在1.75左右,使用低于以材料抗拉强度为基准的许用应力值[9]。二战前,英国已经获得各种材料在一定温度范围内的基本数据。20世纪40年代末,英国开始考虑屈服强度σs,同时保留抗拉强度σb,在屈服强度σs引入标准前,设计实质上已考虑材料的屈服性能。主要由于:

①高温安全性能考虑;

②国际商业竞争。

1943年,英国BS1113水管锅炉标准采纳了“弹性极限”概念,将材料屈服强度引入确定材料许用应力值。由于采用先进技术和连续有益的经验,材料屈服强度安全系数较低,材料抗拉强度安全系数降低。在500F以上,实际许用应力值选取比仅以材料抗拉强度为基准的许用应力值低。

20世纪20—30年代,德国进行材料塑性性能研究,主要根据使用温度下屈服强度σs确定材料许用应力,放弃考虑抗拉强度σb。

由于压力容器主要以线弹性理论为基础,考虑屈服强度σs,比较合理。因而很快被瑞典、挪威、捷克等许多欧洲国家引用。

由于仅考虑材料屈服强度,在商业利益驱动下,出现了片面追求高屈服强度σs的现象,材料韧性等优良性能下降,塑性储备降低。为了控制不利于压力容器质量的安全因素,采取限制σs/σb的措施。实际上确定材料许用应力值时,间接考虑了材料抗拉强度的影响因素。

欧盟EN13445—2002压力容器标准[3]规定材料许用应力值以材料屈服强度为基准,未考虑抗拉强度值。但对压力容器材料屈服强度与抗拉强度的比值有一定限制。

美国ASMEⅧ-1 2007[10]和ASMEⅧ-2 2007[5]和中国GB150—1998[11]和JB4732—1994[12]确定材料许用应力值同时以材料屈服强度和抗拉强度为基准,分别除以相应的安全系数,结果取其小值。

3 不锈钢材料

奥氏体不锈钢材料具有非常好的韧性和非常高的应变强化能力,具有很好的高温性能、低温性能、抗腐蚀性能,具有非常优良的综合机械性能。奥氏体不锈钢材料抗拉强度很高,屈服强度较低。按碳钢方法确定材料许用应力值往往导致奥氏体不锈钢材料许用应力值偏低,不能充分发挥材料承载能力。为此,世界各国采取不同措施提高奥氏体不锈钢材料许用应力值。

美国ASMEⅧ-1和ASMEⅧ-2针对奥氏体不锈钢材料规定,压力容器如果容许少量变形,许用应力值最高可取设计温度下0.9σ0.2,高于σ0.2/n s。

德国对于奥氏体不锈钢材料,屈服强度一直按σ1.0取值[13]。一般,σ1.0比σ0.2高40MPa,如304材料将提高屈服强度值20%。同时,奥氏体不锈钢材料屈服强度安全系数较碳钢材料低。材料许用应力值比ASME高。该方法在20世纪50—60年代被英国、挪威、瑞典、澳大利亚等许多欧洲国家采用。欧盟EN13445压力容器标准采用该方法。

中国压力容器标准针对奥氏体不锈钢材料,常规设计标准GB150和应力分析设计标准JB4732在温度大于100℃时,许用应力值取值方法与美国ASMEⅧ-1和ASMEⅧ-2基本相同;但是,在低于100℃时,奥氏体不锈钢材料许用应力值取值与碳钢许用应力值取值方法相同,导致对于同类奥氏体不锈钢材料,中国奥氏体不锈钢材料许用应力值最低。

4 压力容器材料安全系数

在压力容器使用初期,由于当时科学技术水平限制,对压力容器研究不完善,为了满足使用需要,保障安全,按理论计算基础上,根据材料抗拉强度值,除以安全系数,得到材料许用应力取值时代入计算公式。安全系数主要作用为使用压力容器时预留一定余量,以弥补理论漏洞和制造时无法检测的缺陷。

安全系数是历史遗留的产物,反应人们对未知世界不确定因素,不得已而采用的保险措施。虽然对安全使用压力容器起到了促进作用,但是,也可能阻碍压力容器的技术进步。虽然从压力容器使用开始,安全系数一直沿用至今,并且在今后很长时间将继续保留,但是,安全系数存在并不一定合理。从材料和力学角度考虑,由于材料取值时存在安全系数,导致增加压力容器厚度,压力容器受力状态恶化,并影响焊接质量。

不能依靠安全系数而降低对压力容器技术的要求;相反,通过技术进步,降低实用安全系数。由于力学理论深入,有限

元技术和计算机技术发展,测试技术进步,对压力容器力学研究日益完善;材料冶炼水平和制造加工水平进步,材料性能得到保障;无损检测技术发展,发现缺陷的能力和可靠性大大提高;管理和监测水平规范提高等多方面的进步和成果……。使压力容器安全系数的取值出现逐渐降低可能。实际使用压力容器时,对核容器安全性要求往往更高,但是,核压力容器安全系数反而比民用压力容器的安全系数更低;航天工业努力减轻设备重量,不能容忍高的安全系数,然而,航天工业对设备安全性要求最高。

美国ASME第一版压力容器标准安全系数取为5。二战期间,ASME将材料抗拉强度安全系数降为4。1955年ASME版本,分析设计方法作为ASME压力容器另一标准,分析进一步完善,材料许用应力值包含材料屈服强度等性能参数,材料抗拉强度安全系数降为3.5。

2007年版本ASMEⅧ-1压力容器常规设计标准,材料抗拉强度安全系数降为3.5;ASMEⅧ-2压力容器分析设计标准,采用分安全系数方法,最大安全系数降为2.4。

