外压容器的设计计算
压力容器设计外压圆筒的设计计算

本节重点
外压容器设计参数的规定; 设置加强圈的目的及结构要求 。
本 节 完
单击此处添加副标题
谢谢大家!
由该式建立B与A的关系图
第三节 外压圆筒的设计计算
工程设计方法
外压圆筒 (Do/te)
薄壁圆筒(Do/te≥20)
失稳
Do/te=20
厚壁圆筒(Do/te<20)
失稳
强度失效
第三节 外压圆筒的设计计算
第三节 外压圆筒的设计计算
Do/te≥20薄壁筒体,稳定性校核:
c. 由材料选——厚度计算图(图4-12~图4-15)
(b)
A在材料线左方时, ,按(b)式计算许用外压[p]:
系 数 A
设计温度
根据
(a)
第三节 外压圆筒的设计计算
第三节 外压圆筒的设计计算
图算法求解过程
第三节 外压圆筒的设计计算
pc>[p]——假设tn不合理 ——重设tn,直到满足
pc≤[p]且较接近—— 假设的名义厚度tn合理
容器外部:焊接的总长不小于 筒体外圆周长的1/2
3、加强圈的结构设计
工字钢
其它型钢
常用 型钢
扁钢
角钢
材料:多为碳素钢。 筒体为贵重金属,在筒体外部设置碳素钢加强圈, 节省贵重金属。
第三节 外压圆筒的设计计算
第三节 外压圆筒的设计计算
第四章 外压容器设计
第三节 外压圆筒的设计计算
第三节 外压圆筒的设计计算
特点:反复试算,比较繁琐。
图算法
解析法
外压圆筒设计
第三节 外压圆筒的设计计算
图算法原理:(标准规范采用)
03
为避开材料的弹性模量E(塑性状态为变量),采用应变表征失稳时的特征:
外压容器的设计计算

外压容器的设计计算外压容器是一种用于储存或输送气体、液体或粉状物料的设备,设计计算是确保容器在正常工作条件下能够承受外部压力的重要环节。
下面将从容器的负荷计算、材料选择和结构强度校核等方面进行详细介绍。
首先,容器的负荷计算是设计计算的关键步骤之一、负荷可分为静止负荷和动载荷两部分。
静止负荷包括容器本身的重量、储存物的重量以及设备上附件的负荷;动载荷包括地震力、风荷载等。
针对每个负荷的特点,需要采用相应的计算方法进行计算。
静止负荷的计算可以使用强度、稳定性和刚度等方面的计算方法,而动载荷则可以使用动力学和模态分析方法。
接下来,材料选择是外压容器设计中的另一个重要考虑因素。
一般而言,常用的材料包括钢材、不锈钢和复合材料等。
在材料选择中,需要考虑材料的强度、刚度、耐腐蚀性、可焊性、可加工性等因素。
根据容器的具体工作条件和介质特性,可以选择合适的材料。
然后,容器的结构强度校核是设计计算中最关键的一步。
容器的结构强度主要包括轴向强度、环向强度和承压壳体强度三个方面。
轴向强度是指容器在轴向受力状态下的承载能力,一般计算采用拉伸强度和挤压强度的计算方法。
环向强度是指容器在环向受力状态下的承载能力,计算时采用圈接强度和薄壁圆筒强度的计算方法。
承压壳体强度是指容器在由于外压而受到的承载能力,计算时采用塑性分析和有限元分析方法。
此外,容器的设计还需要满足相应的安全要求。
例如,容器需要满足静态不破坏条件和动态不破坏条件,防止容器发生破裂,对人身和财产造成伤害。
同时,容器还需要满足泄漏要求,确保储存物料的安全。
容器的设计还需要满足相关的法律法规和标准要求,如ASME(美国机械工程师学会)标准。
综上所述,外压容器的设计计算是确保容器在正常工作条件下能够承受外部压力的关键环节。
其中包括负荷计算、材料选择和结构强度校核等方面。
通过科学合理的设计计算,可以保证容器的安全性和可靠性,提高容器的使用寿命,为工业制造提供可靠的储存和输送设备。
外压容器壁厚计算

外压容器的工作原理
外压容器是一种承受外部压力的容器,其壁厚设计需满足一定的压力承载要求。 当外压容器内压力低于外界压力时,容器外壁受到压力作用,产生向外扩张的趋势。
为了防止容器破裂,需要计算并确定适当的壁厚,以抵抗外部压力。
壁厚计算的基本公式
