第2课时 实数的运算与实数的大小比较
八年级数学上册 3.3 实数 第2课时 实数的运算和大小比较课件 (新版)湘教版.pptx

(b+c)a = ba + ca (乘法对于加法的分配律) ;
(9)实数的减法运算规定为 a -b = a + (-b)
;
(10)实数的除法运算(除数b≠ a ÷ b = a·
0)1,规定为 b
;
(11)实数有一条重要性质:如果a≠0,b≠0,那么
ab
≠
0.
4
小提示
实数也可以比较大小:对于实数a,b,如果a-b>0, 则a大于b(或者b小于a),记作a>b(或b<a);
3.
9
2 5(精确到小数点6, 精确到小数点后面第二位得:3.16.
10
用正方形比较
不用计算器,估计 5 与2哪个大.
解: 5 ,2 分别是5,4的正方形的边长. 容易说明,面积大的正方形,它的边长也大. 因此, 5 > 2 .
5
2
11
小提示
在实数运算中,如果遇到无理数,并且要 求出结果的近似值时,可按要求的精确度用相 应的近似有限小数代替无理数,再进行计算.
12
练习
计算(精确到小数点后面第二位).
(1) 2 + 3; (2) 5 -1 ; (3) 5 .
≈1.414+1.732≈3.15.
≈2.236-1≈1.24. ≈2.236×3.14≈7.02.
同样地,如果a-b<0,则a<b.还可以得出:正实数大 于一切负实数;两个负实数,绝对值大的数反而小.
从而数轴上右边的点表示的实数比左边的点表示的 实数大.
负实数
原点
正实数
0
<
5
结论
每个正实数有且只有两个平方根,它们互 为相反数;
湘教版初中数学八年级上册3.3 第2课时 实数的运算和大小比较1

5
如图所示,小明家有一正方形厨房 ABCD 和一正方形卧室 CEFG,其中正方形厨
1 <;
5
房 ABCD 的面积为 10 平方米,正方形卧室
(2)∵(1- 2)-(1- 3)= 3- 2>0,
CEFG 的面积为 15 平方米,他想知道这两个 ∴1- 2>1- 3.
正方形的边长之和 BG 的长是多少米,你能
人生
由实际问题引入实数的运算,激发学 生的学习兴趣.同时复习有理数的运算法
TB:小初高题库
>0, 所以| 3- 2|+|1- 2|+|2- 3|
13-3 1 <;
88
=( 3- 2)-(1- 2)+(2- 3)
(2)∵- 4> - 23> - 5, ∴ - 1> -
= 3- 2-1+ 2+2- 3
23+3>-2.又∵-6>- 47>-7,∴-
=( 3- 3)+( 2- 2)+(2-1)
2>4- 47>-3.∴- 23+3>4- 47.
=1.
方法总结:估算法:设 a,b 为任意两
方法总结:进行实数的混合运算时, 个正实数,先估算出 a,b 两数或两数中某
要注意运算顺序以及正确运用运算律.
部分的取值范围,再进行比较.
探究点二:实数的估算和大小比较
【类型三】 平方法
TB:小初高题库
湘教版初中数学
比较 2 3与 3 2的大小. 解析:两个数都是正数,把它们分别 平方后再比较大小. 解 : ∵(2 3)2= 12, (3 2)2= 18, 又 ∵12<18,∴2 3<3 2. 方法总结:平方法:比较含有无理数 的式子的大小时,先将要比较的两个数分 别平方,再根据“在 a>0,b>0 时,可由 a2>b2 得到 a>b”比较大小.也就是说, 两个正数比较大小时,如果一个数的平方 比另一个数的平方大,则这个数大于另一 个数. 【类型四】 近似值法
中考数学一轮优化复习 第一部分 教材同步复习 第一章 数与式 第2讲 实数的大小比较与运算课件

12/10/2021 第6页
第六页,共十七页。
2.实数的四则运算法则 (1)加法:同号两数相加,取相同的符号,并把绝对值⑳____相_加_____;绝对值不 相等的异号两数相加,取○21 ____绝_对__值_____较大的加数的符号,并用较大数的绝对值 减去较小数的○22 __绝__对__值______;互为相反数的两个数相加得 0;一个数同 0 相加,仍
12/10/2021
第十七页,共十七页。
得这个数. (2)减法:减去一个数,等于加上这个数的○23 __相__反__数______,即 a-b=a+(-b).