中国压力容器标准材料许用应力值考虑抗拉强度,常规设计标准GB150—1998材料抗拉强度安全系数降为3,应力分析设计标准JB4732—1994材料抗拉强度安全系数降为2.7。

欧盟EN13445—2002压力容器标准[3]采用分安全系数方法,材料抗拉强度安全系数最大取2.4。

5 压力容器抵抗爆破实际安全系数

选取压力容器材料许用应力值时的安全系数相当于理论上的安全系数,不同于压力容器抵抗爆破实际安全系数。压力容器实际安全系数为爆破压力值与按材料许用应力计算的压力值之比。

https://www.360docs.net/doc/7415252280.html,nger[14]指出ASME规范圆筒体和球体在内压下所需厚度采用Lame公式计算最大环向应力,不超过材料许用应力,因而,暗示规范具有爆破安全系数同材料许用应力的安全系数。对于碳钢,材料许用应力由材料抗拉强度决定,安全系数为n b。对于厚壁碳钢材料容器比较适合。

https://www.360docs.net/doc/7415252280.html,nger和W.L.Harding[15]对3种如图1所示不同硬化指数的材料压力容器爆破试验,分别依据抗拉强度和屈服强度设计,假设材料韧性足够,得到压力容器抵抗爆破实际安全系数如图2所示。

图1 几种材料应力—应变特性

图2 压力容器抵抗爆破实际安全系数

6 国内外压力容器标准选取材料许用应力值的方法和安全系数比较

世界各国压力容器标准总体设计原则和设计技术差别不大,针对压力容器局部结构有少量差别,但是选取材料许用应力值时,选择材料参数和安全系数有差别较大,导致同一台压力容器按不同标准制造,压力容器厚度相差较大。

如图3所示[16],同一条件的容器,采用同样的材料,采用不同的标准,需要不同的厚度。

图3 不同标准所需容器厚度

下表为国外部分压力容器标准材料许用应力值选取方法和安全系数,其中,选取奥氏体不锈钢材料许用应力值的方法和安全系数差别较大。

部分国内外压力容器标准材料许用应力值选取方法和安全系数表

注:F为碳钢,A为奥氏体不锈钢,δ为延伸率

7 结论

1)确定压力容器材料许用应力值时,以材料的屈服强度和抗拉强度为基准,均有理论依据,应同时考虑。

2)压力容器安全系数的选取建立在经验基础上,随着理论研究和科学实验的进步,在保障压力容器安全性前提条件下,压力容器安全系数逐步降低,节省材料。

3)奥氏体不锈钢材料有非常大的应变强化能力。欧盟EN13445—2002压力容器标准奥氏体不锈钢材料许用应力选取方法和安全系数,建立在理论研究和实验研究基础上,并在欧洲有多年广泛使用经验,经济、实用、合理。

4)压力容器抵抗爆破实际安全系数不同于选取材料许用应力时的安全系数。

5)世界各国压力容器标准总体设计原则和设计技术差别不大,局部结构有少量差别,但选取材料许用应力值时,选择材料参数和安全系数的差别较大。

参考文献

[1] 吴宗之,任彦斌,牛和平等.基于本质安全理论的安全管理体系研究[J].中国安全科学学报,2007,17(7):54~58

[2] 姚安林.石化企业风险管理机制研究[J].中国安全科学学报,2007,17(7):38~45

[3] EN13445,Unfired Pressure Vessels[S],2002

[4] E.Upitis and K.Mokhtarian.Evaluation of design margins for section Ⅷ,Div.1 and 2 of ASME boiler and pressure vessel cede[J].WRC Bulletin,1998,435:1-85

[5] 2007 ASME Boiler &Pressure Vessel Code,Ⅷ-Division 1,Rules for Construction of Pressure Vessels[S],2007

[6] 杜志明,范军政.安全裕度研究与应用进展[J].中国安全科学学报,2004,14(6):6~10

[7] J.H.Gross.PVRC interpretive report of pressure vessel research,section 2--materials considerations[J].Welding Research Council Bulletin,1964,101:1-31

[8] P.M.Brister.Code design criteria in the U.S.A.evaluation of strength properties[A].1977 Design Criteria of Boilers and Pressure Vessels,Papers Presented at the Third International Conference on Pressure Vessd Technology[C].ASME,Tokyo,Japan,1977.4:35-53

[9] W.R.Chipperfield.Design Criteria for Boilers and Pressure Vessels in the United Kingdom[A].Criteria of Boilers and Pressure Vessels,Papers Presented at First International Conference on Pressure Vessel Technology[C].ASME,Delft,the Netherlands,1969.10:33-35

[10] 2007 ASME Boiler & Pressure Vessel Code,Ⅷ-Division 2,Alternative Rules for Construction of Pressure Vessels[S],2007

[11] GB150—1998.钢制压力容器[S],1998

[12] JB4732—1994.压力容器分析设计[S],1994

[13] O.Schmidt.German design criteria including safety factors on tensile strength and yield strength[A].Criteria of Boilers and Pressure Vessels,Papers Presented at First International Conference on Pressure Vessel Technology[C].ASME,Delft,the Netherlands,1969.10:9-13

[14] B.F.Langer.PVRC interpretive report of pressure vessel research,section 1--design considerations[J].WRC Balletin,1964,97:1-53

[15] B.F.Langer and W.L.Harding.Material requiements for long life pressure vessels[J].Translation of ASME,Journal of Engineering for Power,1958,86:403-410

[16] Bernard F.Langer.Design-stress basis for pressure vessels[J].Experimental Mechanics,1971,30:1-11

信息来源:中国安全科学学报2008.6(责任编辑:袁辉)

