2018年中考数学总复习 第2章 方程(组)与不等式(组)第2节 一元二次方程及应用(精练)试题

合集下载

决战中考九年级数学综合复习课件 第二章 方程与不等式 第二节 一元二次方程

决战中考九年级数学综合复习课件  第二章 方程与不等式 第二节 一元二次方程

解得x1=5,x2=-1.
(3)原方程整理得2x2-7x+4=0, a=2,b=-7,c=4. ∵b2-4ac=(-7)2-4×2×4=17,
(4)原方程整理得(x+1)2=6(x+1), 移项得(x+1)2-6(x+1)=0, 即(x+1)(x-5)=0,
解得x1=-1,x2=5.
考点二
一元二次方程根的判别式
【自主解答】 ∵x2-x-1=(x+1)0, ∴x2-x-1=1, 即(x-2)(x+1)=0,
解得x1=2,x2=-1.
当x=-1时,x+1=0,故x≠-1. 故选C.
讲:
解一元二次方程的注意点
(1)在运用公式法解一元二次方程时,要先把方程化为一般
形式,再确定 a , b , c 的值,否则易出现符号错误; (2) 用
相等 b2-4ac<0⇔方程_____实数根. 没有
当一元二次方程不是一般形式时,要先化成一般形式,再
求根的判别式.
2.如果一元二次方程ax2+bx+c=0(a≠0)的两根分别为
c b x1,x2,那么x1+x2=____ ,x1x2=___. a a
应用一元二次方程根与系数的关系时,应注意以下几点: (1)当一元二次方程不是一般形式时,要先化成一般形式; (2)应用x1+x2=- b 时,不要漏“-”号;(3)应用根与系 2-4ac≥0是否成立,判别式 数的公式前,首先确定判别式 b a
(1)一元二次方程的解一般分为“无实根”“有实根”“有 两个相等的实根”“有两个不相等的实根”四种情况,注 意与判别式的对应关系;(2)利用根的情况确定字母系数的 取值范围时,不要漏掉二次项系数不为0这个隐含条件.
3.(2017·潍坊二模)若关于x的方程x2- 0有两个相等的实数根,则锐角α 为( A.30° B.45° C.60° C

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用
380
解:设参加交流会的茶叶制作商有 m 人.依题意得 m(m-1)=380,解得 m1=20,m2=-19(舍去). 答:参加交流会的茶叶制作商有 20 人.
4.(2022·荆州第 7 题 3 分)关于 x 的方程 x2-3kx-2=0 实数根的情况,
下列判断中正确的是
(B)
A.有两个相等实数根
B.有两个不等实数根
C.没有实数根
D.有一个实数根
5.(2020·荆州第 9 题 3 分)定义新运算“a*b”:对于任意实数 a,b,都
有 a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运
解:设小路宽为 x m, 由题意,得(16-2x)(9-x)=112. 整理,得 x2-17x+16=0. 解得 x1=1,x2=16>9(不合题意,舍去).∴x=1. 答:小路的宽应为 1m.
17.(数学文化)《田亩比类乘除捷法》是我国古代数学家杨辉的著作, 其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长 多阔几何?”意思是:一块矩形田地的面积为 864 平方步,只知道它的 长与宽共 60 步,问它的长比宽多多少步?根据题意,长比宽多__112__步.
100.8
解:设后两次采购价格的平均增长率为 x,依题意得 480(1+x)2=480+100.8,解得 x1=0.1,x2=-2.1(舍). 答:后两次采购价格的平均增长率为 10%.
解:设售价为 y 元/袋时,每周的销售额为 32 400 元.依题意可列方程
y-260
为 y100-
10
=32 400,解得 y1=360,y2=900.
第二节 一元二次方程及 其应用
【考情分析】湖北近 3 年主要考查:1.选择合适的方法解一元二次方程, 常在压轴题中涉及考查;2.用一元二次方程根的判别式判断方程根的情 况或者根据根的情况求字母系数的取值范围,根与系数的关系的应用; 3.一元二次方程的应用主要以选择题的形式考查列方程,常在解答题中 与不等式、函数的实际应用结合考查,难度较大,分值一般 3-10 分.