根据材料力学和压力容器的相关理论,可以推导 出外压容器壁厚的基本计算公式。
对未来外压容器设计的展望
智能化设计
绿色环保
定制化设计
跨界融合
随着人工智能和数值模拟技术 的发展,未来外压容器设计将 更加智能化,通过建立更加精 确的数学模型和优化算法,实 现更加快速、准确的设计和计 算。
未来外压容器设计将更加注重 环保和可持续发展,采用更加 环保的材料和制造工艺,降低 容器的能耗和排放,满足日益 严格的环保要求。
公式中包含了压力、容器半径、材料强度等参数, 用于计算所需的最小壁厚。
计算结果可为容器的设计和制造提供依据,确保 其安全性和可靠性。
壁厚计算的参数
压力
外压容器所承受的外部压力是决定壁厚的重 要因素。
容器半径
容器的尺寸直接影响壁厚的计算,半径越大, 壁厚需求也越大。
材料强度
容器的制造材料需具备足够的强度和韧性, 以满足外压承载要求。
其他因素
还包括温度、腐蚀等环境因素,这些因素可 能对外压容器的壁厚产生影响。
力等级
确定容器的直径、长度和压力等级, 这些参数将影响壁厚的计算。
了解容器的工作压力、设计压力、试 验压力等参数,以确保安全性和可靠 性。
选择合适的材料和厚度
根据容器的使用环境和压力等级,选 择合适的材料,如碳钢、不锈钢、铝 合金等。
随着市场需求的变化和多样化 ,未来外压容器设计将更加注 重定制化,以满足不同客户和 特定应用场景的需求。
过程设备设计-外压容器设计

(2)文教政策有鲜明政治性,服务政治、德育 (人伦道德教育)为重。 (3)重视官学(主要是大学),容纳私学,形成 一定的互补性。
(4)学校教育与取士选官制度的合一。
(5)贯穿学校、家庭、社会教育三者并重的精神。
第五章 外压容器设计
1、概述
2外压薄壁圆柱壳弹形失稳分析
短圆筒计算公式,由来塞斯(R、V.Misses)推出:
E e nl R n 1 1 R
2 2
Pcr
2
e 3 2 E 2n 2 1 ( ) n 1 2 2 12 1 R nl 1 R
式中:R——圆筒中面半径,cm; L——圆筒计算长度,cm; n——失稳的波数。 临界压力与波数n有关,但不是单调函数,需求的不同n值 时的值,其中最小值即为所求的。
R.V.Southwell对其进行了简化
3 凸形封头的弹形失稳分
外压容器的图算法(精)

[ p] 0.0833 E(
e
Ro
)
2
(5)比较:若[p]≥Pc,则以上假设的壁厚满足要 求,否则重新假设,重复以上步骤,直至[P]大于并接 近Pc为止。
【例题】
确定一外压圆筒的壁厚,如图所示。已 知:设计压力 p 0.2MPa , Di 1800mm ,设 t 250 C ,取壁厚附加量C=2mm, 计温度 材料Q345R。取 pc p 0.2MPa
hi
hi / 3 L
L 10350
hi / 3 L
【例题】
解:(1)假设名义厚度
n 14mm
e n C 12mm
D0 Di 2 n 1800 2 14 1828 mm
L 10350 / 3 3450 mm
L / D0 3450/ 1828 1.9
p B
e
D0
若A值落在设计温度下材料线的左方,则直接用 下式计算许用外压力[p],即
e 2 p EA 3 D0
n
一、外压圆筒的图算法
(5)比较:若[P]≥Pc,则以上假设的满足要求, 否则须重新假设名义厚度,重复上述步骤,直至[P] 大于并接近Pc为止。
二、外压封头的图算法
D0 / e 1828/ 12 152
【例题】
解: (2)由图1-134查得A=0.00035; (3)由图1-136可知A=0.00035,落在 250 C 线(插值)直线段,所以
1.86 1.69 E 10 5 1.775 10 5 MPa 2
【例题】
2 2 B EA 1.775 10 5 0.00035 41.42 MPa 3 3 (或从图中直接查取B值)
外压容器计算

钢板负偏差 C1 腐蚀裕量 C2 焊接接头系数 ф=