12/10/2021 第7页
第七页,共十七页。
(3)乘法:两数相乘,同号得○24 ____正____,异号得○25 ____负____,并把绝对值相乘; |a|·|b|a,b同号,
第一(dìyī)部 分
教材同步(tóngbù)复习
第一章 数与式
第2讲 实数的大小比较与运算
12/10/2021
第一页,共十七页。
知识要点·归纳
知识点一 实数的大小比较
直接比较法 正数>0>负数 数轴法 在数轴上,右边的点所表示的数总比左边的点所表示的数大 两个正数比较大小,绝对值大的数比较大;两个负数比较大小, 绝对值法 绝对值大的数反而小,即 a<0,b<0,若|a|>|b|,则 a<b 平方 对任意正实数 a, b,有:a2>b⇔a> b(适用于含有根式的数的 比较法 大小比较或二次根式的估值)
【正解】原式=-9+1--1122+4 =-9+1-4+4 =-8.
12/10/2021 第 14 页
第十四页,共十七页。
2.(2018·张家界)计算:( 3-1)0+(-1)-2-4sin60°+ 12.
实数的大小比较及运算

实数的大小比较及运算实数是数学中的一个重要概念,它包括有理数和无理数两大类。
在数学运算中,实数的大小比较及运算是最基础的部分之一,对于学生来说,掌握实数的大小比较及运算是非常重要的。
本文将从实数的大小比较和基本运算两个方面进行详细介绍。
一、实数的大小比较1. 正数和负数的比较正数是大于零的实数,负数是小于零的实数。
在实数中,正数大于负数。
例如,1比-1要大,2比-2要大。
当然,绝对值较大的负数,比绝对值较小的正数要小。
比如,-5比3要小。
2. 零和正数、负数的比较零是实数中最小的数,比任何正数都要小,但是大于任何负数。
如0比1要小,0比-1要大。
3. 实数的比较运算规则(1)同号相乘为正,异号相乘为负。
(2)同号相加为正,异号相加为负。
(3)绝对值较大的数,在同号运算时,结果的绝对值较大;在异号运算时,结果的绝对值较小。
二、实数的基本运算1. 实数的加法实数的加法满足交换律、结合律和分配律等基本性质。
例如,a+b=b+a,(a+b)+c=a+(b+c),a(b+c)=ab+ac。
2. 实数的减法实数的减法可以转化为加法运算,即a-b=a+(-b)。
减法满足减法的交换律:a-b≠b-a。
3. 实数的乘法实数的乘法满足交换律、结合律和分配律等基本性质。
例如,ab=ba,a(bc)=(ab)c,a(b+c)=ab+ac。
4. 实数的除法实数的除法定义为a÷b=a×(1/b),其中b≠0。
除法满足除法的性质:a÷b≠b÷a。
5. 实数的乘方与开方实数的乘方定义为a的n次方是指n个a相乘,即an=a×a×…×a。
实数的开方是乘方的逆运算,即对于实数a,若b是满足b^n=a的实数,则b叫做a的n次方根。
通过以上详细介绍,相信大家对实数的大小比较及运算有了更深入的了解。
掌握实数的大小比较及运算是数学学习的基础,也是解决实际问题的重要方法。
在日常学习中多加练习,相信你会掌握实数的大小比较及运算,取得更好的学习成绩。
新湘教版初中数学八年级上册3.3第2课时实数的运算和大小比较2公开课优质课教学设计

33 实 数第2课时 实数的运算和大小比较学习目标1掌握实数的运算法则,熟练地利用计算器去解决有关实数的运算问题;(重点) 2熟练掌握实数的大小比较方法.(难点)教学过程:(一)回顾旧知⑴ 在有理数范围内绝对值、相反数、倒数的意义是什么?⑵ 比较两个有理数的大小有哪些方法?⑶ 你能借用有理数范围内的规定举例说明无理数的绝对值、无理数的倒数、两个无理数互为相反数吗?(二)探求新知1、预习课本相关内容,对比有理数,对于实数,我们可以得出:每个正实数有且只有两个平方根,它们互为相反数;0的平方根是0在实数范围内,负实数没有平方根;在实数范围内,每个实数a 有且只有一个立方根。
2、计算下列各式的值(1) ( 53 )-5 (2) 33-323、比较3与7的大小,说说你的方法。
[设计说明:问题1起着承上启下的作用,在比较的过程中,学生可能有各种不同的方法,教师要鼓励学生进行充分的交流。
]实数的大小比较和运算,通常可取它们的近似值进行.4、π的大小吗?解 用计算器求得3+2≈314626437,而 π≈3141592654,因此 3+2>π.5、你认为215- 与05哪个大?你是怎么想的?与同学交流。
通过估算,你能比较215-与43的大小吗?[设计说明:教师应先让学生独立思考,然后进行充分的交流,在交流中应更多的关注学生能否运用有理数估算一个无理数的大致范围,把握数的相对大小,同时理解一些比较两个数大小的方法:a 、通过估算 b 、作差 c 、作商 d 、利用已有的结论 e 、利用计算器。
]6、计算 ⑴π+5 (保留2位小数) ⑵322⨯(保留2位有效数字)[设计说明:例1主要让学生会用计算器求一个无理数,例2是在例1的基础上增加了难度,对学生也提出了更高的要求,让学生学会用计算器求多个无理数的混合运算及实数运算,在实数运算中涉及无理数的计算,可根据问题的要要取其近似值转化成有理数进行计算,向学生说明:在计算过程中,取近似值时,可以按照计算结果要求的精确度,多保留一位。
第一章-第2讲-实数的运算与大小比较上课讲义

考点即时练
3.(2013重庆)在3,0,6,-2这四个பைடு நூலகம்中,最大的数为( )
A.0
B.6
C.-2
D.3
答案: B
例3.(2013毕节)估计 11 的值在( )之间.