2018中考数学总复习基础知识梳理第2单元方程组与不等式组2.2一元二次方程及其应用课件江西版

2018中考数学总复习基础知识梳理第2单元方程组与不等式组2.2一元二次方程及其应用课件江西版
对于一元二次方程ax2+bx+c=0(a≠0):
1.b2-4ac>0⇔方程有两个不相等的实数根.
2.b2-4ac=0⇔方程有两个相等的的实数根.
3.b2-4ac<0⇔方程无实数根.
4.b2-4ac≥0⇔方程有实数根.
2.2.4 根与系数的关系
若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有 x1+x2= b
程叫做一元二次方程.通常可写成如下的一般形式: ax2+bx+c=0(a≠0),其中a,b,c分别叫做二次项系数、一次项系 数和常数项.
2.2.2 一元二次方程的解法
1.直接开平方法:方程符合x2=m(m≥0)或(x±m)2=n(n≥0)的形式可 利)定义:把方程化为x2=p或者(mx+n)2=p(p≥0)的形式,可以得
知识体系图
一元二次方程的相关概念:ax2+bx+c=0(a≠0)
直接开平方法
一元二次方程的解法 因式分解法 配方法 公式法 一元二次方程及其应用 一元二次方程的根
一元二次方程根的判别式 一元二次方程根与系数的关系
数量关系 一元二次方程的应用 等量关系
2.2.1 一元二次方程的定义
只含有一个未知数x,并且未知数的最高次数是2,这样的整式方
x 2 x 4, x 2 x 4 8, x 2 8,
2 2 2
x 2 2 2, x 2 2 2.
【例2】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根x1、x2. (1)求实数k的取值范围. (2)若方程两实根满足x1+x2=-x1· x2,求k的值. 【解析】此题(1)考查了一元二次方程根的判别式与根之间的关系:b2-4ac >0⇔方程有两个不相等的实数根;b2-4ac=0⇔方程有两个相等的的实数根; b2-4ac<0⇔方程无实数根.(2)考查了一元二次方程根与系数的关系,若一 元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2= b , a c x1 x 2 = . a

中考数学第一轮复习(第二章《方程与不等式》第2节《一元二次方程及其应用》

中考数学第一轮复习(第二章《方程与不等式》第2节《一元二次方程及其应用》

第二节 一元二次方程及其应用课标呈现,指引方向1.理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程.2.会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等.3.能根据具体问题中的数量关系列出一元二次方程,体会一元二次方程是刻画现实世界数量关系的有效模型.能根据具体问题的实际意义,检验方程的解是否合理.4.*了解一元二次方程的根与系数的关系.考点梳理,夯实基础1.在整式方程中,只含有 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程,它的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项: 叫做二次项的系数. 叫做一次项的系数.2.一元二次方程的解法:(1)直接开平方法:形如x 2=a (a ≥0)或(x -b )2=a (a ≥0)的一元二次方程,就可用直接开平方的方法.(2)配方法的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数:②移项,使方程左边为二次项和一次项,右边为常数项:③配方,即方程两边都加上一次项系数一半的平方;④化原方程为(x+m )2=n 的形式:⑤如果n 是非负数,即n ≥0,就可以用直接开平方求出方程的解.如果n <0.则原方程无解.(3)公式法:一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是: .(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积:③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程根的判别式:关于x 的一元二次方程ax 2+bx +c = 0(a ≠0)(1) b 2-4ac >0一元二次方程ax 2+bx +c =0(a ≠0)有 的实数根,即x = . ( 2) b 2-4ac =0一元二次方程ax 2+bx +c =0(a ≠0)有 的实数根,即x 1= x 2= . (3) b 2-4ac <0一元二次方程ax 2+bx +c =0(a ≠0) 实数根.*4.一元二次方程根与系数的关系若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两实根分别为x 1,x 2,那么x 1+x 2= ,x 1·x 2= .第一课时考点精析,专项突破考点一 一元二次方程的解【例1】(2016攀枝花)若x =-2是关于x 的一元二次方程x 2+ax -a 2=0的一个根,则a 的值为 ( ) A .-1或4 B .-1或-4 C .1或-4 D .1或4考点二 一元二次方程的解法【例2】解方程:(1)2(x -2)2-1=0 (2) x 2-2x -2=0(3) y 2-7y +10=0 (4) 4x 2-5x +2=0考点三 根的判别式和韦达定理【例3】(1)(2016白贡)已知关于x 的一元二次方程x 2+2x -(m -2)=0有实数根,则m 的取值范围是( )A .m >1B .m <1C .m ≥1D .m ≤1(2)(2016聊城)如果关于x 的一元二次方程kx 2-3x -1=0有两个不相等的实根,那么k 的取值范围是 .⇔⇔⇔32(3)设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根.则m 2+3m +n = . 课堂训练,当堂检测1.(2016沈阳)一元二次方程x 2-4x =12的根是( )A .x 1=2,x 2=-6B .x 1=-2,x 2=6C .x 1=-2,x 2=-6D .x 1=2,x 2=62.(2016新疆)将一元二次方程x 2 -6x -5=0配方后可变形为 ( )A .(x -3)2=14B .(x -3)2=4C .(x +3)2=14D .(x +3)2=43.(1)(2016大连)若关于x 的方程2x 2+x -a =0有两个不相等的实根,则实数a 的取值范围是 .(2)(2016成都)已知关于x 的方程3x 2+2x -m =0没有实数解,则m 的取值范围是 .4.解下列方程:(1)2x 2+2x =1.( 2)x 2-+10=0.(3)x 2-10x +21=0.中考达标,模拟自测A 组 基础训练一、选择题1.(2016舟山)一元二次方程2x 2-3x +1=0根的情况是 ( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2016黄冈)若方程3x 2 -4x -4=0的两个实数根分别为x 1,x 2,则x 1+x 2的值是 ( )A .-4B .3C .-D . 3.(2016枣庄)若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是 ( )4.(2016福州)下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是 ( )A .a >0B .a =0C .c >0D .c =0二、填空题5.(2016菏泽)已知x =m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m = .6.(2015通辽)菱形ABCD 的一条对角线长为6,边AB 的长为方程x 2-7x +10=0的一个根,则菱形ABCD的周长为 .7.(1)(2016云南)如果关于x 的一元二次方程x 2+2ax +a +2=0有两个相等的实数根,那么实数a 的值为 .(2)(2016桂林)若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是 .三、解答题8.选择适当的方法解下列方程:(1)(x +3)2=2. (2)+1)x 2-x =0. 434312(3)x2-x+2=0.(4)2(3x-2)=(2-3x)(x+1)9.(2016东山)若t为实数,关于x的方程x2-4x+t-2=0的两个非负实数根为a、b,则代数式(a2-1)(b2-1)的最小值是多少?B组提高练习10.(2016大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1-ac,N=(ax0+1)2,则M与N 的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定11.(2016呼和浩特)已知a≥2,m2-2am+2=0,n2-2an+2=0,则(m-1)2+(n-1)2的最小值是.12.(2016鄂州)关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.第二课时考点精析,专项突破考点四、增长率问题【例4】(2016泰州)随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.考点五、销售问题【例5】(2015乌鲁木齐)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?考点六、几何问题【例6】(2015湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?课堂训练,当堂检测1.(2016年台州)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x-1)= 45 B.x(x+1)=45 C.x(x-1)=45 D.x(x+1)=452.(2015宁夏)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为602.两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列m关于x的方程是()21xx12xx1212A.x2+9x-8=0 B.x2-9x-8=0 C.x2-9x+8=0 D.2x2-9x+8=03.某商场销售一批名牌衬衫,平均每天可售出 20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价0.5元,商场平均每天可多售出 1件,若商场平均每天要盈利1200元,为了减少库存,每件衬衫应降价元.4.(2016贺州)某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投人的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.1.1=1.2=1.3=1.4)中考达标,模拟自测A组基础训练一、选择题1.(2016大连)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长,若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x) B.100(1+x)2 C.100(1+x2) D.100(1+2x)2.(2015衡阳)绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米,设绿地的宽为x米,根据题意,可列方程为()A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=9003.(2015安徽)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一,若2015年的快递业务量达到4.5亿件,设2015年与2014年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.54.(2015白贡)利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,则矩形的长是()米.A.25 B.50 C.25或50 D.以上都不正确二、填空题5.(2016十堰)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.6.(2015巴中)如图,某农场有一块长40m.宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,则小路的宽是.【答案】2m7.(2015兰州)股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停:当跌了原价的10%后,便不能再跌,叫做跌停,已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是.三、解答题8.某校语文备课组为了增强学生写作兴趣创办刊物《萌芽》,得到了全校师生的欢迎.他们将刊物以适当的价格销售后所得利润资助贫困学生,已知印制100本《萌芽》的成本比印制40本的2倍还多440元.(1)求每本《萌芽》的成本是多少元?(2)经销售调查发现:每本《萌芽》售价定为33元,可售出 120本,若每本降价1元,可多售出 20本,为尽量增加销量让更多的人读到这本刊物,当每本降价多少元时,可获得1400元的利润资助贫困学生?9.(2016内江)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用周长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值:如果没有,请说明理由.B组提高练习10.一玩具城以49元/个的价格购进某种玩具进行销售,并预计当售价为56元/个时,每天能售出14个玩具.现需进一步调整销售方案.将每个玩具的售价提高了a%,从而每天的销售量降低了2a%,当每天的销售利润为147元时,则a的值为()A.12.5或20 B.12.5或25 C.20或25 D.25或7511.甲、乙、丙三家超市为了促销一种定价均为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是.12.近期猪肉价格不断走高,引起丁民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售,某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的÷,两种猪肉销售的总金额比5月20日提高了二.%,求a的值.。

