高中物理总复习--稳恒电流及解析

高中物理总复习--稳恒电流及解析
高中物理总复习--稳恒电流及解析

高中物理总复习--稳恒电流及解析

一、稳恒电流专项训练

1.把一只“1.5V ,0.3A ”的小灯泡接到6V 的电源上,为使小灯泡正常发光,需要串联还是并联一个多大电阻?

【答案】串联一个15Ω的电阻

【解析】

【分析】

【详解】

要使灯泡正常发光则回路中电流为0.3A ,故回路中的总电阻为 6Ω=20Ω0.3

U R I =

=总 灯泡的电阻为 1.5Ω=5Ω0.3L L U R I =

= 由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为

20Ω5Ω15ΩL R R R ==-=总-

2.如图中A 、B 、C 、D 四个电路中,小灯L 1上标有“6V 3A”字样,小灯L 2上标有“4V 0.2A”字样,电压U ab 均为U =10V 。试判断:

(1)哪个电路两小灯不可能正常发光,并说明理由;

(2)两小灯均正常发光时,哪个电路消耗的电功率最小。

【答案】(1)b 电路小灯不可能正常发光,根据串联电路电压关系和题中所给条件,两灯中若有一个正常发光,则另一个也正常发光,此时L 2中电流大于3A ,而其额定电流为0.2A ,因此两灯均不能正常发光;

例如:b 电路小灯不可能正常发光;根据串、并联电路知识和所给条件知:由于L 2的电阻大于L 1的电阻,L 2分得电压大于4V (烧坏)、L 1分得电压小于6V ,因此两灯均不可能正常发光

(2)a 电路消耗的电功率最小

【解析】

【详解】

(1)b 电路小灯不可能正常发光,根据串联电路电压关系和题中所给条件,两灯中若有一个正常发光,则另一个也正常发光,此时L 2中电流大于3A ,而其额定电流为0.2A ,因此

两灯均不能正常发光;

(2)电压U ab 均为U =10V ,a 图回路电流为13A I =,所以总功率为130W ab P I U ==;b 图无法满足均正常发光;c 图干路电流为12 3.2A I I +=,所以总功率为

12()32W ab P I I U =+=;d 图干路电流为12 3.2A I I +=,所以总功率为

12()32W ab P I I U =+=,所以a 图消耗功率最小。

3.利用如图所示的电路可以测量电源的电动势和内电阻。当滑动变阻器的滑片滑到某一位置时,电流表和电压表的示数分别为I 1和U 1。改变滑片的位置后,两表的示数分别为I 2和U 2。写出这个电源电动势和内电阻的表达式。

【答案】:E=122121

U I U I I I -- r=1221U U I I -- 【解析】

【分析】 由闭合电路欧姆定律列出两次的表达式,联立即可求解.

【详解】

由全电路欧姆定律得:

E=U 1+I 1r

E=U 2+I 2r

解得:

E=122121

U I U I I I -- r=1221

U U I I --

4.如图所示的电路中,电阻R 1=6 Ω,R 2=3 Ω.S 断开时,电流表示数为0.9 A ;S 闭合时,电流表示数为0.8 A ,设电流表为理想电表,则电源电动势E =________V ,内电阻r =________Ω.

【答案】E=5.76V r=0.4Ω

【解析】

根据闭合电路欧姆定律,两种状态,列两个方程,组成方程组,就可求解.

当S 断开时

(1)

当S 闭合时

(2)

由(1)、(2)式联立,解得

E=5.76V

r=0.4Ω

5.已知电流表的内阻R g =120 Ω,满偏电流I g =3 mA ,要把它改装成量程是6 V 的电压表,应串联多大的电阻?要把它改装成量程是3 A 的电流表,应并联多大的电阻?

【答案】改装成量程是6 V 的电压表,应串联1 880 Ω的电阻; 要把它改装成量程是3 A 的电流表,应并联0.12 Ω的电阻.

【解析】

【分析】

【详解】

根据欧姆定律和串联电路特点可知,需串联的电阻

1880g g

U R R I =-=Ω; 同理,根据欧姆定律的并联电路的特点可知,改装成3A 电流表需并联的电阻

0.12g g g I R R I I =

=Ω-.

6.一根粗细均匀的金属导线,两端加上恒定电压10 V 时,通过金属导线的电流为2 A ,求:

①金属导线电阻;

②金属导线在10 s 内产生的热量.

【答案】(1)5 Ω (2)200 J

【解析】试题分析:根据欧姆定律和焦耳定律即可解题。

(1)根据欧姆定律: 1052

U R I ==Ω=Ω。 (2)产生的热量为: 2Q I Rt =,代入数据得: 200Q J =

点睛:本题主要考查了欧姆定律和焦耳定律,此题为基础题。

7.如图a 所示,处于匀强磁场中的两根足够长、电阻不计的光滑平行金属导轨相距L =1m ,导轨平面与水平面成θ=370角,下端连接阻值为R =0.4Ω的电阻.匀强磁场方向垂直于导轨平面向上,磁感应强度为B =0.4T ,质量m =0.2Kg 、电阻R =0.4Ω的金属杆放在两导轨上,杆与导轨垂直且保持良好接触,金属导轨之间连接一理想电压表.现用一外力F 沿水平方向拉杆,使之由静止沿导轨开始下滑,电压表示数U 随时间t 变化关系如图b

所示.取g =10m/s 2,sin370=0.6,cos370=0.8求:

⑴金属杆在第5s 末的运动速率;

⑵第5s 末外力F 的功率;

【答案】(1)1m/s (2)-0.8W

【解析】

【分析】

金属杆沿金属导轨方向在三个力作用下运动,一是杆的重力在沿导轨向下方向的分力G 1,二是拉力F 在沿导轨向下方向的分力F 1,三是沿导轨向上方向的安培力,金属杆在这几个力的作用下,向下做加速运动.

【详解】

(1)如下图所示,F 1是F 的分力,G 1是杆的重力的分力,沿导轨向上方向的安培力未画出,由题设条件知,电压表示数U 随时间t 均匀增加,说明金属杆做的是匀加速运动,由b 图可得金属杆在第5s 末的电压是0.2V ,设此时杆的运动速率为v ,电压为U ,电流I ,由电磁感应定律和欧姆定律有

E BLv =

因电路中只有两个相同电阻,有 1122

U E BLv == 解得

1v =m/s

故金属杆在第5s 末的运动速率是1m/s

(2) 金属杆做的是匀加速运动,设加速度为a ,此时杆受的安培力为f ,有

v a t

==0.2m/s 2 220.22B L v f BTL R

===N

1G mg =sin θ=1.2N

由牛顿第二定律得

11G f F ma --=

110.8F G f ma =--=N

由功率公式得

10.8P F v ==W

因1F 的方向与棒的运动方向相反,故在第5s 末外力F 的功率是--0.8W .

【点睛】

由电阻的电压变化情况来分析金属棒的运动情况.

8.如图所示,圆形金属线圈半径r =0.3m ,匝数n =50,电阻R 0=19,竖直放置在匀强磁场中;磁场的磁感应强度大小随时间t 按B =(

1+2π

t )T 的规律变化,磁场方向水平向里与线圈平面垂直:两个定值电阻的阻值分别为R 1=69Ω,R 2=12Ω,水平平行板电容器C 极板长L =0.1m ,两板间距d =0.05m

(1)求线圈中产生的感应电动势E ;

(2)当滑动变阻器接入电路中的阻值R =1Ω时,求电阻R 1消耗的电功率;

(3)调节滑动变阻器,可使速度为v =3×102m/s 、比荷为q m

=3×104Ckg 的带电粒子(重力忽略不计)紧贴电容器C 上极板从左侧水平射入电容器后,刚好能从下极板的右边缘射出,求此时滑动变阻器接入电路的阻值。

【答案】(1)9V ;(2)6W ;(3)19Ω

【解析】

【详解】

(1)由法拉第电磁感应定律有:E =nS

B t

?? 线圈面积为:S =πr 2

代入数据得:E =9V (2)当R =1Ω时,由闭合电路的欧姆定律得:E =I (R 0+R+1212

R R R R +)

流过电阻R1的电流为:2

1

12

R

I I

R R

=

+

R1消耗的电功率为:P=I12R1

代入数据可求得:P1=6W

(3)由楞次定律可知电容器下极板带正电,且电容器的电压等于R2两端电压,带电粒子在两极板间做类平抛运动,所以有:

x=vt

y=

1

2

at2

由牛顿第二定律有:2R

qU

ma

d

=

由电路规律有:E=U R2+I(R x+R0)

联立以上方程可得此时滑动变阻器接入电路的阻值为:R=19Ω

9.如图所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m ,质量

m=0.1㎏的导体棒ab,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T的匀强磁场方向垂直于导体框架所在平面,当导体棒在电动机牵引下上升h=3.8m时,获得稳定速度,此过程导体棒产生热量Q=2J.电动机工作时,电压表、电流表的读数分别为7V和1A,电动机的内阻r=1Ω,不计一切摩擦,g=10m/s2,求:

(1)导体棒所达到的稳定速度是多少?

(2)导体棒从静止到达稳定速度的时间是多少?

【答案】(1)m/s (2)s

【解析】

(1)导体棒匀速运动时,绳拉力T,有T-mg-F=0(2分),

其中F=BIL,I=ε/R, ε=BLv,(3分)

此时电动机输出功率与拉力功率应相等,

即Tv=UI/-I/2r(2分),

(U、I/、r是电动机的电压、电流和电阻),化简并代入数据得v=2m/s(1分).

(2)从开始达匀速运动时间为t,此过程由能量守恒定律,

UI/t-I/2rt=mgh+mv2+Q(4分),

代入数据得t=1s(2分).

10.如图所示,质量m=1kg的通电导体棒在安培力作用下静止在倾角为37°、宽度L=1m 的光滑绝缘框架上,磁场方向垂直于框架平面向下(磁场仅存在于绝缘框架内).右侧回路中,电源的电动势E=8V、内阻r=1Ω,额定功率为8W、额定电压为4V的电动机M正常工作.取sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.试求:

(1)电动机当中的电流I M与通过电源的电流I总.

(2)金属棒受到的安培力大小及磁场的磁感应强度大小.

【答案】(1)电动机当中的电流是2A,通过电源的电流是4A;

(2)金属棒受到的安培力大小是6N,磁场的磁感应强度大小3T.

【解析】

试题分析:(1)由P=UI求出电动机中的电流,由串并联电路的电压关系得到内电阻上的电压,由欧姆定律得到干路电流;

(2)进而得到磁场中导线的电流,由平衡条件得到安培力,由安培力公式得到B.

解:(1)电动机的正常工作时,有:P M=UI M

代入数据解得:I M=2A

通过电源的电流为:I总===4A

(2)导体棒静止在导轨上,由共点力的平衡可知,安培力的大小等于重力沿斜面向下的分力,即:F=mgsin37°=6N

流过电动机的电流I为:I=I总 I M=4A 2A=2A

F=BIL

解得:B=3T

答:(1)电动机当中的电流是2A,通过电源的电流是4A;

(2)金属棒受到的安培力大小是6N,磁场的磁感应强度大小3T.

【点评】本题借助安培力与电路问题考查了平衡条件的应用,解答的关键是正确找出两个支路的电流之间的关系.是一道很好的综合题.

11.如图所示,水平面内固定的三条光滑平行金属导轨a、b、c,相距均为d=2m,导轨ac 间横跨一质量为m=1kg的金属棒MN,棒与导轨始终良好接触.棒的总电阻r=2Ω,导轨的电阻忽略不计.在导轨bc间接一电阻为R=2Ω的灯泡,导轨ac间接一理想电压表.整个装置放在磁感应强度B=2T匀强磁场中,磁场方向垂直导轨平面向下.现对棒MN施加一水平向右的拉力F,使棒从静止开始运动,已知施加的水平外力功率恒定,经过t=2s时间棒的速度达到υ=3m/s且以后稳定.试求:

(1)金属棒速度稳定时施加的水平恒力F 为多大?

(2)水平外力F 的功率为多少?

(3)在此t=2s 时间内金属棒产生的热量是多少?

【答案】(1)16N (2)48W (3)30.5J

【解析】

试题分析:(1)金属棒速度达到稳定,有:0=-安F F

而BId F =安,2/r R υBd I +=

联立得:F=16N

(2)υF P ==48W

(3)设小灯泡和金属棒产生的热量分别为1Q 、2Q ,根据焦耳定律得知:

22

/21==r R Q Q 由功能关系得:Pt=1Q +2Q +221υm 代入数据得:2Q =30.5J

考点:法拉第电磁感应定律;焦耳定律;功能关系

12.如图甲所示,在一对平行光滑的金属导轨的上端连接一阻值为R=4Ω的定值电阻,两导轨在同一平面内,质量为m=0.2kg ,长为L=1.0m 的导体棒ab 垂直于导轨,使其从靠近电阻处由静止开始下滑,已知导体棒电阻为r=1Ω,整个装置处于垂直于导轨平面向上的匀强磁场中,导体棒下滑过程中加速度a 与速度v 的关系如图乙所示.求:

(1)导轨平面与水平面间夹角θ

(2)磁场的磁感应强度B ;

(3)若靠近电阻处到底端距离为S=7.5m ,ab 棒在下滑至底端前速度已达5m/s ,求ab 棒下滑到底端的整个过程中,电阻R 上产生的焦耳热.

【答案】(1)导轨平面与水平面间夹角θ为30°.

(2)磁场的磁感应强度B 为1T .

(3)ab 棒下滑到底端的整个过程中,电阻R 上产生的焦耳热是4J .

【点评】本题的解题关键是根据牛顿第二定律和安培力公式推导出安培力与速度的关系

式,结合图象的信息求解相关量.

【解析】

试题分析:(1)设刚开始下滑时导体棒的加速度为a 1,则a 1=5 得:

(2)当导体棒的加速度为零时,开始做匀速运动,设匀速运动的速度为v 0,导体棒上的感应电动势为E ,电路中的电流为I ,由乙图知,匀速运动的速度v 0=5 此时,,, 联立得:

(4)设ab 棒下滑过程,产生的热量为Q ,电阻R 上产生的热量为Q R ,则 ,

考点:本题考查电磁感应、能量守恒

13.“220V 、88W ”的电风扇,线圈电阻为20Ω,当接上220V 电压后,求:

(1)电风扇发热功率;

(2)电风扇转化为机械能的功率

(3)如接上220V 电源后,扇叶被卡住,不能转动,求电动机消耗的功率和发热的功率。

【答案】(1)3.2W ;(2)84.8W ;(3)2420W ,2420W ;

【解析】

试题分析:(1)由P UI =可得电流为:882200.4I A P U =

==; 线圈电阻发热功率:2 3.2Q P I r W ==;

(2)机械功率:84.8Q P P P W =-=机;

(3)当叶片不转动时,作纯电阻,根据欧姆定律,有:11I U r

A ==; 21111202420P UI I r W ===??=.

考点:电功、电功率,焦耳定律

【名师点睛】对于电功率的计算,一定要分析清楚是不是纯电阻电路,对于非纯电阻电路,总功率和发热功率的计算公式是不一样的。

14.如图所示,两足够长平行光滑的金属导轨MN 、PQ 相距为L ,导轨平面与水平面夹角θ=30°,导轨电阻不计.磁感应强度为B=2T 的匀强磁场垂直导轨平面向上,长为L=0.5m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨电接触良好,金属棒ab 的质量m=1kg 、电阻r=1Ω.两金属导轨的上端连接右端电路,灯泡电阻R L =4Ω,定值电阻R 1=2Ω,电阻箱电阻R 2=12Ω,重力加速度为g=10m/s 2,现闭合开关,将金属棒由静止释放,下滑距离为s 0=50m 时速度恰达到最大,试求:

(1)金属棒下滑的最大速度v m;

(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q.

【答案】(1)30m/s(2)50J

【解析】

解:(1)由题意知,金属棒匀速下滑时速度最大,设最大速度为v m,则有:mgsinθ=F安

又 F安=BIL,即得mgsinθ=BIL…①

ab棒产生的感应电动势为 E=BLv m…②

通过ab的感应电流为 I=…③

回路的总电阻为 R=r+R1+…④

联解代入数据得:v m=30m/s…⑤

(2)由能量守恒定律有:mg?2s0sinθ=Q+…⑥

联解代入数据得:Q=50J…⑦

答:(1)金属棒下滑的最大速度v m是30m/s.

(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q是50J.

【点评】本题对综合应用电路知识、电磁感应知识和数学知识的能力要求较高,但是常规题,要得全分.

15.如图所示,一段长方体金属导电材料,厚度为a、高度为b、长度为l,内有带电量为e的自由电子。该导电材料放在垂直于前后表面的匀强磁场中,内部磁感应强度为B。当有大小为I的稳恒电流垂直于磁场方向通过导电材料时,在导电材料的上下表面间产生一个恒定的电势差U。求解以下问题:

(1)分析并比较上下表面电势的高低;

(2)该导电材料单位体积内的自由电子数量n。

(3)经典物理学认为金属导体中恒定电场形成稳恒电流,而金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞。设某种金属中单位体积内的自由电子数量为n,自由电子的质量为m,带电量为e,自由电子连续两次碰撞的时间间隔的平均值为t。试这种金属的电阻率。

【答案】(1)下表面电势高;(2)(3)

【解析】试题分析:(1)因为电流方向向右,则电子运动方向向左,由左手定则电子向上偏转,可知下表面电势高;

(2)①②③④⑤

联立①②③④⑤

(3)设金属导电材料内的匀强电场强度为E

电子定向移动的加速度为

经过时间t获得的定向移动速度为

在时间t内的平均速度为

电流为

欧姆定律

考点:洛伦兹力;电场强度;电流强度;欧姆定律.

高中物理竞赛训练题:奥赛训练《稳恒电流C》(含答案)

稳恒电流 C 13、电解硝酸银溶液时,在阴极上1分钟内析出67.08毫克银,银的原子量为107.9 ,求电路中的电流。已知法拉第恒量F =9.68×104C/mol 。 14、一铜导线横截面积为4毫升2,20秒内有80库仑的电量通过该导线的某一截面。已知铜内自由电子密度为8.5×1022厘米?3,每个电子的电量为1.6×10?19库仑,求电子的定向移动的平均速率。 15、通常气体是不导电的,为了使之能够导电,首先必须使之;产生持续的自激放电的条件是和;通常气体自激放电现象可分为四大类:、、和,如雷电现象属,霓虹灯光属,高压水银灯发光属。 16、一个电动势为ε、内阻为r的电池给不同的灯泡供电。试证:灯泡电阻R =r时亮度最大,且最大功率P m=ε2/4r 。 17、用万用表的欧姆档测量晶体二极管的正向电阻时,会出现用不同档测出的阻值不相同的情况,试解释这种现象。 18、某金属材料,其内自由电子相继两次碰撞的时间间隔平均值为τ,其单位体积内自由电子个数为n ,设电子电量为e,质量为m ,试推出此导体的电阻率表达式。 19、用戴维南定理判断:当惠斯登电桥中电流计与电源互换位置后的电流计读数关系(自己作图)。视电流计内阻趋于无穷小,电源内阻不计。 20、图示为电位差计测电池内阻的电路图。实际的电位差计在标准电阻RAB上直接刻度的不是阻值,也不是长度,而是各长度所对应的电位差值,RM为被测电池的负载电阻,其值为100Ω。实验开始时,K2打开,K1拨在1处,调节R N使流过R AB的电流准确地达到某标定值,然后将K1拨至2处,滑动C,当检流计指针 指零时,读得UAC= 1.5025V;再闭合K 2 ,滑动C,检流计指针再指零时读得U AC′= 1.4455V,试据以上数据计算电池 内阻r 。

高考物理动态电路分析完整

电路的动态分析 直流电流 分析思路 长沙四校联考)如图所示,图中的四个电表均为理想电表,当滑动变阻器滑片 1 (多选)(2015· P向右端移动时,下面说法中正确的是() A.电压表V1的读数减小,电流表A1的读数增大 B.电压表V1的读数增大,电流表A1的读数减小 C.电压表V2的读数减小,电流表A2的读数增大 D.电压表V2的读数增大,电流表A2的读数减小 2.(多选) (2015·湖北省公安县模拟考试)如图所示电路中,电源内阻不能忽略,两个电压表 均为理想电表。当滑动变阻器R2的滑动触头P移动时,关于两个电压表V1与V2的示数,下列判断正确的是() A.P向a移动,V1示数增大、V2的示数减小 B.P向b移动,V1示数增大、V2的示数减小 C.P向a移动,V1示数改变量的绝对值小于V2示数改变量的绝对值 D.P向b移动,V1示数改变量的绝对值大于V2示数改变量的绝对值 3.(多选)如图所示,电源的电动势和内阻分别为E、r,R0=r,滑动变阻器的滑片P由a向b缓慢移动,则在此过程中(

A.电压表V1的示数一直增大 B.电压表V2的示数先增大后减小 C.电源的总功率先减小后增大 D.电源的输出功率先减小后增大 含电容器的电路 解决含电容器的直流电路问题的一般方法 (1)通过初末两个稳定的状态来了解中间不稳定的变化过程。 (2)只有当电容器充、放电时,电容器支路中才会有电流,当电路稳定时,电容器对电 路的作用是断路。 (3)电路稳定时,与电容器串联的电路中没有电流,同支路的电阻相当于导线,即电阻 不起降低电压的作用,与电容器串联的电阻为等势体,电容器的电压为与之并联的电阻两端 的电压。 (4)在计算电容器的带电荷量变化时,如果变化前后极板带电的电性相同,那么通过所 连导线的电荷量等于始末状态电容器电荷量之差;如果变化前后极板带电的电性相反,那么通过所连导线的电荷量等于始末状态电容器电荷量之和。 东北三校二模)如图所示,C1=6 μF,C2=3 μF,R1=3 Ω,R2=6 Ω,电源电动1 (多选)(2015· 势E=18 V,内阻不计。下列说法正确的是( ) A.开关S断开时,a、b两点电势相等 B.开关S闭合后,a、b两点间的电流是 2 A C.开关S断开时C1带的电荷量比开关S闭合后C1带的电荷量大 D.不论开关S断开还是闭合,C1带的电荷量总比C2带的电荷量大

高中物理专题:受力分析与动态平衡问题

图1 图1-4 高中物理专题:受力分析与动态平衡问题 例1.如图1所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的。一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°。则小球的质量比m 2/m 1为 A . B . C . D . 2. 如图所示,物体A 靠在竖直墙面上,在力F 作用下,A 、B 保持静止。物体B 的受力个 数为( ) A .2 B .3 C .4 D .5 例2. 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 思考1:所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向左缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况? (答案:绳上张力减小,斜面对小球的支持力增大) 思考2:如图所示,细绳一端与光滑小球连接,另一端系在竖直墙壁上的A 点,当缩短细绳小球缓慢上移的过程中,细绳对小球的拉力、墙壁对小球的弹力如何变化? 例2.如图所示,质量为m 的小球用细线悬于天花板上。在小球上作用水平拉力F ,使细线与竖直方向保持θ角,小球保持静止状态。现让力F 缓慢由水平方向变为竖直方向。这一过程中,小球处于静止状态,细线与竖直方向夹角不变。则力F 的大小、细线对小球的拉力大小如何变化?

例3.轻绳一端系在质量为m 的物体A 上,另一端系在一个套在粗糙竖直杆MN 的圆环上。现用水平力F 拉住绳子上一点O ,使物体A 从图中实线位置缓慢下降到虚线位置,但圆环仍保持在原来位置不动。则在这一过程中,环对杆的摩擦力F 1和环对杆的压力F 2的变化情况是 A .F 1保持不变,F 2逐渐增大 B .F 1逐渐增大,F 2保持不变 C .F 1逐渐减小,F 2保持不变 D .F 1保持不变,F 2逐渐减小 思考:如图3-4所示,在做“验证力的平行四边形定则”的实验时, 用M 、N 两个测力计通过细线拉橡皮条的结点,使其到达O 点,此时 α+β= 90°.然后保持M 的读数不变,而使α角减小,为保持结点 位置不变,可采用的办法是( )。 (A)减小N 的读数同时减小β角 (B)减小N 的读数同时增大β角 (C)增大N 的读数同时增大β角 (D)增大N 的读数同时减小β角 例4.如图4所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N ,绳长L =2.5m ,OA =1.5m ,求绳中张力的大小,并讨论: (1)当B 点位置固定,A 端缓慢左移时,绳中张力如何变化? (2)当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化? 思考:如图所示,长度为5cm 的细绳的两端分别系于竖立地面上相距为4m 的两杆的顶端A 、B ,绳子上挂有一个光滑的轻质钩,其下端连着一个重12N 的 物体,平衡时绳中的张力多大? 思考:人站在岸上通过定滑轮用绳牵引低处的小船,若水的阻力不变,则船在匀速靠岸的过程中,下列说法中正确的是( ) (A )绳的拉力不断增大 (B )绳的拉力保持不变 (C )船受到的浮力保持不变 (D )船受到的浮力不断减小 图3-4

高中物理高考专题练习恒定电流(word含答案)

恒定电流提高篇 1.如图所示是一实验电路图,在滑动触头由a 端滑向b 端的过程中,下列表述正确的是 A .路端电压变小 B .电流表的示数变大 C .电源内阻消耗的功率变小 D .电路的总电阻变大 2.电源的效率定义为外电路电阻消耗的功率与电源的总功率之比.在测电源电动势和内电阻的实验中得到的实验图线如图所示,图中U 为路端电压,I 为干路电流,a 、b 为图线上的两点,相应状态下电源的效率分别为、.由图可知、的值分别为 A 、 、 B 、、 C 、、 D 、、 3.在右图的闭合电路中,当滑片向右移动时,两电表读数的变化是 (A )○A 变大, ○V 变大 (B )○A 变小,○V 变大(C )○A 变大, ○V 变小 (D )○A 变小,○V 变小 4.电动势为E 、内阻为r 的电源与定值电阻R 1、R 2及滑动变阻器R 连接成如图所示的电路,当滑动变阻器的触头由中点滑向b 端时,下列说法正确的是 ( ) A.电压表和电流表读数都增大 B.电压表和电流表读数都减小 C.电压表读数增大,电流表读数减小 D.电压表读数减小,电流表读数增大 ηa ηb ηa ηb η3414132312122313 P

5.如图所示,M 、N 是平行板电容器的两个极板,R 0为定值电阻,R 1、R 2为可调电阻,用绝缘细线将质量为、带正电的小球悬于电容器内部。闭合电键S ,小球静止时受到悬线的拉力为F 。调节R 1、R 2,关于F 的大小判断正确的是 A .保持R 1不变,缓慢增大R 2时,F 将变大 B .保持R 1不变,缓慢增大R 2时,F 将变小 C .保持R 2不变,缓慢增大R 1时,F 将变大 D .保持R 2不变,缓慢增大R 1时,F 将变小 6.如图所示,电动势为E 、内阻不计的电源与三个灯泡和三个电阻相接。只合上开关S 1,三个灯泡都能正常工作。如果再合上S 2,则下列表述正确的是 A .电源输出功率减小 B .L 1上消耗的功率增大 C .通过R 1上的电流增大 D .通过R 3上的电流增大 7.如图甲所示,理想变压器原、副线圈的匝数比为10:1,R 1=20 ,R 2=30 ,C 为电容器。已知通过R 1的正弦交流电如图乙所示,则 A.交流电的频率为0.02 Hz B.原线圈输入电压的最大值为200 V C.电阻R 2的电功率约为6.67 W D.通过R 3的电流始终为零 8.如图所示电路中,三只灯泡原来都正常发光,当滑动变阻器的滑动触头P 向右移动时,下面判断正确的是( ) A .L 1和L 3变暗,L 2变亮 B .L I 变暗,L 2变亮,L 3亮度不变 C .L 1中电流变化值大于L 3中电流变化值 D .L l 上电压变化值小于L 2上的电压变化值 m ΩΩ2E S R 0 R 1 R 2 M N

高中物理稳恒电流技巧和方法完整版及练习题含解析

高中物理稳恒电流技巧和方法完整版及练习题含解析 一、稳恒电流专项训练 1.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。 (1)实验时有两个滑动变阻器可供选择: a、阻值0到200Ω,额定电流 b、阻值0到20Ω,额定电流 本实验应选的滑动变阻器是(填“a”或“b”) (2)正确接线后,测得数据如下表 12345678910U(V)0.00 3.00 6.00 6.16 6.28 6.32 6.36 6.38 6.39 6.40 0.000.000.000.060.50 1.00 2.00 3.00 4.00 5.50I(m A) a)根据以上数据,电压表是并联在M与之间的(填“O”或“P”) b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值) 【答案】(1) a (2) a) P b)

【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,但要保证仪器的安全。B 电阻的额定电流为 ,加在它上面的最大电压为10V ,所以仪 器不能正常使用,而选择a 。(2)电压表并联在M 与P 之间。因为电压表加电压后一定有电流通过,但这时没有电流流过电流表,所以电流表不测量电压表的电流,这样电压表应该接在P 点。 视频 2.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P . 【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】 (1)由部分电路的欧姆定律,可得电阻为:5U R I = =Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】 部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握. 3.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m . (1)闭合开关S 稳定后,求电容器所带的电荷量为多少?