过程设备强度设计书
计算单位
MPa ºC
mm mm
中国轻工业武汉设计工程有限责任公司 椭圆封头简图
MPa MPa
MPa
mm mm
厚度及重量计算
计算厚度
有效厚度 最小厚度 名义厚度 结论
e n C1 C2 min n 满足最小厚度要求
2 e
校核条件
T T
校核结果
许用外压力 结论:
p B
D0 e 合格
压力及应力计算
合格
mm mm mm
kg
MPa MPa MPa
外压碟形封头计算 计算条件
计算压力 pc 设计温度 t 内径 Di 曲面高度 hi 材料
试验温度许用应力
设计温度许用应力 t
外压内圆筒计算 计算条件
计算压力 pc
设计温度 t= 内径 D i= 材料
试验温度许用应力
过程设备强度设计书
计算单位
中国轻工业武汉设计工程有限责任公司
筒体简图
MPa
ºC mm
MPa
设计温度许用应力 t
MPa
试验温度下屈服点 s
MPa
钢板负偏差 C1
mm
腐蚀裕量 C2
mm
焊接接头系数 ф=
厚度及重量计算
计算厚度
有效厚度 名义厚度 结论
e n C1 C2 δn = 满足最小厚度要求
重量
压力试验时应力校核
压力试验类型
液压试验
试验压力值
pT 1.25pc
压力试验允许通过的应力水平 T T 0.90 s
外压容器设计
外压容器设计一、外压容器的稳定性1、外压容器的稳定性概念外压容器的失效形式 强度不足 破裂刚度不足 失稳2、临界压力(1)临界压力( P 临):导致筒体失稳时的外压。
临界压应力(σ临):筒体在P 临作用下筒体内存在 的环向应力。
(2)许用压应力为保证外压容器的使用安全,设计压力应当满足如下条件:∴ P 临≥mP P 临≥3P (3)影响临界压力的因素①P 临与筒体尺寸的关系(i)当L/D 相同时,S/D 抗弯曲 P 临 (ii)当S/D 相同时,L/D 圆筒越短 P 临L/D 圆筒越长 P 临 短圆筒:能得到封头支撑作用的圆筒长圆筒:得不到封头支撑作用的圆筒∴ S/D 相同时,短圆筒的P 临高(iii )当S/D 、 L/D 都相同时,有加强圈者P 临高② P 临与材料性质的关系因圆筒体失稳时,其压应力并没达到材料的屈服极限,说明P 临与材料的屈服极限无直接关系。
而材料的弹性模量E 对E —抗变形能力, P 临各种材料的E 值相差不大,所以采用高强度钢代替一般碳钢制造外压容器并不能提高圆筒的P 临,相反还增加了容器的成本。
材料的组织不均匀性合同体的不圆度将使P 临下降。
][P m P p =≤临二、外压容器的设计1、理论公式计算法(1)壁厚的计算钢制长圆 : 钢制短圆筒: 将P 临≥3P 代入可得1)钢制长圆筒: mm2)钢制短圆筒: mm3)刚性圆筒一般:S L 的圆筒叫刚性圆筒一般不存在失稳,因此只考虑强度即可(2)临界长度 L 临当短圆筒的长度大到某一临界值L 临时,封头对筒体的支撑作用将完全消失,这时短圆筒的P 临将下降到长圆筒的P 临,即:解得: 为区别长短圆筒的临界长度 当 L< L 临时, 为短圆筒L>L 临时,为长圆筒(3)用理论公式设计的步骤①设理论壁厚为S 。
,并选定材料②计算L 临③比较确定圆筒类型L 与L 临,确定圆筒类型④根据圆筒类型计算P 临⑤计算许用应力[P]= P 临/3比较:设计压力P 与P 临若P ≤[P],且接近,假设的S 。
真空容器(外压水箱)设计计算
水箱 DHG-20
1500 4500 2250 3365.0 2600 2.51 14.4 5.29 304 137MPa 390 7930 0.030MPa 0.30bar 0.9 椭圆形封头 40 0.9 195000 1354.4 71170.3
长圆筒或者短圆筒判断 ? 短圆筒 短圆筒弹性失稳时的临界压 2.24 力p 是否满足P<临界弹性失稳压力 ? 满足,可如下估算! 短圆筒计算厚度C0 4.00 钢材厚度负偏差C1 .50mm 腐蚀余量C2 设计厚度(圆筒)C .25mm 5