中考数学决胜一轮复习 第2章 方程(组)与不等式(组)第2节 一元二次方程及其应用课件

中考数学决胜一轮复习 第2章 方程(组)与不等式(组)第2节 一元二次方程及其应用课件
12/9/2021
解:把x=2代入kx2+(k2-2)x+2k+4=0得4k+2k2-4+2k+4= 0,整理得k2+3k=0,解得k1=0,k2=-3,因为k≠0,所以k的值为-3.
【答案】 -3. 【易错提醒】 当一元二次方程二次项系数含参数时,切记二次 项系数不能为0,这一点应引起同学们的高度重视(如本例中的k≠0).
12/9/2021
四、一元二次方程的应用 【例4】 (2018·安顺)某地2015年为做好“精准扶贫”,投入资 金1 280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年 的基础上增加投入资金1 600万元. (1)从2015年到2017年,该地投入异地安置资金的年平均增长率为 多少? (2)在2017年异地安置的具体实施中,该地计划投入资金不低于 500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天 奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2017年 该地至少有多少户享受到优先搬迁租房奖励.
12/9/2021
12/9/2021
Hale Waihona Puke 基础知识梳理●考点一 一元二次方程的概念 1.一元二次方程必须同时具备三个条件:(1)只含有一__个______未 知 数 ; (2) 未 知 数 的 最 高 次 数二次是 ________ ; (3) 方 程 的 左 右整两式边 是 ________. a≠20. 一 元 二 次 方 程 的 一 般 形 式 是 : ax2 + bx + c = 0(a , b , c 是 常 数,且________).
12/9/2021
二、一元二次方程的解法 【例2】 (2018·齐齐哈尔)解方程:2(x-3)=3x(x-3). 【解析】 方法一:将方程右边移项后可以提取公因式(x-3),再利 用因式分解法,即可求得一元二次方程的解.方法二:也可通过变形将 其方程化为一元二次方程的一般形式,考虑公式法求解. 解:2(x-3)=3x(x-3),移项得 2(x-3)-3x(x-3)=0,整理得(x- 3)(2-3x)=0,∴x-3=0,2-3x=0,解得 x1=3,x2=23.