高中物理专练:电容器和直流电路的动态分析

高中物理专练:电容器和直流电路的动态分析 (限时:45分钟) 1. (安徽·19)用图1所示的电路可以测量电阻的阻值.图中R x是待测电阻,R0是定值电阻,是灵敏度很高的电流表,MN是一段均匀的电阻丝.闭合开关,改变滑动头P的位置,当通过电流表的电流为零时,测得MP=l1,PN=l2,则R x的阻值为( ) 图1 A.l 1 l 2 R B. l 1 l 1 +l2 R C.l 2 l 1 R D. l 2 l 1 +l2 R 答案 C 解析设R0、R x与三者的结点为Q,当通过电流表的电流为零时,说明φP=φQ,则UR0= UR MP ,U Rx=UR PN,IR0=IR x=I0,IR MP=IR PN=I,故I0R0=IR MP,I0R x=IR PN.两式相除有 R R x = R MP R PN ,所以 R x = R PN R MP R = l 2 l 1 R ,正确选项为C. 2.某同学将一直流电源的总功率P E、输出功率P R和电源内部的发热功率P r随电流I变化的图线画在了同一坐标上,如图2中的a、b、c所示,以下判断正确的是( ) 图2 A.直线a表示电源的总功率P E—I图线 B.曲线c表示电源的输出功率P R—I图线 C.电源的电动势E=3 V,内电阻r=1 Ω D.电源的最大输出功率P m=2 W 答案AD

解析电源的总功率P E=EI,直线a表示电源的总功率P E—I图线,选项A正确.电源的输出功率P R=UI=(E-Ir)I=EI-I2r,曲线b表示电源的输出功率P R—I图线,曲线c表示电源内部的发热功率P r-I图线,选项B错误.由直线a的斜率可得电源的电动势E=4 V.选项C错误.当I=1 A时,电源的最大输出功率P m=2 W,选项D正确. 3.如图3所示,为一小灯泡的伏安特性曲线,横轴和纵轴分别表示电压U和电流I.图线上点A 的坐标为(U1,I1),过点A的切线与纵轴交点的纵坐标为I2.小灯泡两端电压为U1时,电阻等于( ) 图3 A.I 1 U 1 B. U 1 I 1 C. U 1 I 2 D. U 1 I 1 -I2 答案 B 解析由于小灯泡的伏安特性曲线上,每一点的电压坐标与电流坐标的比值,对应这一状 态下的电阻,所以小灯泡两端电压为U1时,电阻等于U 1 I 1 ,B正确. 4.如图4为测量某电源电动势和内阻时得到的U-I图线,用此电源与三个阻值均为3 Ω的电阻组成如下四个电路.则外电路功率相等的是( ) 图4 A.图a和图d B.图b和图c C.图a和图b D.图c和图d

高一物理动态平衡问题处理方法及答案

动态平衡分析 一 物体受三个力作用 例1. 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( ) A .F N 先减小,后增大 B .F N 始终不变 C .F 先减小,后增大 D.F 始终不变 正确答案为选项B 跟踪练习: 如图2-3所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( D )。 (A)N 变大,T 变小, (B)N 变小,T 变大 (C)N 变小,T 先变小后变大 (D)N 不变,T 变小 图2-1 图2-2 图2-3 图1-1 图1-2 F 1 G F 2 图1-3

例3.如图3-1所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N ,绳长L =2.5m ,OA =1.5m ,求绳中张力的大小,并讨论: (1)当B 点位置固定,A 端缓慢左移时,绳中张力如何变化? (2)当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化? 解析:取绳子c 点为研究对角,受到三根绳的拉力,如图3-2所示分别为F 1、F 2、F 3,延长绳AO 交竖直墙于D 点,由于是同一根轻绳,可得:21F F =,BC 长度等于CD ,AD 长度等于绳长。设角∠OAD 为θ;根据三个力平衡可得:θ sin 21G F = ;在三角形AOD 中可 知,AD OD = θsin 。如果A 端左移,AD 变为如图3-3中虚线A ′D ′所示,可知A ′D ′不变,OD ′减小,θsin 减小,F 1变大。如果B 端下移,BC 变为如图3-4虚线B ′C ′所示,可知AD 、OD 不变,θsin 不变,F 1不变。 二 物体受四个力及以上 例 4 .如图所示,当人向左跨了一步后人与物体保持静止,跨后与垮前相比较,下列说法错误的是: A .地面对人的摩擦力减小 B .地面对人的摩擦力增加 C .人对地面压力增大 D .绳对人的拉力变小 跟踪练习: 如图所示,小船用绳牵引.设水平阻力不变,在小船匀速靠岸的过程中 A 、绳子的拉力不断增大B 、绳子的拉力保持不变 C 、船受的浮力减小 D 、船受的浮力不变 三 连接体问题 例5 有一个直角支架AOB ,AO 是水平放置,表面粗糙.OB 竖直向下,表面光滑.OA 图3-1 A B C G O A B C G D F 1 F 2 F 3 O θ 图3-2 A B C G D F 1 F 2 F 3 O θ A ′ D ′ 图3-3 A B C G D F 1 F 2 F 3 O θ C ′ B ′ 图3-4 F

高中物理稳恒电流专项练习

高中物理稳恒电流专项练习 一、稳恒电流专项训练 1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大? 【答案】(1)238mg B L (2)1238mgr B B dL 【解析】 试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =3 4 I ① I dc = 1 4 I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③ 由①~③,解得I ab = 2234mg B L ④ (2)由(1)可得I =22 mg B L ⑤ 设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥ 设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =3 4 r ⑦ 根据闭合电路欧姆定律,有I = E R ⑧ 由⑤~⑧,解得v = 1212 34mgr B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.

高中物理专题练习电路的动态分析

电路的动态分析 例1.在如图所示的电路中,R 1,R2和R3皆为定值电阻,R4为可变电阻,电源的电动势为E,内阻为 r,设电流表的读数为I,电压表的读数为U,当R4的滑动触头向图中a端移动时() A.I变大,U变小B.I变大,U变大C.I变小,U变大D.I变小,U变小 【答案】D 例2.如图所示电路中,电源电动势为E,内阻为r,电路中O点接地,当滑动变阻器的滑片P 向右滑动时,M、N两点电势变化情况是() A.都升高B.都降低C.M点电势升高,N点电势降低D.M点电势降低,N点电势升高 【答案】B 例3.在如图所示的电路中,开关S闭合后,和未闭合开关S前相比较三个电表的读数变化情况是:() A.V变大、A1变大、A2变小B.V变大、A1变小、A2变大 C.V变小、A1变大、A2变小D.V变小、A1变小、A2变大 【答案】C 例4.为了儿童安全,布绒玩具必须检测其中是否存在金属断针,可以先将玩具放置在强磁场中,若其中有断针,则断针被磁化,用磁报警装置可以检测到断针的存在.如图所示是磁报警装置中的一部分电路示意图,其中RB是磁敏传感器,它的电阻随断针的出现而减小,A,B接报警器,当传感器RB所在处出现断针时, 电流表的电流I,A,B两端的电压U将() A.I变大,U变大B.I变小,U变小C.I变大,U变小D.I变小,U变大 【答案】C 例5.(多选)在如图所示的电路中,闭合电键S,当滑动变阻器的滑动触头P向下滑动时,四个理想电表的示数都发生变化,电表的示数分别用I、U1、U2和U3表示,电表示数变化量的大小分别用ΔI、ΔU1、ΔU2和ΔU3表示.下列比值正确的是() A.U1/I不变,ΔU1/ΔI不变B.U2/I变大,ΔU2/ΔI变大 C.U2/I变大,ΔU2/ΔI不变吗D.U3/I变大,ΔU3/ΔI不变 【答案】ACD 同步练习: 1.在如图所示电路中,当滑动变阻器滑片P向下移动时,则() A.A灯变亮,B灯变亮,C灯变亮B.A灯变亮,B灯变亮,C灯变暗 C.A灯变亮,B灯变暗,C灯变暗D.A灯变亮,B灯变暗,C灯变亮 【答案】D 2.在如图所示的电路中,E为电源电动势,r为电源内阻,R1,R3均为定值电阻,R2为滑动变阻器,当R2的滑动触头

动力学动态问题的类型和分析技巧9

动力学动态问题的类型和分析技巧 一、动力学动态问题的类型 施加在物体上的力随着物体的速度变化、位置变化而变化,物体的加速度也随之变化,加速度的变化反过来影响速度、位置的变化,如此循环推进的问题,就是动力学动态问题。 根据物体受力的决定因素不同,可将高中物理中常见的动力学动态问题分为两大基本类型: 1、受力与速度有关的动态问题:机车恒定功率启动问题——牵引力与速度有关,雨滴收尾速度问题——空气阻力与速度有关,洛伦兹力相关动态问题——洛伦兹力以及其影响下弹力、摩擦力与速度有关,感应电路安培力相关动态问题——安培力与速度有关,等等。 2、受力与位置有关的动态问题:弹簧、库仑力、曲线约束类问题等,这类问题中,弹簧弹力、电荷之间库仑力、重力电场力沿曲线切向分量、弹力进而影响到的摩擦力,与物体的位置有关,等等。 根据物体的运动轨迹曲直不同,又可将之分为直线运动动态问题和曲线运动动态问题,其中直线运动是曲线运动分析的基础,而曲线运动则需要结合运动的分解与合成来进一步分析。 二、动力学动态问题的分析技巧 1、写出瞬间状态的动力学方程并据此分析:初态、转折点处动力学方程,以及各阶段动力学方程;

2、抓住运动、受力变化的转折点:加速度为0(速度出现极值)、速度为0或者弹力为0等; 3、借助v -t 图象、对称法、微元(积分)法、分解与合成等分析。 三、典型示例 1、直线运动中的动态问题 (1)受力与速度有关的问题 【例1】机车恒定功率启动问题 一汽车在平直公路上行驶。从某时刻开始计时,发动机的功率P 随时间t 的变化如图所示。假定汽车所受阻力的大小f 恒定不变。下列描述该汽车的速度v 随时间t 变化的图像中,可能正确的是 【例2】雨滴收尾速度问题 从地面上以初速度v 0竖直上抛一质量 为m 的小球,若运动过程中受到的空气阻 力f 与其速率v 成正比,比例系数为k .球运动的速率随时间变化的规律如图2-4所示,t 1时刻到达最高点,再落回地面,落地速率为v 1,且落地前小球已经做匀速运动.下列说法正确的是( ) A .上升过程比下降过程所用时间长 B .比例系数k =mg v 0

高中物理恒定电流知识点及例题详解

学习必备欢迎下载 第十一章恒定电流 第一单元基本概念和定律 知识目标 一、电流、电阻和电阻定律 1.电流:电荷的定向移动形成电流. (1)形成电流的条件:内因是有自由移动的电荷,外因是导体两端有电势差. (2)电流强度:通过导体横截面的电量Q与通过这些电量所用的时间t的比值。 ①I=Q/t;假设导体单位体积内有n个电子,电子定向移动的速率为V,则I=neSv;假若导体单位长度有N个电子,则I=Nev. ②表示电流的强弱,是标量.但有方向,规定正电荷定向移动的方向为电流的方向. ③单位是:安、毫安、微安1A=103mA=106μA 2.电阻、电阻定律 (1)电阻:加在导体两端的电压与通过导体的电流强度的比值. R=U/I,导体的电阻是由导体本身的性质决定的,与U.I无关. (2)电阻定律:导体的电阻R与它的长度L成正比,与它的横截面积S成反比. R=ρL/S (3)电阻率:电阻率ρ是反映材料导电性能的物理量,由材料决定,但受温度的影响. ①电阻率在数值上等于这种材料制成的长为1m,横截面积为1m2的柱形导体的电阻. ②单位是:Ω·m. 3.半导体与超导体 (1)半导体的导电特性介于导体与绝缘体之间,电阻率约为10-5Ω·m ~106Ω·m (2)半导体的应用: ①热敏电阻:能够将温度的变化转成电信号,测量这种电信号,就可以知道温度的变化. ②光敏电阻:光敏电阻在需要对光照有灵敏反应的自动控制设备中起到自动开关的作用. ③晶体二极管、晶体三极管、电容等电子元件可连成集成电路. ④半导体可制成半导体激光器、半导体太阳能电池等. (3)超导体 ①超导现象:某些物质在温度降到绝对零度附近时,电阻率突然降到几乎为零的现象. ②转变温度(T C):材料由正常状态转变为超导状态的温度 ③应用:超导电磁铁、超导电机等 二、部分电路欧姆定律 1、导体中的电流I跟导体两端的电压成正比,跟它的电阻R成反比。I=U/R 2、适用于金属导电体、电解液导体,不适用于空气导体和某些半导体器件. 3、导体的伏安特性曲线:研究部分电路欧姆定律时,常画成I~U或U~I图象,对于线性元件 伏安特性曲线是直线,对于非线性元件,伏安特性曲线是非线性的. 注意:①我们处理问题时,一般认为电阻为定值,不可由R=U/I认为电阻R随电压大而大,随电流大而小. ②I、U、R必须是对应关系.即I 是过电阻的电流,U是电阻两端的电压.