考点即时练
5. (2013雅安) 计算: 8 + 2 – 4sin45°- ( 1 )-1.
3
【答案】原式=2 2 +2-4 × 2 -3=2 2 +2 -2 2 -3=-1.
2
6. (2013•嘉兴)(1)计算:|﹣4|﹣ 9 +(﹣2)0;
【答案】原式=4﹣3+1=2;
考点3:规律探索
例5.古希腊著名的毕达哥拉斯学派把1、3、6、10……这样的数称为“三角形 数”,而把1、4、9、16……这样的数称为“正方形数”.从图中可以发现,任 何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式 中,符合这一规律的是( )
【答案】D
例2.下列各数比 -3小的数是( ) A.0 B.1 C.-4 D.-1
思路分析:首先判断出1>-3,0>-3,求出每个数的绝对值,根据两负数比 较大小,其绝对值大的反而小,求出即可。
答案:根据两负数比较大小,其绝对值大的反而小,正数都大于负数,零大于一 切负数, ∴1>-3,0>-3, ∵|-3|=3,|-1|=1,|-4|=4, ∴比-3小的数是负数,是-4. 故选C.
【答案】2
【考点精例】
考点1:实数大小比较.
例1.[2013菏泽]如图,数轴上的A、B、C三点所表示的数分别为a、b、c,其中
中考数学实数的运算与大小比较复习共时PPT学习教案
第2课时 实数的运算与大小比较
考点三 比较实数大小的常用方 法
3.商值比较法 4.设绝对a,值比b较是法两正实数,则 设 |a|a>,|bb|是>⇔两1a⇔<负b;实a|数>a|,b=;则|b|⇔a==b1;⇔|aa|<=|b|b⇔;a>b.
<1⇔a<b.
第2页/共8页
第2课时 实数的运算与大小比较
第7页/共8页
________.
中考数学实数的运算与大小比较复习共 时
会计学
1
第2课时 实数的运算与大小比较
考点三 比较实数大小的常用方 法
1.数轴比较法: 2设.a差,将值b是比两任较意实法两”数实数分,别则a表-b示>0⇔在a>数b;轴上, a-右b<边0⇔的a<b数;a总-b比=0左⇔a边=b的. 数大,两数
表示在同一点则相等.第5源自/共8页第2课时 实数的运算与大小比较
类型之四 探索实数中的规律 命题角度: 1.探究实数运算规律 2.实数运算中阅读理解问题
第6页/共8页
第2课时 实数的运算与大小比较
例4 [2010·中山] 阅读下列材料: 1×2= (1×2×3-0×1×2), 2×3= (2×3×4-1×2×3), 3×4= (3×4×5-2×3×4), 由以上三个等式相加,可得 1×2+2×3+3×4= ×3×4×5=20. 读完以上材料,请你计算下列各题: (1)1×2+2×3+3×4+…+10×11(写出过程); (2)1×2+2×3+3×4+…+n×(n+1)=________; (3)1×2×3+2×3×4+3×4×5+…+7×8×9=
类型之一 实数的运算 命题角度: 1.实数的加减乘除乘方开方运算 2.实数的运算在实际生活中的应用
实数的运算及大小比较详解
温馨提示
1.注意零指数、负整数指数幂的意义,遇到绝对值一般要先去掉绝对值符号再进行计 算.
2.三个重要的非负数a(a≥0)、|a|、a2.