2018年中考数学总复习第一部分基础知识复习第2章方程组与不等式组第4讲一元一次不等式组课件

2018年中考数学总复习第一部分基础知识复习第2章方程组与不等式组第4讲一元一次不等式组课件

★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析

★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1

2018中考数学总复习 基础知识梳理 第2单元 方程(组)与不等式(组)2.1 一次方程(组)及其应用


K12课件
11
3.列方程(组)解应用题的关键是把已知量和未知量联系起来,找出 题目中的数量关系,并根据题意或生活实际建立等量关系.一般来 说,有几个未知量就必须列出几个方程,所列方程必须注意:①方 程两边表示的是同类量;②同类量的单位要统一;③方程两边的数 值要相等.
K12课件
12
常见的应用题题型归纳及关系式总结
1.有关路程、速度的问题 (1)行程问题:路程=速度×时间. (2)相遇问题:两者路程之和=全程. (3)追及问题:快者路程=慢者先走路程(或相距路程)+慢者后 走路程. (4)水中航行问题:
顺水速度=船在静水中速度+水流速度 逆水速度=船在静水中速度-水流速度
K12课件
13
2.工程问题:工作量=工作效率×工作时间,各部分工作量之和=工 作总量.
K12课件
10
2.两种设元方法
(1)直接设元.在全面透彻地理解问题的基础上,根据题中求什 么就设什么是未知数,或要求几个量,可直接设出其中一个为未 知数,再用这个未知数表示另一个未知量.这种设未知数的方法 叫做直接设元法.
(2)间接设元.如果对某些题目直接设元不易求解,便可将并不 是直接要求的某个量设为未知数,从而使得问题变得容易解答, 我们称这种设未知数的方法为间接设元法.
(2)加减消元法:两个二元一次方程中同一个未知数的系数互为
相反数或相等时,将两个方程的两边分别相加或相减,从而消去这
个未知数,得到一元一次方程,这种方法叫做加减消元法,简称加
减法.
K12课件
8
2.1.5 列方程(组)解应用题的一般步骤
1.审:即审清题意,分清题中的已知量、未知量.
2.设:即设关键未知数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 一元二次方程及应用
1.(2017遵义升学样卷)若x =-1是关于x 的一元二次方程ax 2
+bx -2=0(a≠0)的一个根,则2 019-2a +2b 的值等于( D ) A .2 019 B .2 013 C .2 011 D .2 015
2.(2017遵义航中二模)已知一元二次方程的两根分别是2和-3,则这个一元二次方程是( D ) A .x 2-6x +8=0 B .x 2+2x -3=0
C .x 2-x -6=0
D .x 2+x -6=0
3.(2017兰州中考)一元二次方程x 2
+2x +1=0的根的情况( B ) A .有一个实数根
B .有两个相等的实数根
C .有两个不相等的实数根
D .没有实数根
4.(2017凉山中考)已知x 1,x 2是一元二次方程3x 2
=6-2x 的两根,则x 1-x 1x 2+x 2的值是( D ) A .-43 B .83 C .-83 D .43
5.(2017遵义一中二模)用配方法解一元二次方程x 2-4x =5时,此方程可变形为( D ) A .(x +2)2=1 B .(x -2)2=1
C .(x +2)2=9
D .(x -2)2=9
6.(2017遵义十一中二模)如图,某小区有一块长为18 m ,宽为6 m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60 m 2
,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x m ,则可以列出关于x 的方程是( C )
A .x 2
+9x -8=0
B .x 2-9x -8=0
C .x 2-9x +8=0
D .2x 2-9x +8=0
7.(2017兰州中考)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x ,则x 满足的方程是( B ) A .(1+x)2=1110 B .(1+x)2=109
C .1+2x =1110
D .1+2x =109
8.(2017杭州中考)设x ,y ,c 是实数( B ) A .若x =y ,则x +c =y -c
B .若x =y ,则xc =yc
C .若x =y ,则x c =y c
D .若x 2c =y 3c ,则2x =3y
9.(2017荆州中考)为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款( B ) A .140元 B .150元 C .160元 D .200元
10.(2017长沙中考)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( C )
A .24里
B .12里
C .6里
D .3里
11.(2017六盘水中考)三角形的两边a ,b 的夹角为60°且满足方程x 2
-32x +4=0,则第三边的长是( A ) A . 6 B .2 2 C .2 3 D .3 2
12.(2017淄博中考)若关于x 的一元二次方程kx 2
-2x -1=0有两个不相等的实数根,则实数k 的取值范围是( B ) A .k>-1 B .k>-1且k≠0
C .k<-1
D .k<-1或k =0
13.(2017通辽中考)若关于x 的一元二次方程(k +1)x 2+2(k +1)x +k -2=0有实数根,则k 的取值范围在数轴上表示正确的是( A )
错误! 错误!
,B )
,C ) ,D )
14.(2017咸宁中考)已知a ,b ,c 为常数,点P(a ,c)在第二象限,则关于x 的方程ax 2+bx +c =0根
的情况是( B )
A .有两个相等的实数根
B .有两个不相等的实数根
C .没有实数根
D .无法判断
15.(2017绥化中考)已知关于x 的一元二次方程x 2+(2m +1)x +m 2-4=0.
(1)当m 为何值时,方程有两个不相等的实数根?
(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m 的值.
解:(1)∵方程x 2+(2m +1)x +m 2-4=0有两个不相等的实数根,
∴Δ=(2m +1)2-4(m 2-4)=4m +17>0,
解得m>-174
. ∴当m>-174时,方程有两个不相等的实数根;。

相关文档
最新文档