真空容器(外压水箱)设计
序号
3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
项 目
水箱公称容积 m3 筒体钢板宽度 罐体经济高度 mm 罐体实际选用高度 mm 罐体经济直径 mm 罐体选取直径(EHA) 单个椭圆型封头容积V m3 实际总容积 m3 截面积 m2 圆筒钢板材质 筒体钢板许用应力 材料屈服强度 δb(MPa) 材料密度 设计外压 设计外压 换算单位 圆筒焊缝系数 封头类型 直边高度 封头焊缝系数 筒体材料弹性模量,MPa; 容器计算长度L mm 容器临界长度Lcr mm
压力容器设计外压圆筒的设计计算
压力容器设计外压圆筒的设计计算压力容器是一种用于贮存和输送液体或气体的设备,它承受着高压环境下的压力。
外压圆筒是其中一种压力容器的设计方式,其承受的是外部环境对容器的压力作用。
在外压圆筒的设计过程中,需要考虑以下几个方面:1.材料的选择:选取适合承受高压的材料,例如碳钢、不锈钢等。
根据压力容器的使用环境和介质特性,选择合适的材料,以保证容器的安全性和可靠性。
2.外压力的计算:根据容器所在环境的压力情况,计算外压力的大小。
外压的计算包括静态外压和动态外压两种情况,其中静态外压是指容器承受的恒定外力,而动态外压则是指容器承受的变化外力。
3.壁厚的计算:根据外压力的大小和材料的强度特性,计算容器的壁厚。
壁厚的计算是为了保证容器在外压力作用下的强度和刚度,以防止容器发生破裂、变形等事故。
4.稳定性的计算:在设计容器的几何形状时,需要考虑外压力对容器的稳定性的影响。
通过计算容器的抗剪稳定系数和抗弯稳定系数,判断容器是否满足稳定的要求。
5.接头设计:容器的接头连接处是容器的弱点,容易发生泄漏和破裂等事故。
在外压圆筒的设计中,需要经过计算和分析,选择合适的接头类型和连接方式,以保证接头的强度和密封性能。
6.强度计算:容器在外压力作用下,需要具备足够的强度承受力。
通过计算容器的主应力和主应变,确定容器的强度和破坏情况。
7.辅助装置的设计:外压圆筒在使用过程中,需要配备相应的辅助装置,如止回阀、减压阀等,以确保容器内压力的稳定和安全。
在设计完成后,需要进行一系列试验和检验,以验证容器的设计是否满足安全和可靠的要求。
总之,外压圆筒的设计计算是一项复杂而重要的工作,需要充分考虑几个方面的因素,以确保容器在高压环境下的安全运行。
第七章 外压容器设计
第七章 外压容器设计第一节 外压容器设计【学习目标】 掌握外压容器稳定性概念,了解加强圈设置规定;掌握外压圆筒、封头、加强圈的设计计算;掌握外压容器压力试验规定。
一、外压容器的稳定性容器在正常操作时,凡壳体外部压力高于内部者,均称为外压容器,这类容器有两种:真空容器;两个压力腔的夹套容器。
但是对于薄壁容器,承受外压作用时,往往在强度条件能够满足、应力远低于材料屈服强度的情况下,容器有可能因为不能保持自己原有的形状而出现扁塌,这种现象称为结构丧失了稳定性,即失稳。
失稳是由于外压容器刚度不足而引起的,因此,保证容器有足够的稳定性(刚度)是外压容器能够正常工作的必要条件,也是外压容器设计中首先应该考虑的问题。
按圆筒的破坏情况,外压圆筒可分为长圆筒、短圆筒和刚性圆筒三类。
长圆筒刚性最差,最易失稳,失稳时呈现两个波形。
短圆筒刚性较好,失稳时呈现两个以上的波形。
刚性圆筒具有足够的稳定性,破坏时属于强度失效。
1、临界压力外压容器由原平衡状态失去稳定性而出现扁塌时对应的压力称之为临界压力(p cr )。
影响临界压力的因素有:① 圆筒的几何尺寸δ/D (壁厚与直径的比值)、L /D (长度与直径的比值)是影响外压圆筒刚度的两个重要参数。
δ/D 的值越大,圆筒刚度越大,临界压力p cr 值也越大;L /D 的值越大,圆筒刚度越小,临界压力p cr 也越小。