套管安全系数计算

套管安全系数计算 以下是为大家整理的套管安全系数计算的相关范文,本文关键词为套管,安全系数,计算,套管,安全系数,计算,下表,抗拉,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在医药卫生中查看更多范文。 套管安全系数计算如下表: 抗拉安全系数=68.6710008.95011.8185.02286=? ??Kn

Kn pp= 拉 额 8 .72 .1110008.9- =:其中浮力系数下深每米重量=浮力系数钢拉ppmρ??? 36.20383

.0791.7== 抗挤系数=抗拉 额 mpa pp p抗挤力=〔()〕50= p抗挤力=〔ρ固井时的泥浆密度-(1-掏空系数)ρ下次泥浆密度〕 32588.0823.18==抗内压系数=抗内压额内 mpa

mpa pp 井底最大内压力=50= p内压力=(ρ下次最大泥浆-ρ地层水)套管下深23.31000 8.9202053.5985.09.3233=抗拉系数=? ??Kn ()[]38.12020 2.165.012.100981.0305.21=抗挤系数=

??--?mpa 67.12020 2.100981.0645 .139=抗内压系数=?? 油套φn80 38.41000 8.9175076.2985.08.1903=抗拉系数=???Kn

()[]21.23600 2.165.012.100981.0881.60=抗挤系数= ??--?mpa50.13600 2.100981.036 3.63=抗内压系数=?? 〔s抗挤〕=~ 〔s抗内压〕=~ 〔s抗拉〕=~ 说明: ①本井在计算最大内压力时忽略了地层水产生液柱压力;②泥浆密度均采用1.2g/cm;

压力容器安全性评价技术

压力容器安全性评价技术 随着高新技术的不断发展,对压力容器的安全性提出了更多的要求,压力容器通常处于承压状态下运转工作,由于其接触的介质大多是易燃易爆或高温物,一旦出现故障,不但会影响正常的生产,还会引起火灾爆炸等重大事故,严重威胁人们的生命财产安全,因此,压力容器的安全性,具有重要的意义。 关键字:压力容器;安全;评估与检测 Absrtact:with the development of high and new technology,more requirements are put forward for the safety of pressure vessels. Pressure vessels usually operate under pressure,because most of the media they come into contact with are flammable,explosive or high temperature materials.Once failure occurs,it will not only affect normal production,but also cause major accidents,such as fire and explosion,which seriously threaten the safety of people’s lives and property. Therefore,the safety of pressure vessels is of great significance. Keywords:pressure vessel;safety;evaluation and detection 一、国内外研究现状 国内外科学家对各种金属构件在腐蚀环境下的断裂失效进行了多方面的研究,取得了丰硕的成果。早在20世纪30-40年代,国际上就开始了对概率安全评定(PSA)的研究,在建立模型中考虑了参数的实际离散性。1980年代后期,我国也开展了一些这方面的研究工作,取得了良好效果。 目前,国内外主要针对特定的装置进行风险评估,或者对材料在某种介质下的特殊行为进行实验研究。基于弹塑性力学和断裂力学的含缺陷压力容器安全评估研究已经比较深入,在《压力容器安全技术监察规程》中也允许开展缺陷评定来处理一些存在难以消除的严重缺陷但又有使用价值的压力容器,但这是以牺牲安全为前提条件的,国内还有争议,西方国家官方也未认可,目前在国内尚处于控制使用,仅限于在大型关键和确需的前提下开展。 我国石化企业里面压力容器普遍存在超期服役的现象,均匀腐蚀与局部冲刷腐蚀的比例偏高,凹坑与局部减薄很多,属于體积型缺陷,主要失效模式是由塑性极限载荷控制的。一类是原始先天缺陷,由于表面缺陷打磨形成凹坑,在使用中没有介质腐蚀的话,这类凹坑或局部减薄一般不会发生变化,是死缺陷,而且位置固定,容易发现与监控,危害性相对较小;另一类是使用中产生的凹坑与减薄,如腐蚀坑、冲刷、磨损、沟槽等等,这类缺陷是活缺陷,局部减薄尺寸会不断加大,可能存在于管道与设备的任何位置,难于发现且危害性较大。我国从1970年代初开始研究压力容器断裂理论,经过十年的研究工作,汲取国际上先进的压力容器缺陷评定技术,于1984年颁布了我国的压力容器缺陷评定标准,即“压力容器缺陷评定规范(CVDA-1984)”。该标准直接引用了国外标准中比较

最新压力容器的强度计算

压力容器的强度计算

第11章压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。(5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel)

考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm) 3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立 进行水压试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许 多塔器顶部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。

套管安全系数计算

套管安全系数计算如下表: 抗拉安全系数=68.6710008.95011.8185.02286=? ??KN KN P P = 拉 额 8 .72 .1110008.9- =: 其中浮力系数下深每米重量=浮力系数钢 拉P P m ρ??? 36.20383 .0791.7== 抗挤系数=抗拉 额 MPa P P P 抗挤力=0.00981×〔1.2-(1-0.65)×1.2〕×50=0.383 P 抗挤力=0.00981×〔×ρ固井时的泥浆密度-(1-掏空系数0.65)×ρ下次泥浆密度〕 32588.0823.18==抗内压系数=抗内压额内 MPa MPa P P 井底最大内压力=0.00981×1.20×50=0.588MPa P 内压力=0.00981×(ρ下次最大泥浆-ρ地层水)×套管下深 23.31000 8.9202053.5985.09.3233=抗拉系数=? ??KN ()[]38.12020 2.165.012.100981.0305.21=抗挤系数= ??--?MPa 67.12020 2.100981.0645 .139=抗内压系数=?? 油套φ139.7 N80×9.17

38.41000 8.9175076.2985.08.1903=抗拉系数=? ??KN ()[]21.23600 2.165.012.100981.0881.60=抗挤系数= ??--?MPa 50.13600 2.100981.0363 .63=抗内压系数=?? 〔S 抗挤〕=1.0~1.125 〔S 抗内压〕=1.05~1.15 〔S 抗拉〕=1.60~2.00 说明: ①本井在计算最大内压力时忽略了地层水产生液柱压力; ②泥浆密度均采用1.2g/cm ; ③各额定压力查钻井手册表3-8(第160~180页)。

在用含凹坑缺陷的压力容器安全评定

在用含凹坑缺陷的压力容器安全评定 任国栋 (1.新疆维吾尔自治区特种设备检验研究院, 乌鲁木齐 830011) 本工作技术总结根据国家标准,对含有裂纹或者有其他缺陷的压力容器打磨后形成的凹坑进行测量,分析与计算,得出凹坑允许存在的边界数据和安全评定方法。还用excel 编制一个程序,运用该程序对检验过程中的实例进行计算,并说明参数选取方法和计算步骤。 1、前言: 锅炉、压力容器、压力管道遍布我国各行各业。由于历史、科技和管理上的原因,这类设备普遍存在制造质量差、缺陷严重等问题,加上不少设备超期服役,“带病”运行和安全评估技术落后,爆炸和泄漏事故时有发生。在检修过程中,往往发现缺陷需要打磨,而打磨后的凹坑又又是超标缺陷,而企业往往检验周期短,又来不及购买新的设备,维修时间又较长,严重影响了企业的生产,并加重了企业负担。一太容器的停用直接影响整个生产链条,因此,依靠科学技术,对此类设备的缺陷进行科学的安全评估,降低事故率、有效保障安全生产,就显得十分重要和迫切。 安全评定应包括对评定对象的状况调查(历史、工况、环境等)、缺陷检测、缺陷成因分析、失效模式判断、材料检验(性能、损伤与退化等)、应力分析、必要的实验与计算,并根据本标准的规定对评定对象的安全性进行综合分析和评价。 2、评定方法与限定条件 2.1、规定了内压容器壳体表面凹坑缺陷安全评定的基本方法和步骤。在应用本方法评定之前,应将被评定缺陷打磨成表面光滑、过渡平缓的凹坑,并确认凹坑及其周围无其他表面缺陷或埋藏缺陷。 2.2 本节之规定适用于符合下述条件的压力容器: 2.2.1 00.18B R <的筒壳或00.18B R <的球壳; 2.2.2 材 料韧性满足压力容器设计规定,未发现劣化; 2.2.3 凹坑深度Z 小于计算厚度B 的60%,且坑底最小厚度B-Z 不小于2mm ; 2.2.4 凹坑长度2X ≤ 2.2.5 凹坑宽度2Y 不小于凹坑深度Z 的6倍(容许打磨至满足本要求)。 对于超出上述规定的限定条件或在服役期间表面有可能生成裂纹的凹坑缺陷,应按平面缺陷进行评定。 3、评定程序 3.1 凹坑缺陷的安全评定按下列步骤进行: 3.1.1 缺陷的表征; 3.1.2 缺陷部位容器尺寸的确定; 3.1.3 材料性能数据的确定; 3.1.4 无量纲参数0G 的计算和免于评定的判别; 3.1.5 塑性极限载荷和最高容许工作压力的确定; 3.1.6 安全性评价。 3.2、单个凹坑缺陷的表征 表面的不规则凹坑缺陷按其外接矩形将其规则化为长轴长度、短轴长度及深度分别为2X ,2Y 及Z 的半椭球形凹坑。其中长轴2X 为凹坑边缘任意两点之间的最大垂直距离,短轴2Y

压力容器常用标准汇集

常用常压容器标准 1、NB/T47003.1-2009《钢制焊接常压容器》-----取代JB/T4735-1997 2、NB/T47015-2011《压力容器焊接规程》-----取代JB/T4709 3、GB912-2008 《碳素结构钢和低合金结构钢热轧薄钢板和钢带》 4、GB/T3274-2007 《碳素结构钢和低合金结构钢热轧厚钢板和钢带》 5、GB/T4237-2007 《不锈钢热轧钢板和钢带》表面质量 6、GB/T3280-2007 《不锈钢冷轧钢板和钢带》加工等级 7、GB/T3091-2008 《低压流体输送用焊接钢管》Q235A Q235B 8、GB/T3092-2008 《低压流体输送用镀锌焊接钢管》Q235A Q235B 9、GB/T8162-2008 《结构用无缝钢管》10 20 承压试验 10、GB/T8163-2008 《流体输送用无缝钢管》10 20 11、GB6479-2008 《高压化肥设备用无缝钢管》Q345 16Mn 12、GB13296-2013 《锅炉热、交换器用不锈钢无缝钢管》304 13、GB/T14976-2012 《流体输送用不锈钢无缝钢管》 14、GB/T700-2008 《碳素结构钢》型钢、标准件 15、GB/T1591-2008 《低合金高强度结构钢》Q345 16、GB/T983-2012 《不锈钢焊条》 17、GB/T5117-2012 《非合金钢细晶粒钢焊条》 18、GB/T5118-2012 《热强钢焊条》 19、GB/T5293-1999 《埋弧焊用碳钢焊丝和焊剂》 20、GB/T12470-2003 《埋弧焊用低合金钢焊丝和焊剂》 21、GB/T14957-2012 《熔化焊用钢丝》 20、JB/T4747-2012 《压力容器用钢焊条订货技术条件》 20、YB/T509-2005 《焊接用不锈钢丝》 21、GB/T25198-2010《压力容器封头》---------JB/T4746 封头 22、JB/T4701-2002 《甲型平焊法兰》 23、JB/T4702-2002 《乙型平焊法兰》 24、JB/T4703-2002 《长颈对焊法兰》 25、HG21514-21535 -2005 《各型钢制人孔和手孔》 HG21515-2005 《常压人孔》 26、HG21594-21604 -1999 《不锈钢人孔、手孔》选用 27、HG/T20592-20635-2009 《钢制管法兰、垫片、紧固件》 GB/T5782-2000 《六角头螺栓》M10-M33、 GB/T5785-2000 《六角头螺栓细牙》M36×3~M56×4 5.6-8.8 ≤1.6MPa GB/T901-2000 《等长双头螺柱》B级 5.6-8.8 ≤1.6MPa HG/T20613 全螺纹螺柱≤16MPa GB/T6170-2000 《Ⅰ六角头螺母》M10-M33、 GB/T6171 《Ⅰ六角头螺母.细牙》M36×3~M56×4 6-8 ≤1.6MPa GB/T6175-2000 《Ⅱ六角头螺母》M10-M33、 GB/T6176 《Ⅱ六角头螺母.细牙》M36×3~M56×4 ≤16MPa 28、JB/T4710-2005 《钢制塔式容器》裙座 30、JB/T4712.1--4-2007《容器支座》耳式支座、支腿式支撑、支撑式支座 31、GB/T3098.1--2 《紧固件机械性能》