高中物理《受力分析动态分析》练习题

高中物理《受力分析动态分析》练习题 1.如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为N 1,球对木板的压力大小为N 2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中( ) A. N 1始终减小,N 2始终增大 B. N 1始终减小,N 2始终减小 C. N 1先增大后减小,N 2始终减小 D. N 1先增大后减小,N 2先减小后增大 2. 我国运动员陈一冰勇夺吊环冠军,为中国体育军团勇夺第一金,其中有一个高难度的动作就是先双手撑住吊环(设开始时两绳与肩同宽),然后身体下移,双臂缓慢张开到如图所示位置,则在两手之间的距离增大过程中,吊环的两根绳的拉力F T (两个拉力大小相等)及它们的合力F 的大小变化情况为( ) A .F T 增大,F 不变 B .F T 增大,F 增大 C .F T 增大,F 减小 D .F T 减小,F 不变 3.如图所示,在一根水平直杆上套着两个轻环,在环下用两根等长的轻绳拴着一个重物。把两环分开放置,静止时杆对a 环的摩擦力大小为F f ,支持力为F N 。若把两环距离稍微约缩短一些,系统仍处于静止状态,则( ) A .F N 变小 B .F N 变大 C .F f 变小 D .F f 变大

4.如图所示,质量不计的定滑轮以轻绳牵挂在B点,另一条轻绳一端系重物C 绕过滑轮后另一端固定在墙上A点,若改变B点位置使滑轮发生移动,同时适当调节A点的位置使AO段绳子始终保持水平,则可以判断悬点B所受拉力F的大小变化情况是() A.若B左移,F将增大 B.若B右移,F将减小 C.无论B左移、右移,F都保持不变 D.无论B左移、右移,F都减少 5.如图半圆形支架BAD,两细绳OA和OB结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置缓慢移至竖直位置C的过程中,分析OA绳和OB绳所受的力大小如何变化( ) A.OA绳拉力逐渐变大 B.OA绳拉力逐渐变小 C.OB绳拉力先变小后变大 D.OB绳拉力逐渐变小 6.如图所示,用挡板将斜面上的光滑小球挡住,当挡板由竖直位置缓慢转到水平位置的过程中,小球对挡板的压力 A.逐渐增大 B.逐渐减小 C.先增大后减小 D.先减小后增大 7.如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上。现用水平力拉着绳子上的一点O,使小球B从图中实线位置缓慢上升到虚线位置,但圆环A始终保持在原位置不动。则在这一过程中,环对杆的摩擦力f和环对杆的压力F N 的变化情况是() A.f不变,F N 不变 B.f增大,F N 不变 C.f增大,F N 减小 D.f不变,F N 减小

(完整版)高中物理恒定电流经典习题20道-带答案

选择题(共20小题) 1、如图所示,电解槽内有一价的电解溶液,ts内通过溶液内横截面S的正离子数是n1,负离子数是n2,设元电荷的电量为e,以下解释正确的是() A.正离子定向移动形成电流,方向从A到B,负离子定向移动形成电流方向从B到A B.溶液内正负离子沿相反方向运动,电流相互抵消 C. 溶液内电流方向从A到B,电流I= D. 溶液内电流方向从A到B,电流I= 2、某电解池,如果在1s钟内共有5×1018个二价正离子和1.0×1019个一价负离子通过某截面,那么通过这个截面的电流是() A.0A B.0.8A C.1.6A D.3.2A 3、图中的甲、乙两个电路,都是由一个灵敏电流计G和一个变阻器R组成,它们之中一个是测电压的电压表,另一个是测电流的电流表,那么以下结论中正确的是() A.甲表是电流表,R增大时量程增大 B.甲表是电流表,R增大时量程减小 C.乙表是电压表,R增大时量程减小 D.上述说法都不对 4、将两个相同的灵敏电流计表头,分别改装成一只较大量程电流表和一只较大量程电压表,一个同学在做实验时误将这两个表串联起来,则() A.两表头指针都不偏转 B.两表头指针偏角相同 C.改装成电流表的表头指针有偏转,改装成电压表的表头指针几乎不偏转 D.改装成电压表的表头指针有偏转,改装成电流表的表头指针几乎不偏转 5、如图,虚线框内为改装好的电表,M、N为新电表的接线柱,其中灵敏电流计G的满偏电流为200μA,已测得它的内阻为495.0Ω.图中电阻箱读数为5.0Ω.现将MN接入某电路,发现灵敏电流计G刚好满偏,则根据以上数据计算可知()

A.M、N两端的电压为1mV B.M、N两端的电压为100mV C.流过M、N的电流为2μA D.流过M、N的电流为20mA 6、一伏特表有电流表G与电阻R串联而成,如图所示,若在使用中发现此伏特计的读数总比准确值稍小一些,采用下列哪种措施可能加以改进() A.在R上串联一比R小得多的电阻 B.在R上串联一比R大得多的电阻 C.在R上并联一比R小得多的电阻 D.在R上并联一比R大得多的电阻 7、电流表的内阻是R g=200Ω,满偏电流值是I g=500μA,现在欲把这电流表改装成量程为1.0V的电压表,正确的方法是() A.应串联一个0.1Ω的电阻B.应并联一个0.1Ω的电阻 C.应串联一个1800Ω的电阻D.应并联一个1800Ω的电阻 8、相同的电流表分别改装成两个电流表A1、A2和两个电压表V1、V2,A1的量程大于A2的量程,V1的量程大于V2的量程,把它们接入图所示的电路,闭合开关后() A.A1的读数比A2的读数大 B.A1指针偏转角度比A2指针偏转角度大 C.V1的读数比V2的读数大 D.V1指针偏转角度比V2指针偏转角度大 9、如图所示是一个双量程电压表,表头是一个内阻R g=500Ω,满刻度电流为I g=1mA的毫安表,现接成量程分别为10V和100V的两个量程,则所串联的电阻R1和R2分别为() A.9500Ω,9.95×104ΩB.9500Ω,9×104Ω C.1.0×103Ω,9×104ΩD.1.0×103Ω,9.95×104Ω 10、用图所示的电路测量待测电阻R X的阻值时,下列关于由电表产生误差的说法中,正确的是() A.电压表的内电阻越小,测量越精确 B.电流表的内电阻越小,测量越精确 C.电压表的读数大于R X两端真实电压,R X的测量值大于真实值 D.由于电流表的分流作用,使R X的测量值小于真实值

高二物理恒定电流公式大全

高二物理恒定电流公式大全 方向不随时间而改变的电流叫直流,方向和大小都不随时间改变的电流,恒定电流属于直流电。 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横 载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U 外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流 (A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导 体的电阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU, η=P出/P总 {I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与 R成反比) 电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+

电流关系I总=I1=I2=I3I并=I1+I2+I3+ 电压关系U总=U1+U2+U3+U总=U1=U2=U3 功率分配P总=P1+P2+P3+P总=P1+P2+P3+ 10.欧姆表测电阻 (1)电路组成(2)测量原理 两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R 中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小 (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。 (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。 11.伏安法测电阻 电流表内接法:电流表外接法: 电压表示数:U=UR+UA电流表示数:I=IR+IV Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的测量值 =U/I=UR/(IR+IV)=RVRx/(RV+R) 选用电路条件Rx>>RA[或Rx>(RARV)1/2]选用电路条件Rx< 12.滑动变阻器在电路中的限流接法与分压接法 限流接法 电压调节范围小,电路简单,功耗小电压调节范围大,电路复杂,功耗较大 便于调节电压的选择条件Rp>Rx便于调节电压的选择条件Rp