② 材料的性能材料的弹性模量E 值和泊松比μ值对临界压力有直接影响,但是这两个值主要由材料的合金成分来决定,对已有材料而言无法改变,因此讨论弹性模量E 值和泊松比μ值的影响意义不大。
③ 圆筒的不圆度圆筒的不圆度会影响圆筒抵抗变形的能力,降低临界压力p cr ,因此在圆筒制造过程中要控制不圆度。
2、许用外压力与内压容器强度设计要取安全系数类似,外压容器刚度设计也要设定稳定系数,我国标准规定外压容器稳定系数m=3,故许用外压力[]3cr p p ≤。
二、外压圆筒的计算长度外压圆筒的计算长度对许用外压值影响很大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外压容器的设计计算
哈尔滨市化工学校 徐 毅 李喜华
在外压容器设计时,筒体的壁厚计算按文献
〔1〕和〔3〕应采用图算法。
图算法要先假设筒体
的壁厚,通过查图表后计算使P≤〔P〕且较接
近,则所设壁厚可用;否则应重新假设,直至满足
为止。
为简化设计计算,本文将外压容器的解析法
与图算法结合,使外压容器的壁厚的假设一次完
成。
1 壁厚的计算
按文献〔2〕外压容器壁厚的计算公式
S≥D0(
m pL
2.6ED0
)0.4+C(1)
式中S———外压容器筒体的壁厚,mm;D0———外压容器的外径,mm;L———外压容器的计算长度, mm;C———壁厚附加量, mm;m———稳定系数, m=3;P———设计压力, MPa;E———材料在设计温度时的弹性模量, MPa;
设壁厚为S,计算步骤如下:
1.计算壁厚S0=S-C,算出所要设计筒体的L/D0和D0/S0值;
2.按文献〔2〕在图6-10(文献〔2〕)的左侧纵坐标上找到L/D0值,由此点引水平线向右与相应D0/S0线相交。
若L/D0>50,则按L/D0=50查图,由交点沿铅垂方向向下求得横坐标系数A(即ε);
3.根据筒体材料选用相应的材料温度线。
文献〔2〕中的图6-12、6-13、6-14,在图的下方横坐标找到由2求得的系数A,若A在材料温度线的右方,则由此点沿铅垂上移,与材料温度线相交,再将此点沿水平方向向右求得纵坐标系数B;
4.按系数B用式〔P〕=BS0/D0〔2〕求得许用外压〔P〕;
5.比较设计外压P与许用外压〔P〕,若P≤〔P〕,则所假设的壁厚可用。
6.根据钢板规格,最后确定所用钢板厚度。
2 计算实例
设计氨合成塔的内筒,已知筒体外径D0= 410mm,计算长度L=4m,材料为oCr18Ni19Ti,弹性模量E=1.58×105MPa,壁温为480℃,壁厚附加量C=0.8m m,所受外压P=0.5MPa,试确定其壁厚。
由(1)式得: S≥D0(m pL
2.6ED0
)0.4+C=410 (
3×0.5×4×103
2.6×1.58×105×410
)0.4+0.8=7.6mm
假设壁厚S=7.6mm,计算S0=S-C=7.6-0.8 =6.8mm,L/D0=4/0.41=9.75D0/S0=410/6.8 =60.28
按文献〔2〕在图6-10查得A=0.00032
按文献〔2〕在图6-14查得B=34MPa
按文献〔2〕式〔P〕=BS0/D0=34×6.8/410 =0.57MPa
比较P<〔P〕,即0.5MPa<0.57MPa,即假设壁厚可用。
按文献〔4〕,最后确定所用钢板厚度为8mm。
3 结语
筒体的壁厚计算是外压容器设计中重要的内容,但按文献〔1〕和〔3〕进行设计计算时,一般至少要试算3~5次,若运用本文的方法可使筒体的壁厚计算一次成功。
参考文献
1 钢制石油化工压力容器设计规定,全国压力容器标准化技术委员会, 1993
2 余国琼.化工容器的设备.化学工业出版社, 1980 3 全国压力容器标准化技术委员会.G B150-89钢制压力容器.学苑出版社, 1989
4 《化工设备设计手册》.上海人民出版社, 1993
(编辑 毛丽青)
・
7
1
・
《机械工程师》 1997.
2。