压力容器的强度计算

第11章压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150 - 98钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器一分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准 则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。

3、设计压力(design pressure (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W :在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置 时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure )。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa的内压容器,设计压力取为0.1Mpa ; ②当容器上装有超压泄放装置时,应按超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B (标准的附 录),超压泄放装置。) 计算压力P C是GB150-1998新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温 度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应 力计算时设计到的材料物理性能参数。 ?设计温度不得低于元件金属在工作状态可能达到的最高温度; ?当设计温度在0C以下时,不得高于元件金属可能达到的最低温度; ?当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998对钢板、锻件、紧固件均规定了材料的许用应力。 表3钢制压力容器中使用的钢材安全系数 帝训戒讲计盘雇下 的划帶点设计■盧FS4沖万小时祈闿的 iitftiUfS 下坨W H小时U4 + * 1的蒔空權展tr: 169 表2无缝钢管制作筒体时容器的公称直径(mm)

压力容器常用标准、规范

压力容器设计常用规、规定和标准 1.设计标准 GB 150-1998 钢制压力容器* GB 151-1999 管壳式换热器* GB 12337-1998 钢制球型储罐 HG/T 20569-1994 机械搅拌设备 JB/T 4710-2005 钢制塔式容器 JB/T 4731-2005 钢制卧式容器 JB/T 4734-2002 铝制焊接容器 JB/T 4735-1997 钢制焊接常压容器 JB/T 4745-2005 钛制焊接容器 2.基础标准 HG 20580-1998 钢制化工容器设计基础规定* HG 20581-1998 钢制化工容器材料选用规定* HG 20582-1998 钢制化工容器强度计算规定HG 20583-1998 钢制化工容器结构设计规定* HG 20584-1998 钢制化工容器制造技术要求HG 20585-1998 钢制低温压力容器技术规定* HG 20652-1998 塔器设计技术规定

3.设备型式参数标准 GB/T 17261-1998 钢制球型储罐型式与基本参数 JB/T 4714-1992 浮头式换热器和冷凝器型式与基本参数JB/T 4715-1992 固定管板式换热器型式与基本参数 JB/T 4716-1992 立式热虹吸式重沸器型式与基本参数JB/T 4717-1992 U型管式换热器型式与基本参数 4.制造检验标准 GB/T 4334.1-2000 不锈钢10%草酸浸蚀试验方法 GB/T 4334.2-2000 不锈钢硫酸-硫酸铁腐蚀试验方法 GB/T 4334.3-2000 不锈钢65%硝酸腐蚀试验方法 GB/T 4334.4-2000 不锈钢硝酸-氢氟酸腐蚀试验方法 GB/T 4334.5-2000 不锈钢硝酸-硫酸铜腐蚀试验方法 GB/T 4334.6-2000 不锈钢5%硫酸腐蚀试验方法 JB 4708-2000 钢制压力容器焊接工艺评定 JB/T 4709-2000 钢制压力容器焊接规程 JB/T 4730-2005 承压设备无损检测 5.筒体 GB/T 9019-2001 压力容器公称直径 GB/T 17395-1998 无缝钢管尺寸、外形、重量及允许偏差

含凹坑缺陷压力容器安全评定方法的研究

含凹坑缺陷压力容器安全评定方法的研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

含凹坑缺陷压力容器安全评定方法的研究凹坑是最常见的压力容器体积性缺陷。本课题是通过大量的极限与安全性数值分析和实验测试,全面地、系统地、深入地研究球形、椭球形、长条形等各种凹缺陷对平板、球形容器和圆筒性容器等典型结构的应力分布,塑性区扩展过程,失效模式及极限与安全性载荷的影响,给出了一系列极限与安全性载荷计算图表与拟合公式,并提出了在役压力容器的免于评定条件和工程评定方法。 本课题从工程应用出发,提出三种可大幅度减少计算规模的极限与安全性分析方法,从而使大量带凹坑容器的分析计算成为可能。 主要成果有以下几项: (1)提出了结构极限与安定性上、下限的降低直接叠代法,无搜索直接叠代法和温度参数法。这些算法共同特点是:运算速度快、效率高、收敛性与稳定性好、精度可靠、大幅度减小了计算规模,较好地解决了安定性理论和极限分析的实际衫问题。此外,还实现了应用ANSYS,通过程度计算带凹坑容器极限载荷的全自动前处理功能。 (2)通过等参加权、染色处理、镜射拼装等技术以及对凹坑缺陷尺寸和形状的判别,实现了含凹坑缺陷结构理想网络单元的智能化选择与有限元数据的全自动生成;通过理论分析和初步试算,进行凹坑多影响因素(次要影响因素)偏保守的工程化简,减少计算工作量。 (3)通过大量理论计算和实验测试全面、系统、深入研究凹坑对平板球壳、圆筒壳等结构极限与安定性载荷的影响,并将新有计算数据进行拟

合处理,给出一系列的极限载荷计算公式。此外,在讨论承受内压的带凹坑容器的极限载荷、安全性载荷及两倍的弹性极限载荷三者间相互关系的基础上,进一步明确用弹性应力集中系数和承载净截面削弱法分别估算结构安定性载荷与极限载荷的适用范围。 (4)应用塑性极限与安定性准则,提出了对带凹坑缺陷的压力容器的免于评定条件和工程评定方法。 上述研究成果,适用于对压力容器各种表面或近表面的面型缺陷和体积型缺陷,打磨消除后形成的凹坑缺陷进行安全评定。评定后,可以“解放”了一大批超标缺陷,避免了不必要的设备报废、返修和停产损失。要指出的是:本课题研究主要集中于薄壁球形和圆筒形压力容器的体积型缺陷。

压力容器强度计算(20210201112022)

压力容器强度计算 第一节设计参数的确定 1我国压力容器标准与适用范围 我国现执行GB150 - 98钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则, 应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器一分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的 ASME标准思路相似。 2、容器直径(diameter of vessel 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2无缝钢管制作筒体时容器的公称直径(mm) 3、设计压力(design pressure (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际 最高工作压力(the maximum allowable working pressure )。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下,可能达到的最高金属温 度确定。(详细内容,参考GB150-1998,附录B (标准的附录),超压泄放装置。)

压力容器常见分类标准

压力容器常见分类标准 一、使用年限:一般设计使用年限为10-15年,对高压容器,一般为20-25年。 二、按压力分 (一)内压容器低压容器0.1≤P<1.0MPa 中压容器 1.0≤P<10MPa 高压容器10≤P<100MPa 超高压容器P≥100MPa (二)外压容器容器内部压力小于外部压力,其中内部压力小于一个绝对大气压(0.1MPa)的外压容器叫真空容器。 三、按管理分 (一)一类容器(属下列情况之一) 1、非易燃或无毒介质的低压容器。 2、易燃或有毒介质的低压分离容器和换热容器。 (二)二类容器(属下列情况之一) 1、中压容器 2、剧毒介质的低压容器。 3、易燃或有毒介质的低压反应容器和贮运容器。 4、内径小于1米的低压废热锅炉。 (三)三类容器(属下列情况之一) 1、高压、超高压容器。 2、剧毒介质但最高工作压力P w与容积V的乘积大于0.2MPa.m3的低压容器或剧毒介质的中压容器。 3、易燃或有毒介质且P w×V≥0.5MPa.m3的中压反应容器,或P w×V≥5MPa.m3的中压贮运容器。 4、中压废热锅炉或内径大于1米的低压废热锅炉。 注: 1、剧毒介质:指进入人体量小于50克即会引起肌体严重损伤或致死的介质。如:氟、氢氟酸、氢氰酸、光气、氟化氢、碳酰氟等。 2、有毒介质:指进入人体量大于等于50克即会引起人体正常功能损伤的介质。如:二氧化硫、氨、一氧化碳、氯乙烯、甲醇、氧化乙烯、硫化乙烯、二硫化碳、乙炔、硫化氢等。 3、易燃介质:指与空气混合的爆炸下限<10%或爆炸上限和下限之差值>20%的气体。如:一甲胺、乙烷、乙烯、氯甲烷、环氧乙烷、环丙烷、氢、丁烷、三甲胺、丁二烯、丁烯、丙烷、丙烯、甲烷等。 四、按作用原理分 (一)反应容器 主要用来完成介质的物理、化学反应的容器。如反应器、发生器、反应釜、分解锅、分解塔、聚合釜、高压釜、合成塔、变换炉、蒸煮锅、蒸球等。 (二)换热容器 主要用来完成介质的热量交换的容器。如废热锅炉、蒸发器、加热器、硫化锅、消毒

最新版精选特种设备作业人员《压力容器》考核题库完整版(含标准答案)

2020年特种设备作业人员考试题库《压力容器》158 题(含答案) 一、选择题 1.玻璃板式液面计有A或已经破碎的应停止使用。 A.裂纹 B.气泡 C.泄漏 2.安全阀是一种自动B装置。 A.液位报警 B.泄压报警 C.超温报警 D.计量报警 3.压力容器在B,使用单位应当向直辖市或者设区的市的特种设备安全监督管理部门登记,领取使用登记证。 A.投入使用前30日内 B.投入使用前或者投入使用后30日内 C.投入使用后3个月内 4.压力容器拟停用A年以上的,使用单位应当封存压力容器,在封存后C日内向登记机关申请报停,并将使用登记证交回登记机关保存。 A.1 B.半 C.30 D.15 5.压力容器的使用单位,应当在工艺操作规程和岗位操作规程中,明确提出压力容器安全操作要求。操作规程至少包括以下内容:ABCD。 A.操作工艺参数 B.岗位操作方法 C.运行中重点检查的项目和部位 D.运行中可能出现的异常现象和防止措施 6.《压力容器定期检验规则》将压力容器的检验分为AB和C两种。 A.年度检查

B.全面检验 C.耐压试验 D.定期检验 7.有ABCD的压力容器,全面检验合格后必须进耐压试验。 A.停止使用2年后重新使用的 B.从外单位或本单位移装的 C.受压元件焊补深度大于1/2壁厚的 D.用焊接方法更换压元件的 8.压力容器通过安装B来观察容器内液面的高低。 A.温度计 B.液面计 C.压力表 D.流量计 9.压力容器的爆炸事故,按其起因有AB。 A.物理爆炸 B.化学爆炸 10.《固定式压力容器安全技术监察规程》规定介质危害性用AD表示。 A.介质毒性程度 B.介质致癌性 C.介质慢性中毒 D.爆炸危害程度 11.压力容器在正常使用压力范围内,无塑性变形的情况下,突然发生的爆炸称为B。 A.塑性破裂 B.脆性破裂 C.疲劳破裂 D.蠕变破裂 12.一般压力容器事故的严重程度与ABD有关。 A.容器的工作压力 B.容器的容积 C.容器的直径 D.容器的工作介质 13.介质危害性用介质AB表示。

压力容器安全系数许用应力

作者邓阳春陈钢杨笑峰徐彤 【摘要】压力容器安全系数与材料参数紧密相关,确定材料许用应力值时,需要同时考虑材料抗拉强度和屈服强度更为合理;奥氏体不锈钢材料具有非常好的应变强化能力和韧性,为充分发挥奥氏体不锈钢材料优良性能,选取奥氏体不锈钢材料许用应力值时,需要特殊考虑。压力容器安全系数的选取建立在经验基础上,在保障压力容器安全性前提条件下,为节省材料和降低成本,随着理论研究深入和科学实验的进步,压力容器安全系数有所降低,这是科学设计和实用成功经验结合的结果。 【关键词】压力容器;材料;许用应力;标准;安全系数 0 引言 压力容器广泛用于工业领域及日常生活领域,一旦破坏,往往造成灾难性事故。为确保公众安全,应用科学技术和使用经验,世界各国制订了压力容器标准,并通过法规等形式强制执行。合理选取材料许用应力值是保障压力容器安全、合理使用的科学基础。 1914年,美国制定了世界上第一部压力容器标准,材料许用应力值仅以抗拉强度为基准。直到1943年,英国压力容器标准选取材料许用应力值时首次引入材料屈服强度为基准。为保证压力容器安全,确定材料许用应力值时,同时考虑材料抗拉强度和屈服强度更为合理。奥氏体不锈钢材料具有非常好的应变强化能力和韧性,为充分发挥奥氏体不锈钢材料优良性能,选取奥氏体不锈钢材料许用应力值时需特殊考虑。 目前,确定压力容器材料许用应力值一般取min{σs/n s,σb/n b,σD/n D,σn/n n}。其中,σs,σb,σD,σn 分别为材料的屈服强度、抗拉强度、蠕变强度和疲劳强度,在大多数工况下,压力容器材料主要考虑屈服强度和抗拉强度,在一定条件下,才需考虑材料蠕变强度和疲劳强度;n s,n b,n D,n n为安全系数。 安全系数主要取决于人们对客观规律的理解程度和设备发生事故的危害程度,压力容器安全系数的选取建立在经验基础上,随着理论研究和科学实验的进步,在保障压力容器安全性前提条件下,为节省材料和经济考虑,压力容器安全系数有降低的趋势[1-2]。 欧盟许多国家压力容器标准安全系数过去就较低,2002年制定了统一的压力容器标准,安全系数明显降低[3]。由于国际竞争等原因,美国机械工程师协会在对压力容器标准系统研究基础上,2007年将压力容器标准中的分析设计标准安全系数降低[4-5]。 为保障压力容器安全性与经济性统一[6],针对压力容器标准安全系数降低的国际趋势,笔者提出开展压力容器安全系数方面的研究,重点探讨压力容器材料屈服强度和抗拉强度及其相应的安全系数。 1 材料抗拉强度 美国ASME于1914年制定了世界上第一部压力容器标准,压力容器材料许用应力值仅考虑材料抗拉强度。在20世纪30年代前,该方法为世界各国普遍接受。 20世纪50—60年代,美国ASME针对当时欧洲许多国家压力容器标准材料许用应力值由材料屈服

压力容器最新常用标准

常用最新标准 国家能源局发布标准: NB/T 47001-2009(JB/T4713)《钢制液化石油气卧式储罐型式与基本参数》;NB/T 47002.1~.4-2009(JB/T4733.1~.4)《压力容器用爆炸焊接复合板》;NB/T 47003.1~.2-2009(JB/T4735.1~.2)《钢制焊接常压容器固体料仓》;NB/T 47008-2010(JB/T4726)《承压设备用碳素钢和合金钢锻件定》; NB/T 47009-2010(JB/T4727)《低温承压设备用低合金钢锻件》; NB/T 47010-2010(JB/T4728)《承压设备用不锈钢和耐热钢锻件》; NB/T 47011-2010《鋯制压力容器及释义》; NB/T 47012-2010(JB/T 4750) 《制冷装置用压力容器》 NB/T 47013-2010《承压设备无损检测第10部分-衍射时差法超声检测TOFD》;NB/T 47014-2011(JB/T4708)《承压设备焊接工艺评定》; NB/T 47015-2011(JB/T 4709)《压力容器焊接规程》; NB/T 47016-2011(JB/T 4744)《承压设备产品焊接试件的力学性能检验》;NB/T 47017-2011《压力容器视镜》; NB/T 47018.1~.7-2011(JB/T 4747)《承压设备用焊接材料订货技术条件》;NB/T 47019.1~.8-2011《锅炉热交换器用管订货技术条件》 NB/T 47021-2012(JB/T4701)《甲型平焊法兰》 NB/T 47022-2012(JB/T4702)《乙型平焊法兰》 NB/T 47023-2012(JB/T4703)《甲型平焊法兰》 NB/T 47024-2012(JB/T4704)《长颈对焊焊法兰》 NB/T 47025-2012(JB/T4705)《非金属软垫片》 NB/T 47026-2012(JB/T4706)《金属包垫片》 NB/T 47027-2012(JB/T4707)《压力容器法兰用紧固件》 NB/T 47028-2012《压力容器用镍及镍合金锻件》 NB/T 47029-2012《压力容器用铝及铝合金锻件》 压力容器材料标准 碳素钢和低合金钢板 ■GB713《锅炉和压力容器用钢板》(Q245R、Q345R、Q370R…….) ■GB3531《低温压力容器用低合金钢钢板》(16MnDR、15MnNiDR…….) ■GB19189《压力容器用调质高强度钢板》(07MnMoVR………)

材料的许用应力和安全系数计算三角

第四节 许用应力·安全系数·强度条件. 强度计算。三角函数 由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb ;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs 。脆性材料的强度极限σb 、塑性材料屈服极限σs 称为构件失效的极限应力。为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。在强度计算中,把材料的极限应力除以一个大于1的系数n (称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。对于脆性材料,许用应力 (5-8) 对于塑性材料,许用应力 (5-9) 其中、分别为脆性材料、塑性材料对应的安全系数。 安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。 安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取,甚至取到5~9。 为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即 (5-10) 上式就是杆件受轴向拉伸或压缩时的强度条件。根据这一强度条件,可以进行杆件如下三方 面的计算。 1.强度校核 已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,验算杆件是否满足强度条件。 2.截面设计 已知杆件所受载荷和材料的许用应力,将公式(5-10)改成 , 由强度条件确定杆件所需的横截面面积。 3.许用载荷的确定 已知杆件的横截面尺寸和材料的许用应力,由强度条件 确定杆件所能承受的最大轴力,最后通过静力学平衡方程算出杆件所能承担的 最大许可载荷。 例5-4 一结构包括钢杆1和铜杆2,如图5-21a 所示,A 、B 、C 处为铰链连接。在 b b n σσ= ][s s n σσ= ][b n s n 0.2~5.1=s n 0.5~0.2=b n ][max max σσ≤= A N ][σN A ≥ ][max σA N ≤

压力容器的发展趋势

压力容器的发展趋势 一、前言 压力容器基本都是在承压状态下工作,并且所处理的介质多为高温或易燃易爆,危险性极高,因此世界各国均将压力容器作为特种设备予以强制性管理。压力容器的类型和功能也随应用场合的不同而随之变化,其整个设计,制造和使用过程涉及冶金、结构设计、机加工、焊接、热处理、无损检测,自动化等专业技术门类。因此,压力容器的技术发展是在建立在各专业技术综合发展的基础之上。 二、压力容器本体的发展方向: 随着国际经济,技术的贸易交流日渐加强和压力容器的设计,制造及使用管理的成熟化,国内外压力容器的发展逐渐呈现出以下几个方向: 1、通用化与标准化: 压力容器通用化和标准化已成为不可逆转的趋势之一。这是因为通用化与标准化也就意味着互换性的提高,这不仅有利于压力容器使用单位日常维护与后勤保障,而且能够最大限度地减少设计和制造成本。同时,对于像我们这样的出口大国,标准化也意味着获得了走向国际的通行证。从世界范围内的压力容器出口大国的实践分析可以看出,国际化的工程公司可以带动本国的压力容器行业的发展和标准的国际化认可,从而获得更大的国际发言权和丰厚的经济利润。 2,特殊化与专业化: 通用化与标准化虽然有许多优点,但在这类压力容器只能用在一些普通场合,在具有特殊要求的工作环境下必须使用具有特殊功能的压力容器。如核反应容器,水晶加工容器和火箭燃料箱等就要求压力容器必须具备极强的耐腐蚀,耐高压和耐高温能力。正是这些特殊的需求促使压力容器向着特殊化与专业化的方向不断地发展和进步。 (1)超高压容器:它是指工作压力大于或等于100MP的容器,这类容器在乙烯的聚合,人工水晶的制造等方面已经得到了广泛应用。但其依然存在着制造成本高昂和安全性不够理想的问题。现在随着新型材料出现和冶金业的发展超高压容器的耐压能力和强度极限也在逐步提升,这都将促使超高压容器进一步发展。 (2)高温压力容器:所谓高温﹐通常是指壁温超过容器材料的蠕变起始温度(对于一般钢材约为350℃)。火力发电站的锅炉汽包﹑煤转化反应器﹐某些堆型(高温气冷堆和增殖反应堆)核电站的反应堆压力容器等﹐都是高温压力容器。高温压力容器因材料的蠕变会产生形状和尺寸的缓慢变化。材料在高温的长期作用下﹐其持久强度较短时抗拉强度低得多。因此选择材料的主要依据是高温持久强度和耐腐蚀性。高温压力容器的应力分析比较复杂﹐求理论解相当困难。现代实践表明﹐采用有限元法分析是切实可行的。如果容器承受交变载荷(例如反复升压和降压)﹐还应考虑疲劳(见疲劳强度设计)和蠕变的交互作用。

压力容器的强度计算]

压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel) 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm)

3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附 录),超压泄放装置。) ?计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989 对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature) 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。 表3 钢制压力容器中使用的钢材安全系数

相关文档
最新文档