高中物理竞赛——稳恒电流习题

高中物理竞赛——稳恒电流习题 一、纯电阻电路的简化和等效 1、等势缩点法 将电路中电势相等的点缩为一点,是电路简化的途径之一。至于哪些点的电势相等,则需要具体问题具体分析—— 【物理情形1】在图8-4甲所示的电路中,R 1 = R 2 = R 3 = R 4 = R 5 = R ,试求A 、B 两端的等效电阻R AB 。 【模型分析】这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。将图8-4甲图中的A 、D 缩为一点A 后,成为图8-4乙图 对于图8-4的乙图,求R AB 就容易了。 【答案】R AB = 8 3R 。 【物理情形2】在图8-5甲所示的电路中,R 1 = 1Ω ,R 2 = 4Ω ,R 3 = 3Ω ,R 4 = 12Ω ,R 5 = 10Ω ,试求A 、B 两端的等效电阻R AB 。 【模型分析】这就是所谓的桥式电路,这里先介绍简单的情形:将A 、B 两端接入电源,并假设R 5不存在,C 、D 两点的电势有什么关系? ☆学员判断…→结论:相等。 因此,将C 、D 缩为一点C 后,电路等效为图8-5乙 对于图8-5的乙图,求R AB 是非常容易的。事实上,只要满足2 1R R =4 3R R 的关系, 我们把桥式电路称为“平衡电桥”。

【答案】R AB = 4 15Ω 。 〖相关介绍〗英国物理学家惠斯登曾将图8-5中的R 5换成灵敏电流计○G ,将R 1 、R 2中的某一个电阻换成待测电阻、将R 3 、R 4换成带触头的电阻丝,通过调节触头P 的位置,观察电流计示数为零来测量带测电阻R x 的值,这种测量电阻的方案几乎没有系统误差,历史上称之为“惠斯登电桥”。 请学员们参照图8-6思考惠斯登电桥测量电阻的原理,并写出R x 的表达式(触头两端的电阻丝长度L AC 和L CB 是可以通过设置好的标尺读出的)。 ☆学员思考、计算… 【答案】R x =AC CB L L R 0 。 【物理情形3】在图8-7甲所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。 【模型分析】在本模型中,我们介绍“对称等势”的思想。当我们将A 、B 两端接入电源,电流从A 流向B 时,相对A 、B 连线对称的点电流流动的情形必然是完全相同的,即:在图8-7乙图中标号为1的点电势彼此相等,标号为2的点电势彼此相等…。将它们缩点后,1点和B 点之间的等效电路如图8-7丙所示。 不难求出,R 1B = 14 5R ,而R AB = 2R 1B 。 【答案】R AB = 75R 。 2、△→Y 型变换 【物理情形】在图8-5甲所示的电路中,将R 1换成2Ω的电阻,其它条件不变,再求A 、B 两端的等效电阻R AB 。 【模型分析】此时的电桥已经不再“平衡”,故不能采取等势缩点法简化电路。这里可以将电路的左边或右边看成△型电路,然后进行△→Y 型变换,具体操作如图8-8所示。 根据前面介绍的定式,有

高中物理动态分析专题

高中物理动态分析专题 一、力学中的动态问题分析 1、变动中力的平衡问题的动态分析 ①矢量三角形法 物体在三个不平行的共点力作用下平衡,这三个力必组成一首尾相接的三角形。 用这个三角形来分析力的变化与大小关系的方法叫矢量三角形法,它有着比平行四边形更简便的优点, 特别在处理变动中的三力问题时能直观的反映出力的变化过程。 例1、如图1a 所 示,绳OA 、OB 等长,A 点固定不动,将B 点沿圆弧向C 点运动的过程中绳OB 中的张力将( ) A 、由大变小; B 、由小变大 C 、先变小后变大 D 、先变大后变小 解:如图1b,假设绳端在B'点,此时O点受到三力作用平衡:T A 、书的 大小方向不断的变化(图中T 'B 、T ''B T '''B 、、、、、、),但T 的大小方向始终 不变,T A 的方向不变而大小改变,封闭三角形关系 始终成立、不难瞧出; 当T A 与T B 垂直时,即 a+ =90时,T B 取最小值,因此,答案选C 。 ②相似三角形法 物体在三个共点力的作用下平衡,已知条件中涉及的就是边长问题,则由力组成的矢量三角形与由边长组成的几何三角形相似, 利用相似比可以迅速的解力的问题。 例2、如图2a 所示,在半径为R的光滑半球面上高h 处悬挂一定滑轮。重力为G的小球用绕过滑轮的绳子站在地 面上的人拉住。 人拉动绳子,在与球面相切的某点缓慢运动到接近顶点的过程中,试分析半球对小球的支持力与绳子拉力如何变化? 分析与解:受一般平衡问题思维定势的影响,以为小球 在移动过程中对半球的压力大小就是变化的。对小球进行 受力分析:球受重力G、球面对小球的支持力N与拉力T, 如图2b 所示:可以瞧到由N、T、G 构成的力三角形与由边长L 、R 、h+R 构成的几何三角形相似,从而利用相似比 N/G=R /R+h,T /G=L /R+h 、 由于在拉动的过程中,R 、h 不变,L 减小,则N=R G/R+h 大小不变, 绳子的拉力T =L G/R+h 减小。 T A 图2a

高中物理恒定电流知识点总结

恒定电流 1.电流: 1)定义:电荷的定向运动。 2)形成条件: a)导体中有能自由移动的电荷 导体提供大量的自由电荷。金属导体中的自由电荷是自由电子,电解液中的自由电 荷是正、负离子。 b)导体两端有电压。 3)电流的大小——电流强度——简称电流 I q a)宏观定义: t b)微观定义: I nqsv c)国际单位:安培 A d)电流的方向:规定为正电荷定向运动的方向相同(电流是标量) e)电流的分类:方向不随时间变化的电流叫直流,方向随时间变化的电流叫交流, 大小方向都不随时间变化的电流叫做稳恒电流。 2.电阻 1)物理意义:反映了导体的导电性能,即导体对电流的阻碍作用。 U R 2)定义式:I 国际单位Ω(R既不与U成正比,也不与I 成反比) L R 3)决定式(电阻定律):S 3.电阻率: 1)意义:反映了材料的导电性能。 RS 2)定义: L 3)与温度的关系 金属:ρ随 T ↑而↑ 半导体:ρ随 T ↑而↓有 些合金:几乎不受温度影响

4. 串并联电路 1) 欧姆定律: a) 内容:通过导体的电流跟导体两端的电压成正比,跟导体的电阻成反比。 U U I IR 或 R b) 表达式: R 或 U I c) 适用条件:金属或电解液导电(纯电子电路) 。 2) 串联电路 a) 电路中各处电流相同. I=I 1=I 2=I 3=?? b) 串联电路两端的电压等于各电阻两端电压之和.U=U 1+U 2 +U 3?? c) 串联电路的总电阻等于各个导体的电阻之和,即 R=R +R +?+ R 12 n U 1 U 2 L U n I R 1 R 2 R n d) 串联电路中各个电阻两端的电压跟它的阻值成正比,即 P 1 P 2 L P I 2 n e) 串联电路中各个电阻消耗的功率跟它的阻值成正比,即 R 1 R 2 R n 3) 并联电路 a) 并联电路中各支路两端的电压相同.U=U 1=U 2=U 3?? b) 并联电路子路中的电流等于各支路的电流之和 I=I 1+ I 2+ I 3=?? 1 1 1 c) 并联电路总电阻的倒数等于各个导体的电阻的倒数之和。 R = R 1 + R 2 +? + 1 R n 4) 伏安特性曲线: a) 定义:导体的电流随电压变化的关系曲线叫做伏安特性曲线。 b) 意义:斜率的倒数表示电阻。 c) 对于金属、电解液在不考虑温度的影响时其伏安特性曲线是过原点的倾斜的直线,这样的导体叫线性导体,否则为非线性导体。 金属 非金属 一些合金

相关文档
最新文档