现在是3页\一共有23页\编辑于星期六
(1)(2011·新疆)将(- 5)0、(- 3)3、(-cos30°)-2 这三个实数按从
小到大的顺序排列,正确的顺序是( )
A.(- 3)3<(- 5)0<(-cos30°)-2
B.(-cos30°)-2<(- 5)0<(- 3)3
C.(- 5)0<(- 3)3<(-cos30°)-2
D.(-cos30°)-2<(- 3)3<(- 5)0
(2)(2010·毕节)若|m-3|+(n+2)2=0,则 m+2n 的值为( )
A.加法交换律
B.加法结合律
C.乘法结合律
D.分配律
【解析】注意已知条件“避免通分”.
【答案】D
15.(2012 中考预测题)下列运算正确的是( )
A. 9=±3
B.|-3|=-3
C.- 9=-3
D.-32=9
【解析】 9=3,A 错;|-3|=3,B 错;-32=-9,D 错.
【答案】C
现在是18页\一共有23页\编辑于星期六
现在是19页\一共有23页\编辑于星期六
18.(2010·日照)计算:sin30°-|-2|=________.
【解析】sin30°-|-2|=12-2=-32.
3 【答案】-2
19.(2010 中考变式题)若 x、y 为实数,且|x+2|+ y-3=0,则(x+ y)2 011 的值为________.
第一单元 数与式 实数的大小比较及运算
= 1312 = 3.
第一单元 数与式
【解题模板】
第一单元 数与式
1. 2.
3ห้องสมุดไป่ตู้ 4.
第一单元 数与式
类型二 实数的大小比较
例2 ('13宜宾)下列各数中,最小的数是 ( B )
A. 2
B. -3
C. 1
D.0
3
【小解的析数】 ,只由需正在数-3>与0>13 负中数找知即,可要,再在由2,两-3,个负13 ,数0中比找较最 大小,绝对值大的反而小可得结果.
第一单元 数与式
第2课时 实数的大小比较及运算
第一单元 数与式
考点1 实数的运算
1. 四则运算的法则 (1)加法:同号两数相加,取相同的符号,并把绝对值 相加.异号两数相加,绝对值相等时和为0;绝对值不 等时,取绝对值较大的数的符号,并用较大的绝对值 减去较小的绝对值.一个数同0相加,仍得这个数. (2)减法:减去一个数等于加上这个数的① 相反数 . (3)乘法:两数相乘,同号得② 正 ,异号得③ 负 ,
第一单元 数与式
考点2 实数的大小比较
1.数轴比较法:数轴上的两个数右边的数总比左边的 数大. 2.性质比较法:正数大于0和一切负数,负数小于0; 两个负数比较大小,绝对值大的数反而小.如 1 1 ,
5
2 4.
3.作差比较法:(1)a-b>0 a>b ;(2)a-b<0 a<b ;(3) a-b=0 a =b.
B.|a|>|b|
C.-a<-b
D.b-a>0
C
3.(2012•常德)实数a,b在数轴上的位置如图所示,下列各
式正确的是( )
A.a+b>0 B.ab>0
C.|a|+b<0 D.a-b>0
华东师大版八年级上册数学第11章课题2 实数的大小比较及运算
解:原式= 2 × (9 + 2 × 5 − 4)
= 18.94≈18.9 注意:计算过程中要多保留一位!
解:利用计算器得: 2+ 3≈3.14626437,
∵π≈3.14159265,∴ 2+ 3>π.
仿例 直接在横线上填上“>”“<”或“=”.
(1) - 10_<__3 20; (3) 3 -4_<__3 -3.33;
(2) 2 5_>__3 2;
(4)
22+1_<__
3+1 2.
归纳: 实数比较大小的方法: (1)添加根号法或比较平方法:两个同次方根比较大小, 被开方数大的值也大;平方(或立方)后值大的,其根 式值也大; (2)差值比较法:两数相减,将所得差值与零相比.
第11章 数的开方 11.2 实数
课题2 实数输入你的副标题
文字是您思想的提炼
为了最终演示发布的良好效果
请尽量言简意赅的阐述观点
学习目标
1.了解在有理数范围内的有关概念、运算法则、运算律在实数 范围内仍然适用; 2.会正确进行简单实数大小的比较; 3.学会估算并培养估算的意识,能利用化简对实数进行简单的 混合运算.
【学习重点】
会正确进行简单实数大小的比较,培养估算意识.
【学习难点】
培养估算意识,能利用化简对实数进行简单的混合运算.
情景导入
1.回想有理数的相反数、倒数、绝对值的概念. 2.实数与数轴上的点有什么关系?(一一对应) 3.数轴上的点表示的数如何比较大小?有什么特点?
自学互研
知识模块一 实数的性质 阅读教材P10~P11,完成下面的内容: 在有理数范围内的一些概念(如相反数、倒数和绝对值 等)及性质在实数范围内仍然适用,可由此解决下列问 题: