专题05 图表信息题-2019中考数学专题拓展讲练

合集下载

2019年中考数学总练习图象信息类问题专项综合练习题含解析和解析

2019年中考数学总练习图象信息类问题专项综合练习题含解析和解析

2019年中考数学总练习图象信息类问题专项综合练习题含解析和解析1.我国古代«易经»一书中记载,远古时期,人们通过在绳子上打结来记录数量,即〝结绳计数〞.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A、84B、336C、510D、13262. 一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,以下选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )3. 如图是甲、乙两车在某时段速度随时间变化的图象,以下结论错误的选项是( )A、乙前4秒行驶的路程为48米B、在0到8秒内甲的速度每秒增加4米/秒C、两车到第3秒时行驶的路程相等D、在4至8秒内甲的速度都大于乙的速度4. 如图,O是边长为4 cm的正方形ABCD的中心,M是BC的中点,动点P由A 开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1 cm/s.设P点的运动时间为t(s),点P的运动路径与OA,OP所围成的图形面积为S(cm2),那么描述面积S(cm2)与时间t(s)的关系的图象可以是( )5. 如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A,B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,那么以下图象能大致反映y 与x 之间的函数关系的是( )6. 公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了 1 m ,另一边减少了2 m ,剩余空地的面积为18 m 2,求原正方形空地的边长.设原正方形空地的边长为 x m ,那么可列方程为( )A 、(x +1)(x +2)=18B 、x 2-3x +16=0C 、(x -1)(x -2)=18D 、x 2+3x +16=07. 用m 根火柴恰好可拼成如图1所示的a 个等边三角形或如图2所示的b 个正六边形,求b a=____. 8. 一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg ,销售单价不低于120元/kg ,且不高于180元/kg ,经销一段时间后得到如下数据:设y 与x 的关系是我们所学过的某一种函数关系.(1)直接写出y 与x 的函数关系式,并指出自变量x 的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?9. 九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:该运动服的进价为每件60元,设售价为x 元.(1)请用含x 的式子表示月销量;(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?10. 某玩具厂生产一种玩具,本着控制固定成本,降价促销的原那么,使生产的玩具能够全部售出.据市场调查,假设按每个玩具280元销售时,每月可销售300个.假设销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)假设每个玩具的固定成本为30元,那么它占销售单价的几分之几?(4)假设该厂这种玩具的月产销量不超过400个,那么每个玩具的固定成本至少为多少元?销售单价最低为多少元?11. 2019年3月27日〝丽水半程马拉松竞赛〞在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如下图,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答以下问题:(1)求图中a的值;①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?12. 如图,在水平地面上树立着一面墙AB,墙外有一盏路灯D,光线DC恰好通过墙的最高点B,且与地面形成37°角,墙在灯光下的影子为线段AC,并测得AC=5.5米.(1)求墙AB的高度;(结果精确到0.1米,参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)(2)如果要缩短影子AC的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法.13. 用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)假设裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?14. 某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象如图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月、4月的利润;1. C 【解析】类比于现在我们的十进制〝满十进一〞,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.1×73+3×72+2×7+6=510,应选C.2. A 【解析】分别求出甲乙两人到达C地的时间,再结合条件即可解决问题.由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了53小时到C 地,在C 地休息了13小时.由此可知正确的图象是A.应选A. 3. C4. A 【解析】分两种情况:①当0≤t<4时,作ON ⊥AB 于N ,∵四边形ABCD 是正方形,∴∠B =90°,AD =AB =BC =4 cm ,∵O 是正方形ABCD 的中心,∴AN =BN =ON =12AB =2 cm , ∴S =12AP·ON=12×t×2=t(cm 2);②当t≥4时,作ON⊥AB 于N , S =△OAN 的面积+梯形ONBP 的面积=12×2×2+12(2+t -4)×2=t(cm 2),综上可知,面积S(cm 2)与时间t(s )的关系的图象是过原点的线段,应选A .5. D 【解析】如图,作CM ⊥AB 于M .∵CA =CB ,AB =30,CM ⊥AB ,∴AM =BM =15,CM =AC 2-BM 2=20,∵DE ⊥BC ,∴∠DEB =∠CMB =90°,又∵∠B =∠B ,∴△DEB ∽△CMB ,∴BD BC =DE CM =EB BM ,∴x 25=DE 20=EB 15,∴DE =45x ,EB =35x , ∴四边形ACED 的周长为y =25+(25-35x )+45x +30-x =-45x +80. ∵0<x <30,∴图象是D.6. C 【解析】利用图形表示出剩余空地的长与宽的代数式,再利用面积公式列出方程.设原正方形边长为 x cm ,那么剩余空地的长为(x -1) cm ,宽为(x -2 ) cm ,面积为(x -1)×(x -2)=18,应选C.7. 25【解析】分别根据图1,求出拼成a 个等边三角形用的火柴数量, 即m 与a 之间的关系,再根据图2找到b 与m 之间的等量关系,最后利用m 相同得出b a的值.由图1可知:一个等边三角形有3条边, 两个等边三角形有3+2条边,∴m =1+2a ,由图2可知:一个正六边形有6条边,两个正六边形有6+5条边,∴m =1+5b ,∴1+2a =1+5b ,∴b a =25. 8. 解:(1) ∵由表格可知:销售单价每涨10元,就少销售5 kg ,∴y 与x 是一次函数关系,∴y 与x 的函数关系式为y =100-0.5(x -120)=-0.5x +160,∵销售单价不低于120元/kg ,且不高于180元/kg ,∴自变量x 的取值范围为120≤x≤180(2) 设销售利润为w 元,那么w =(x -80)(-0.5x +160)=-12x 2+200x -12800=-12(x -200)2+7200,∵a =-12<0,∴当x <200时,y 随x 的增大而增大,∴当x =180时,销售利润最大,最大利润是w =-12(180-200)2+7200=7000(元)9. 解:(1) 根据所给数据猜想月销量是售价的一次函数,可设为m =kx +b ,将(100,200),(110,180)代入,得⎩⎪⎨⎪⎧100k +b =200,110k +b =180,解得⎩⎪⎨⎪⎧k =-2,b =400,∴m=-2x +400. 将其他各组数据代入检验,适合,∴月销量是(-2x +400)件(2) 依题意可得:y =(x -60)(-2x +400)=-2x 2+520x -24 000=-2(x -130)2+9 800.当x =130时,y 有最大值9 800.∴售价为每件130元时,当月的利润最大,为9 800元10. 解:(1)由于销售单价每降低1元,每月可多售出2个,所以月产销量y(个)与销售单价x (元)之间存在一次函数关系,不妨设y =kx +b ,那么(280,300),(279,302)满足函数关系式,得⎩⎪⎨⎪⎧280k +b =300,279k +b =302,解得⎩⎪⎨⎪⎧k =-2,b =860,月产销量y(个)与销售单价x (元)之间的函数关系式为y =-2x +860(2) 观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q =m y,将Q =60,y =160代入得到m =9600,此时Q =9600y(3) 当Q =30时,y =320,由(1)可知y =-2x +860,所以y =270,即销售单价为270元,由于30270=19,∴成本占销售价的19(4) 假设y≤400,那么Q≥9600400,即Q≥24,固定成本至少是24元, 400≥-2x +860,解得x≥230,即销售单价最低为230元11. 解:(1) a =0.3×35=10.5(2) ①∵线段OA 经过点O(0,0),A(35,10.5),∴直线OA 解析式为y =0.3t(0≤t≤35),∴当s =2.1时,0.3t =2.1, ∴当s =0时,-0.21t +17.85=0,解得t =85,∴该运动员跑完赛程用时85分钟12. 解:(1) ∵tan ∠ACB =AB AC, ∴AB =AC·tan ∠ACB =5.5·tan37°≈5.5×0.75=4.125≈4.1,那么墙AB 的高度为4.1米(2) 如果要缩短影子AC 的长度,同时不改变墙的高度和位置,可以将路灯的电线杆加长或将路灯的电线杆向墙边靠近13. 解:(1)∵裁剪时x 张用A 方法,∴裁剪时(19-x)张用B 方法,∴侧面的个数为6x +4(19-x)=(2x +76)个,底面的个数为5(19-x)=(95-5x)个(2)由题意,得2x +76=32(95-5x),解得x =7, ∴盒子的个数为2×7+763=30, 那么裁剪出的侧面和底面恰好全部用完,能做30个盒子14. 解:(1)设p =ky +b ,把(100,60),(200,110)代入得解得⎩⎪⎨⎪⎧k =12,b =10,∴p =12y +10 (2)∵x=150时,p =85,∴三月份利润为150-85=65(万元).∵x =175时,p =97.5,∴四月份的利润为175-97.5=77.5(万元)(3)设最早到第x 个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.∵5月份以后的每月利润为90万元,∴65+77.5+90(x -2)-40x≥200,∴x ≥4.75,∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元解析:(1)设p =ky +b ,把(100,60),(200,110),代入即可解决问题;(2)根据利润=销售额-经销成本,即可解决问题;(3)设最早到第x 个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,列出不等式即可解决问题.。

2019年中考数学专题拓展讲练专题五 图表信息题(含解析)

2019年中考数学专题拓展讲练专题五 图表信息题(含解析)

2019年中考数学专题拓展讲练专题五图表信息题一、专题概述1.图表信息题主要包括:①表格信息题;②图形信息题;③图象信息题.2.做表格信息题要通过表格中呈现出数量变化关系,求出函数解析式,以解决问题;做图形信息题要把握不同统计图所反映的不同信息;做图象信息题要清楚图象各部分代表的实际意义,要数形结合.二、考点分析考点一、表格信息题【例1】(2018·湖州市)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?【解析】(1)填表如下:运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x)B果园80﹣x x﹣10 2×20×(80﹣x)2×20×(x﹣10)故答案为80﹣x,x﹣10,2×20×(80﹣x),2×20×(x﹣10);【名师点睛】此题考查了一次函数的实际应用问题.此题难度较大,解题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解.考点二、图形信息题【例2】(2018·烟台市)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信。

专题05一次函数--浙江省2019-2021年3年中考真题数学分项汇编(解析版)

专题05一次函数--浙江省2019-2021年3年中考真题数学分项汇编(解析版)

三年(2019-2021)中考真题数学分项汇编(浙江专用)专题05一次函数(浙江专用)一.选择题(共8小题)1.(2021•嘉兴)已知点P (a ,b )在直线y =﹣3x ﹣4上,且2a ﹣5b ≤0,则下列不等式一定成立的是( ) A .a b≤52B .a b≥52C .b a≥25D .b a≤25【分析】结合选项可知,只需要判断出a 和b 的正负即可,点P (a ,b )在直线y =﹣3x ﹣4上,代入可得关于a 和b 的等式,再代入不等式2a ﹣5b ≤0中,可判断出a 与b 正负,即可得出结论. 【详解】解:∵点P (a ,b )在直线y =﹣3x ﹣4上, ∴﹣3a ﹣4=b , 又2a ﹣5b ≤0,∴2a ﹣5(﹣3a ﹣4)≤0, 解得a ≤−2017<0,当a =−2017时,得b =−817, ∴b ≥−817, ∵2a ﹣5b ≤0, ∴2a ≤5b , ∴ba≤25.故选:D .2.(2020•嘉兴)一次函数y =2x ﹣1的图象大致是( )A .B .C .D .【分析】根据一次函数的性质,判断出k 和b 的符号即可解答.【详解】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.3.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+2【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.【详解】解:∵直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.∴A(﹣1,0),B(﹣3,0)A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B、y=√2x+2与x轴的交点为(−√2,0);故直线y=√2x+2与x轴的交点在线段AB上;C、y=4x+2与x轴的交点为(−12,0);故直线y=4x+2与x轴的交点不在线段AB上;D、y=2√33x+2与x轴的交点为(−√3,0);故直线y=2√33x+2与x轴的交点在线段AB上;故选:C.4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.【分析】求得解析式即可判断.【详解】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∴2=a+a,解得a=1,∴y=x+1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2), 故选:A .5.(2019•绍兴)若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于( ) A .﹣1B .0C .3D .4【分析】利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a ,10)代入解析式即可; 【详解】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=k +b 7=2k +b ∴{k =3b =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3; 故选:C .6.(2019•杭州)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是( )A .B .C .D .【分析】根据直线判断出a 、b 的符号,然后根据a 、b 的符号判断出直线经过的象限即可,做出判断.【详解】解:A 、由图可知:直线y 1=ax +b ,a >0,b >0.∴直线y 2=bx +a 经过一、二、三象限,故A 正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、二、四象限,交点不对,故C错误;D、由图可知:直线y1=ax+b,a<0,b<0,∴直线y2=bx+a经过二、三、四象限,故D错误.故选:A.7.(2020•台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.【分析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.【详解】解:由题意小球在左侧时,V=kt,∴y=0+kt2•t=12kt2,∴小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.8.(2019•衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.【分析】根据题意分类讨论,随着点P位置的变化,△CPE的面积的变化趋势.【详解】解:通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的高BC不变,则其面积是x的一次函数,面积随x增大而增大,当x=2时有最大面积为4,当P在AD边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而增大,当x=6时,有最大面积为8,当点P在DC边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而减小,最小面积为0;故选:C.二.填空题(共5小题)9.(2021•杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B (1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC═∠DAE(填“>”、“=”、“<”中的一个).【分析】在直角坐标系中构造直角三角形,根据三角形边之间的关系推出角之间的关系.【详解】解:连接DE,由上图可知AB═2,BC═2,∴△ABC是等腰直角三角形,∴∠BAC═45°,又∵AE═√AF2+EF2═√22+12═√5,同理可得DE═√22+12═√5,AD═√12+32═√10,则在△ADE中,有AE2+DE2═AD2,∴△ADE 是等腰直角三角形, ∴∠DAE ═45°, ∴∠BAC ═∠DAE , 故答案为:═.10.(2019•杭州)某函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1,写出一个满足条件的函数表达式 y =﹣x +1(答案不唯一) . 【分析】根据题意写出一个一次函数即可. 【详解】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{k +b =0b =1 解得:{k =−1b =1,所以函数的解析式为y =﹣x +1, 故答案为:y =﹣x +1(答案不唯一).11.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是 (32,4800) .【分析】根据题意可以得到关于t 的方程,从而可以求得点P 的坐标,本题得以解决. 【详解】解:令150t =240(t ﹣12), 解得,t =32,则150t =150×32=4800, ∴点P 的坐标为(32,4800), 故答案为:(32,4800).12.(2020•金华)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) ﹣1(答案不唯一). . 【分析】直接利用第二象限内点的坐标特点得出m 的取值范围,进而得出答案. 【详解】解:∵点P (m ,2)在第二象限内, ∴m <0,则m 的值可以是﹣1(答案不唯一). 故答案为:﹣1(答案不唯一).13.(2019•衢州)如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF ,其中顶点A 位于x 轴上,顶点B ,D 位于y 轴上,O 为坐标原点,则OB OA的值为 12.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n ﹣1,…,则顶点F 2019的坐标为 (6062√55,405√5) .【分析】(1)先证明△AOB ∽△BCD ,所以OB OA=DC BC,因为DC =1,BC =2,所有OB OA=12;(2)利用三角形相似与三角形全等依次求出F 1,F 2,F 3,F 4的坐标,观察求出F 2019的坐标. 【详解】解:(1)∵∠ABO +∠DBC =90°,∠ABO +∠OAB =90°, ∴∠DBC =∠OAB , ∵∠AOB =∠BCD =90°, ∴△AOB ∽△BCD , ∴OB OA=DC BC,∵DC =1,BC =2, ∴OB OA=12,故答案为12;(2)解:过C 作CM ⊥y 轴于M ,过M 1作M 1N ⊥x 轴,过F 作FN 1⊥x 轴.根据勾股定理易证得BD =√22+12=√5,CM =OA =2√55,DM =OB =AN =√55, ∴C (2√55,√5), ∵AF =3,M 1F =BC =2, ∴AM 1=AF ﹣M 1F =3﹣2=1, ∴△BOA ≌ANM 1(AAS ), ∴NM 1=OA =2√55, ∵NM 1∥FN 1, ∴M 1N FN 1=AM 1AF, 2√55FN 1=13,∴FN 1=6√55, ∴AN 1=3√55, ∴ON 1=OA +AN 1=2√55+3√55=5√55 ∴F (5√55,6√55), 同理, F 1(8√55,7√55),即(1×3+55√5,6+15√5) F 2(11√55,8√55),即(2×3+55√5,6+25√5) F 3(14√55,9√55),即(3×3+55√5,6+35√5)F 4(17√55,10√55),即(4×3+55√5,6+45√5) …F 2019(2019×3+55√5,6+20195√5),即(60625√5,405√5), 故答案为即(60625√5,405√5). 三.解答题(共17小题)14.(2021•嘉兴)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”,80米~100米为“冲刺期”.市田径队把运动员小斌某次百米跑训练时速度y (m /s )与路程x (m )之间的观测数据,绘制成曲线如图所示. (1)y 是关于x 的函数吗?为什么? (2)“加速期”结束时,小斌的速度为多少? (3)根据如图提供的信息,给小斌提一条训练建议.【分析】(1)根据函数的定义,可直接判断;(2)由图象可知,“加速期”结束时,即跑30米时,小斌的速度为10.4m /s . (3)答案不唯一.建议合理即可.【详解】解:(1)y 是x 的函数,在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与之对应.(2)“加速期”结束时,小斌的速度为10.4m /s .(3)答案不唯一.例如:根据图象信息,小斌在80米左右时速度下降明显,建议增加耐力训练,提高成绩.15.(2020•嘉兴)经过实验获得两个变量x (x >0),y (y >0)的一组对应值如下表.x ..... 1 2 3 4 5 6 ...... y......6321.51.21......(1)请画出相应函数的图象,并求出函数表达式.(2)点A (x 1,y 1),B (x 2,y 2)在此函数图象上.若x 1<x 2,则y 1,y 2有怎样的大小关系?请说明理由.【分析】(1)利用描点法即可画出函数图象,再利用待定系数法即可得出函数表达式.(2)根据反比例函数的性质解答即可.【详解】解:(1)函数图象如图所示,设函数表达式为y=kx(k≠0),把x=1,y=6代入,得k=6,∴函数表达式为y=6x(x>0);(2)∵k=6>0,∴在第一象限,y随x的增大而减小,∴0<x1<x2时,则y1>y2.16.(2021•丽水)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?【分析】(1)由图象直接求出工厂离目的地的路程; (2)用待定系数法求出函数解析式即可;(3)当油箱中剩余油量为10升时和当油箱中剩余油量为0升时,求出t 的取值即可. 【详解】解:(1)由图象,得t =0时,s =880, ∴工厂离目的地的路程为880千米, 答:工厂离目的地的路程为880千米; (2)设s =kt +b (k ≠0),将(0,880)和(4,560)代入s =kt +b 得, {880=b 560=4k +b , 解得:{k =−80b =880,∴s 关于t 的函数表达式:s =﹣80t +880(0≤t ≤11), 答:s 关于t 的函数表达式:s =﹣80t +880(0≤t ≤11); (3)当油箱中剩余油量为10升时, s =880﹣(60﹣10)÷0.1=380(千米), ∴380=﹣80t +880, 解得:t =254(小时), 当油箱中剩余油量为0升时, s =880﹣60÷0.1=280(千米), ∴280=﹣80t +880,解得:t =152(小时), ∵k =﹣80<0, ∴s 随t 的增大而减小, ∴t 的取值范围是254<t <152.17.(2021•金华)在平面直角坐标系中,点A 的坐标为(−√73,0),点B 在直线l :y =38x 上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D . ①若BA =BO ,求证:CD =CO .②若∠CBO =45°,求四边形ABOC 的面积.(2)是否存在点B ,使得以A ,B ,C 为顶点的三角形与△BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【分析】(1)①由BC ⊥AB ,CO ⊥BO ,可得∠BAD +∠ADB =∠COD +∠DOB =90°,而根据已知有∠BAD =∠DOB ,故∠ADB =∠COD ,从而可得∠COD =∠CDO ,CD =CO ;②过A 作AM ⊥OB 于M ,过M 作MN ⊥y 轴于N ,设M (m ,38m ),可得tan ∠OMN =tan ∠AOM =38,即AM OM=38,设AM =3n ,则OM =8n ,Rt △AOM 中,AM 2+OM 2=OA 2,可求出AM =3,OM =8,由∠CBO =45°可知△BOC 是等腰直角三角形,△ABM 是等腰直角三角形,从而有AM =BM =3,BO =CO =OM ﹣BM =5,AB =√2AM =3√2,BC =√2BO =5√2,即可求出S 四边形ABOC =S △ABC +S △BOC =552; (2)(一)过A 作AM ⊥OB 于M ,当B 在线段OM 或OM 延长线上时,设OB =x ,则BM =|8﹣x |,AB =√9+(8−x)2, 由△AMB ∽△BOC ,OC BM=OB AM,即OC|8−x|=x3,得OC =x 3⋅|8−x|,BC =√OB 2+OC 2=x3√9+(8−x)2,以A ,B ,C 为顶点的三角形与△BCO 相似,分两种情况:①若AB OB=BC OC,OB =4;②若AB OC=BC OB,OB =4+√7或OB =4−√7或OB =9;(二)当B 在线段MO 延长线上时,设OB =x ,则BM =8+x ,AB =√9+(8+x)2,由△AMB ∽△BOC ,OCBM=OB AM,即OC8+x=x3,得OC =x3•(8+x ),以A ,B ,C 为顶点的三角形与△BCO 相似,需满足AB OC =BC OB ,即√9+(8+x)2x 3(8+x)=x3√9+(8+x)2x,可得OB =1.【详解】(1)①证明:∵BC ⊥AB ,CO ⊥BO , ∴∠ABC =∠BCO =90°,∴∠BAD +∠ADB =∠COD +∠DOB =90°, ∵BA =BO , ∴∠BAD =∠DOB , ∴∠ADB =∠COD , ∵∠ADB =∠CDO , ∴∠COD =∠CDO , ∴CD =CO ;②解:过A 作AM ⊥OB 于M ,过M 作MN ⊥y 轴于N ,如图:∵M 在直线l :y =38x 上,设M (m ,38m ),∴MN =|m |=﹣m ,ON =|38m |=−38m ,Rt △MON 中,tan ∠OMN =ON OM =38, 而OA ∥MN , ∴∠AOM =∠OMN , ∴tan ∠AOM =38,即AM OM=38,设AM =3n ,则OM =8n ,Rt △AOM 中,AM 2+OM 2=OA 2, 又A 的坐标为(−√73,0),∴OA=√73,∴(3n)2+(8n)2=(√73)2,解得n=1(n=﹣1舍去),∴AM=3,OM=8,∵∠CBO=45°,CO⊥BO,∴△BOC是等腰直角三角形,∵BC⊥AB,∠CBO=45°,∴∠ABM=45°,∵AM⊥OB,∴△ABM是等腰直角三角形,∴AM=BM=3,BO=CO=OM﹣BM=5,∴等腰直角三角形△ABM中,AB=√2AM=3√2,等腰直角三角形△BOC中,BC=√2BO=5√2,∴S△ABC=12AB•BC=15,S△BOC=12BO•CO=252,∴S四边形ABOC=S△ABC+S△BOC=55 2;(2)解:存在点B,使得以A,B,C为顶点的三角形与△BCO相似,理由如下:(一)过A作AM⊥OB于M,当B在线段OM或OM延长线上时,如图:由(1)②可知:AM=3,OM=8,设OB =x ,则BM =|8﹣x |,AB =√9+(8−x)2, ∵CO ⊥BO ,AM ⊥BO ,AB ⊥BC ,∴∠AMB =∠BOC =90°,∠ABM =90°﹣∠OBC =∠BCO , ∴△AMB ∽△BOC , ∴OC BM=OB AM,即OC|8−x|=x3,∴OC =x3⋅|8−x|,Rt △BOC 中,BC =√OB 2+OC 2=x3√9+(8−x)2,∵∠ABC =∠BOC =90°,∴以A ,B ,C 为顶点的三角形与△BCO 相似,分两种情况: ①若ABOB=BC OC,则√9+(8−x)2x=x3√9+(8−x)2x3|8−x|, 解得x =4, ∴此时OB =4; ②若AB OC=BC OB,则√9+(8−x)2x3|8−x|=x3√9+(8−x)2x,解得x 1=4+√7,x 2=4−√7,x 3=9,x 4=﹣1(舍去), ∴OB =4+√7或OB =4−√7或OB =9; (二)当B 在线段MO 延长线上时,如图:由(1)②可知:AM =3,OM =8, 设OB =x ,则BM =8+x ,AB =√9+(8+x)2, ∵CO ⊥BO ,AM ⊥BO ,AB ⊥BC ,∴∠AMB =∠BOC =90°,∠ABM =90°﹣∠OBC =∠BCO , ∴△AMB ∽△BOC , ∴OC BM=OB AM,即OC8+x=x3,∴OC =x3•(8+x ),Rt △BOC 中,BC =√OB 2+OC 2=x3•√9+(8+x)2,∵∠ABC =∠BOC =90°,∴以A ,B ,C 为顶点的三角形与△BCO 相似,需满足AB OC=BC OB,即√9+(8+x)2x3(8+x)=x3√9+(8+x)2x,解得x 1=﹣9(舍去),x 2=1, ∴OB =1,综上所述,以A ,B ,C 为顶点的三角形与△BCO 相似,则OB 的长度为:4或4+√7或4−√7或9或1; 18.(2021•绍兴)Ⅰ号无人机从海拔10m 处出发,以10m /min 的速度匀速上升,Ⅱ号无人机从海拔30m 处同时出发,以a (m /min )的速度匀速上升,经过5min 两架无人机位于同一海拔高度b (m ).无人机海拔高度y (m )与时间x (min )的关系如图.两架无人机都上升了15min . (1)求b 的值及Ⅱ号无人机海拔高度y (m )与时间x (min )的关系式; (2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.【分析】(1)由题意得:b =10+10×5=60;再用待定系数法求出函数表达式即可; (2)由题意得:(10z +10)﹣(6x +30)=28,即可求解. 【详解】解:(1)b =10+10×5=60, 设函数的表达式为y =kx +t ,将(0,30)、(5,60)代入上式得{t =3060=5k +t ,解得{k =6t =30,故函数表达式为y =6x +30(0≤x ≤15);(2)由题意得:(10z +10)﹣(6x +30)=28, 解得x =12<5,故无人机上升12min ,Ⅰ号无人机比Ⅱ号无人机高28米.19.(2021•温州)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成份 每千克含铁42毫克配料表原料 每千克含铁 甲食材 50毫克 乙食材10毫克 规格 每包食材含量每包单价 A 包装 1千克 45元 B 包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完. ①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A 的数量不低于B 的数量,则A 为多少包时,每日所获总利润最大?最大总利润为多少元?【分析】(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元,根据“用80元购买的甲食材比用20元购买的乙食材多1千克”列分式方程解答即可;(2)①设每日购进甲食材x 千克,乙食材y 千克,根据(1)的结论以及“每日用18000元购进甲、乙两种食材并恰好全部用完”列方程组解答即可; ②设A 为m 包,则B 为500−m 0.25包,根据“A 的数量不低于B 的数量”求出m 的取值范围;设总利润为W 元,根据题意求出W 与x 的函数关系式,再根据一次函数的性质,即可得到获利最大的进货方案,并求出最大利润.【详解】解:(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元, 由题意得802a−20a=1,解得a =20,经检验,a =20是所列方程的根,且符合题意, ∴2a =40(元),答:甲食材每千克进价为40元,乙食材每千克进价为20元; (2)①设每日购进甲食材x 千克,乙食材y 千克, 由题意得{40x +20y =1800050x +10y =42(x +y),解得{x =400y =100,答:每日购进甲食材400千克,乙食材100千克; ②设A 为m 包,则B 为500−m 0.25=(2000﹣4m )包,∵A 的数量不低于B 的数量, ∴m ≥2000﹣4m , ∴m ≥400,设总利润为W 元,根据题意得:W =45m +12(2000﹣4m )﹣18000﹣2000=﹣3m +4000, ∵k =﹣3<0,∴W 随m 的增大而减小,∴当m =400时,W 的最大值为2800,答:当A 为400包时,总利润最大,最大总利润为2800元.20.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T (℃)和高度h (百米)的函数关系如图所示. 请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.【分析】(1)根据高度每增加1百米,气温大约降低0.6℃,由3百米时温度为13.2℃,即可得出高度为5百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)的结论解答即可.【详解】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃), ∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b , 则:{3k +b =13.25k +b =12,解得{k =−0.6b =15,∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15, 解得h =15.∴该山峰的高度大约为15百米,即1500米.21.(2020•宁波)A ,B 两地相距200千米.早上8:00货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示.(通话等其他时间忽略不计) (1)求货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式.(2)因实际需要,要求货车乙到达B 地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B 地的速度至少为每小时多少千米?【分析】(1)由待定系数法可求出函数解析式;(2)根据图中的信息求出乙返回B 地所需的时间,由题意可列出不等式1.6v ≥120,解不等式即可得出答案.【详解】解:(1)设函数表达式为y =kx +b (k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6k +b80=2.6k +b ,解得:{k =80b =−128,∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时), ∴x 的取值范围是1.6≤x <3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x <3.1); (2)当y =200﹣80=120时, 120=80x ﹣128, 解得x =3.1, 由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时), 设货车乙返回B 地的车速为v 千米/小时, ∴1.6v ≥120, 解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.22.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km /h ,游轮行驶的时间记为t (h ),两艘轮船距离杭州的路程s (km )关于t (h )的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长. (2)若货轮比游轮早36分钟到达衢州.问: ①货轮出发后几小时追上游轮? ②游轮与货轮何时相距12km ?【分析】(1)根据图中信息解答即可.(2)①求出B,C,D,E的坐标,利用待定系数法求解即可.②分三种情形种情形分别构建方程求解即可.【详解】解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23﹣0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,∴s=20t﹣40(16≤t≤23),同理由D(14,0),E(22.4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),由题意:20t﹣40=50t﹣700,解得t=22,∵22﹣14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km时,20t﹣40﹣(50t﹣700)=12,解得t=21.6.相遇之后相距12km时,50t﹣700﹣(20t﹣40)=12,解得t=22.4,当游轮在刚离开杭州12km时,此时根据图象可知货轮就在杭州,游轮距离杭州12km,所以此时两船应该也是相距12km,即在0.6h的时候,两船也相距12km∴0.6h或21.6h或22.4h时游轮与货轮相距12km.23.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 7 11 12 y (斤)0.751.001.502.753.253.50(1)在上表x ,y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?【分析】(1)利用描点法画出图形即可判断.(2)设函数关系式为y =kx +b ,利用待定系数法解决问题即可. 【详解】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{k +b =0.752k +b =1,解得{k =14b =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.24.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.【分析】(1)根据4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,可以得到相应的分式方程,从而可以求得4月份进了这批T恤衫多少件;(2)①根据甲乙两店的利润相同,可以得到关于a、b的方程,然后化简,即可用含a的代数式表示b;②根据题意,可以得到利润与a的函数关系式,再根据乙店按标价售出的数量不超过九折售出的数量,可以得到a的取值范围,从而可以求得乙店利润的最大值.【详解】解:(1)设3月份购进x件T恤衫,18000 x +10=390002x,解得,x=150,经检验,x=150是原分式方程的解,则2x=300,答:4月份进了这批T恤衫300件;(2)①每件T恤衫的进价为:39000÷300=130(元),(180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)化简,得b=150−a2;②设乙店的利润为w元,w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36×150−a2−600=36a+2100,∵乙店按标价售出的数量不超过九折售出的数量,∴a≤b,即a ≤150−a2, 解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900, 答:乙店利润的最大值是3900元.25.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x ≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x ≤200时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y 关于x 的函数表达式,再把x =180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【详解】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米. 1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入, 得{150k +b =35200k +b =10, ∴{k =−0.5b =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.26.(2019•温州)如图,在平面直角坐标系中,直线y=−12x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连接OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.(2)设点Q2为(m,n),当nm =17tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,进而求出OE的长;(2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由nm =17tan∠EOF和n=−12m+4,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=2√5,根据Q3(﹣4,6),Q2(6,1),可得t=4时,s=5√5,利用待定系数法可得s关于t的函数表达式,根据s和t都不是负数,确定t的取值;②分三种情况:(i)当PQ∥OE时,如图2,根据cos∠QBH=ABBQ3=BHBQ=126√5=25√5,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN=14,列方程为2t﹣2=14(7−32t),可得t的值.(iii)由图形可知PQ不可能与EF平行.【详解】解:(1)令y=0,则−12x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC=√82+42=4√5,又∵E为BC中点,∴OE=12BC=2√5;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM=12OB=4,OE=12BC=2√5∵∠CDN=∠NEM,∠CND=∠MNE ∴△CDN∽△MEN,∴CNMN =CDEM=1,∴CN=MN=1,∴EN=√12+42=√17,∵S△ONE=12EN•OF=12ON•EM,∴OF=√17=1217√17,由勾股定理得:EF=√OE2−OF2=(2√5)2−(12√1717)2=1417√17,∴tan∠EOF=EFOF=14√171712√1717=76,∴n m=17×76=16,∵n =−12m +4, ∴m =6,n =1, ∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动, ∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合, ∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5, ∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{t =2s =2√5和{t =4s =5√5代入得{2k +b =2√54k +b =5√5,解得:{k =32√5b =−√5, ∴s =3√52t −√5, ∵s ≥0,t ≥0,且32√5>0,∴s 随t 的增大而增大, 当s ≥0时,3√52t −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52t −√5(23≤t ≤4);②(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE , 作QH ⊥x 轴于点H ,则PH =BH =12PB ,Rt △ABQ 3中,AQ 3=6,AB =4+8=12, ∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t , ∵cos ∠QBH =ABBQ 3=BHBQ =6√5=25√5, ∴BH =14﹣3t , ∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5, ∵Q 3Q =s =3√52t −√5, ∴Q 3G =32t ﹣1,GQ =3t ﹣2,∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2, ∵∠HPQ =∠CDN , ∴tan ∠HPQ =tan ∠CDN =14, ∴2t ﹣2=14(7−32t),t =3019,(iii )由图形可知PQ 不可能与EF 平行, 综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019.27.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h (单位:m )与下行时间x (单位:s )之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【分析】(1)根据函数图象中的数据可以得到y关于x的函数解析式;(2)分别令h=0和y=0求出相应的x的值,然后比较大小即可解答本题.【详解】解:(1)设y关于x的函数解析式是y=kx+b,{b=615k+b=3,解得,{k=−15 b=6,∴y=−15x+6,∴当y=0时,x=30,即y关于x的函数解析式是y=−15x+6(0≤x≤30);(2)当h=0时,0=−310x+6,得x=20,当y=0时,0=−15x+6,得x=30,∵20<30,∴甲先到达地面.28.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)【分析】(1)设y =kx +b ,运用待定系数法求解即可;(2)把y =1500代入(1)的结论即可;(3)设小聪坐上了第n 班车,30﹣25+10(n ﹣1)≥40,解得n ≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.【详解】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0),把(20,0),(38,2700)代入y =kx +b ,得{0=20k +b 2700=38k +b ,解得{k =150b =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.。

中考数学复习考点题型专题练习05 一次方程(组)与一元二次方程

中考数学复习考点题型专题练习05 一次方程(组)与一元二次方程

中考数学复习考点题型专题练习专题05 一次方程(组)与一元二次方程一.选择题1.(2022·内蒙古包头)若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( )A .3或9-B .3-或9C .3或6-D .3-或62.(2022·黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( )A .8B .10C .7D .93.(2022·四川雅安)若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为( )A .﹣3B .0C .3D .94.(2022·贵州黔东南)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( ) A .7 B .7- C .6 D .6-5.(2022·广西梧州)一元二次方程2310x x -+=的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定6.(2022·湖北武汉)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( )A .2或6B .2或8C .2D .67.(2022·湖南郴州)一元二次方程2210x x +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.(2022·广西贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .0,2-B .0,0C .2-,2-D .2-,09.(2022·北京)若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为( )A .4-B .14-C .14D .4 10.(2022·山东临沂)方程22240x x --=的根是( )A .16x =,24x =B .16x =,24x =-C .16x =-,24x =D .16x =-,24x =-11.(2022·黑龙江牡丹江)下列方程没有实数根的是( )A .2410x x +=B .23830x x +-=C .2230x x -+=D .()()2312x x --=12.(2022·海南)若代数式1x +的值为6,则x 等于( )A .5B .5-C .7D .7-13.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A.2cm B.21cm4C.4cm D.5cm14.(2022·黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?()A.5B.6C.7D.815.(2022·辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.24015015012x x+=⨯B.24015024012x x-=⨯C.24015024012x x+=⨯D.24015015012x x-=⨯16.(2022·广西)方程3x=2x+7的解是()A.x=4B.x=﹣4C.x=7D.x=﹣717.(2022·贵州铜仁)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .1718.(2022·广东深圳)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x 根,下等草一捆为y 根,则下列方程正确的是( )A .51177255y x y x -=⎧⎨-=⎩B .51177255x y x y +=⎧⎨+=⎩C .51177255x y x y -=⎧⎨-=⎩D .71155257x y x y-=⎧⎨-=⎩ 19.(2022·贵州贵阳)在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩; ③方程0mx n +=的解为2x =;④当0x =时,1ax b +=-.其中结论正确的个数是( )A .1B .2C .3D .420.(2022·广西河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( )A .30(1+x )2=50B .30(1﹣x )2=50C .30(1+x 2)=50D .30(1﹣x 2)=50二.填空题21.(2022·湖北鄂州)若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则11a b+的值为 _____.22.(2022·福建)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x ,令x m =,等式两边都乘以x ,得2x mx =.①等式两边都减2m ,得222x m mx m -=-.②等式两边分别分解因式,得()()()x m x m m x m +-=-.③等式两边都除以x m -,得x m m +=.④等式两边都减m ,得x =0.⑤所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.23.(2022·广西梧州)一元二次方程()()270x x -+=的根是_________.24.(2022·四川内江)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且2112x x x x +=x 12+2x 2﹣1,则k 的值为 _____.25.(2022·广东深圳)已知一元二次方程260x x m ++=有两个相等的实数根,则m 的值为________________.26.(2022·上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.27.(2022·山东威海)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn =_____.28.(2022·广西贺州)若实数m ,n满足50m n --∣∣,则3m n +=__________.29.(2022·广东)若1x =是方程220x x a -+=的根,则=a ____________.30.(2022·江苏无锡)二元一次方程组321221x y x y +=⎧⎨-=⎩的解为________. 31.(2022·四川雅安)已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____. 32.(2022·广西)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.33.(2022·内蒙古呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额(10)x x >的函数解析式为______.34.(2022·山东潍坊)方程组2313320x y x y +=⎧⎨-=⎩的解为___________. 35.(2022·贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数x ,y 的系数与相应的常数项,即可表示方程423x y +=,则 表示的方程是_______.36.(2022·吉林长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x 间房,可求得x 的值为________.37.(2022·湖南长沙)关于的一元二次方程220x x t ++=有两个不相等的实数根,则实数t 的值为___________.38.(2022·江苏泰州)方程2x 2x m 0-+=有两个相等的实数根,则m 的值为__________.39.(2022·湖北武汉)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.40.(2022·上海)解方程组2213x y x y +=⎧⎨-=⎩的结果为_____. 三.解答题 41.(2022·广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?42.(2022·内蒙古赤峰)某学校建立了劳动基地,计划在基地上种植A 、B 两种苗木共6000株,其中A 种苗木的数量比B 种苗木的数量的一半多600株.(1)请问A 、B 两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A 种苗木50株或B 种苗木30株,应分别安排多少人种植A 种苗木和B 种苗木,才能确保同时..完成任务?43.(2022·湖南)中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.44.(2022·四川广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B 厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨.(1)求A、B两厂各运送多少吨水泥?(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元.求w 与a之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由45.(2022·广西桂林)解二元一次方程组:13x yx y-=⎧⎨+=⎩.46.(2022·江苏常州)第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3210387848582021⨯+⨯+⨯+⨯=,表示ICME-14的举办年份.(1)八进制数3746换算成十进制数是_______;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.47.(2022·江苏泰州)如图,在长为50 m,宽为38 m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260 m2,道路的宽应为多少?48.(2022·黑龙江齐齐哈尔)解方程:22+=+(23)(32)x x49.(2022·贵州贵阳)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a_______b,ab_______0;(2)在初中阶段我们已经学习了一元二次方程的三种解法,他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x−1=0;②x2−3x=0;③x2−4x=4;④x2−4=0.50.(2022·内蒙古呼和浩特)计算求解:(1)计算112sin45|23-⎛⎫-+- ⎪⎝⎭︒(2)解方程组451223x yx y+=⎧⎪-⎨+=⎪⎩51.(2022·湖南长沙)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.()②刘三姐的姐妹们给出的答案是唯一正确的答案.()③该歌词表达的数学题的正确答案有无数多种.()(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.52.(2022·四川雅安)某商场购进A,B两种商品,已知购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元.(1)求A,B两种商品每件进价各为多少元?(列方程或方程组求解)(2)若该商场计划购进A,B两种商品共80件,其中A商品m件.若A商品按每件150元销售,B商品按每件80元销售,求销售完A,B两种商品后获得总利润w(元)与m(件)的函数关系式.53.(2022·海南)我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.。

2019年安徽数学中考二轮复习专题三:图表信息问题课件(39张PPT)

2019年安徽数学中考二轮复习专题三:图表信息问题课件(39张PPT)

解、处理数据的能力.
【例 2】
(2018·温州 )温州某企业安排 65名工人生产甲、乙两种产
品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需
求和生产经验,乙产品每天产量不少于 5件,当每天生产5件时,每件可 获利120元,每增加1件,当天平均每件获利减少 2元.设每天安排x人生 产乙产品. (1)根据信息填表. 产品种类 每天工人数/人 每天产量/件 x 每件产品可获利润/元
【解析】
(1) 方法一 : 设 AE = a , 分别用含 a 的代数式表示 BE ,
AB,根据题意建立y关于x的函数表达式;方法二:先分别用含x,y的代
数式表示CF和DF,再根据2BC+2CF+3DF=80,确定y与x之间的函数 表达式,并写出自变量的取值范围;(2)用配方法把二次函数配成顶点形 式,结合抛物线的开口方向和自变量取值范围确定二次函数的最值 .
【点拨】 此类问题容易出错的地方是:(1)由于不能用含x,y代数 式表示线段长 , 导致无法求解 ; (2)在配方时 ,对于二次项系数不是 1的
容易与解一元二次方程相混淆 ,导致错误;(3)求二次函数的最值时,由
于没有考虑自变量取值范围导致错误.
●类型二
表格类信息型
用表格呈现数据信息,比较直观、简洁,在日常生活中使用极为普 遍,工厂的产值、股市的行情、话费的计算等,表格信息型问题近年来 成为了中考数学试题的一道亮丽风景.解答这类问题关键是分析表格数 据,抽取有效信息,找出内在规律,需要同学们具备一定的分析、理
2x(元 ); (2) 每天生产甲产品可获得的利润比生产乙产品可获得的利润多 550 元 , 所以 15×2(65 - x) = x(130 - 2x) + 550 , 得一元二次方程 x2 - 80x + 700=0,解得x1=10,x2=70(不合题意,舍去),所以130-2x=110,每

2019版初三中考模拟(河北数学)专题四 图表信息题(可编辑PPT)

2019版初三中考模拟(河北数学)专题四 图表信息题(可编辑PPT)

题型突破
栏目索引
典例2 (2017河北三模)某班开展了“互助、平等、感恩、和谐、进取”主
题班会活动,活动后,就活动的5个主题进行了抽样调查(每名同学只选最关注 的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解 答下列问题:
题型突破
栏目索引
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆 心角的度数; (3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用画树形图 或列表的方法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、 感恩、和谐、进取依次记为A、B、C、D、E).
个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款 数相同. (1)求这两种魔方的单价; (2)结合社员们的需求,社团决定购买A,B两种魔方 共100个(其中A种魔方不超过50个).某商店有两种优惠 活动,如图所示.请根据以上信息,说明选择哪种 优惠活动购买魔方更实惠.
题型训练
题型突破
栏目索引
题型三
表格信息类问题
表格信息类问题一般以表格形式给出信息,常以方程、不等式、函数等知识 为载体,并与函数图象等知识相结合,考查学生挖掘表格信息的能力.解决此 类问题的关键是化“表格信息”为“数学信息”. 典例3 (2018湖北黄冈中考)我市某乡镇在“精准扶贫”活动中销售一农产 品,经分析发现月销售量y(万件)与月份x(月)的关系式为y=
当11≤x≤12且x为整数时,z=10. ∴z与x的关系式为
x 20(1 x 10, x为整数), z= 10(11 x 12, x为整数).
(2)当1≤x≤8且x为整数时,w=(-x+20)(x+4)=-x2+16x+80;

第05讲图表信息性问题-2019年中考数学总复习巅峰冲刺28讲(解析版)

2019年中考数学总复习巅峰冲刺专题05图表信息问题【难点突破】着眼思路,方法点拨,疑难突破;图表信息题是中考常考的一种新题型,它是通过图象、图形及表格等形式给出信息,通过认真阅读、观察、分析、加工、处理等手段解决的一类实际问题•主要考查同学们的读图、识图、用图能力,以及分析问题、解决问题的能力•图表信息问题往往和“方程(组)、不等式(组)、函数、统计与概率”等知识结合考查.解题基本思路:“细读图表T分析T理清关系T解决问题”。

首先要注意细心地观察、搜集、整理和加工题目中所透露出来的信息,包括题目中的细微之处,努力回想相应的知识点,并进行梳理,作出合理的推断和决策;然后在捕捉有用信息的基础上,将其转化为数学模型,并进行解释与应用。

根据图表信息型试题的特点,可将其大致分为五类:(1)图形信息型;(2)表格类信息型;(3)情景图象信息型;⑷ 函数图象信息型;(5)统计图表信息型.类型1、图形信息型图形信息型试题常以图形来呈现信息(图形本身具有的特征及其性质)或数量关系,解答时要借助于图形本身的性质,结合推理、计算甚至图形变换的方法来解决问题.类型2、表格类信息型用表格呈现数据信息,比较直观、简洁,在日常生活中使用极为普遍,工厂的产值、股市的行情、话费的计算等,表格信息型问题近年来成为了中考数学试题的一道亮丽风景•解答这类问题关键是分析表格数据,抽取有效信息,找出内在规律,需要同学们具备一定的分析、理解、处理数据的能力.类型3、情景图象信息型这类试题一般是以一段生活实际情景、一场新颖且富有趣味性的游戏为背景或以图片中人物对话的形式呈现信息,寓数学问题、数学思想和方法于情景之中的一类新颖题型•需要将获取的信息结合所学的数学知识(方程、函数、不等式等)来解决.类型4、函数图象信息型函数图象信息型是以函数图象为背景,表示两个变量之间的数量关系,常见的有一次函数图象、二次函数图象和反比例函数图象有关的信息题•解决这类问题,需要同学们能看懂函数的图象,并从图象的形状、位置、发展趋势等方面获取有效的信息,从而找到解决问题的突破口.类型5、统计图表信息型此类题是通过常见的统计图表(频数分布表、频率分布直方图、条形统计图、折线统计图、扇形统计图等)给出数据信息和变化规律的常考题型. 考查读图、识图能力和分析数据此类题是通过常见的统计图表(频数分布表、频率分布直方图、条形统计图、折线统计图、扇形统计图等)给出数据信息和变化规律的常考题型•考查读图、识图能力和分析数据。

中考数学专题05一元一次方程与二元一次方程组-三年(2019-2021)中考真题数学分项汇编

专题05.一元一次方程与二元一次方程组一、单选题1.(2021·湖南株洲市·中考真题)方程122x -=的解是( ) A .2x = B .3x = C .5x = D .6x =2.(2021·浙江杭州市·中考真题)某景点今年四月接待游客25万人次,五月接待游客60.5万人次,设该景点今年四月到五月接待游客人次的增长率为x (0x >),则( )A .()60.5125x -=B .()25160.5x -=C .()60.5125x +=D .()25160.5x += 3.(2021·浙江温州市·中考真题)解方程()221x x -+=,以下去括号正确的是( )A .41x x -+=-B .42x x -+=-C .41x x --=D .42x x --=4.(2021·安徽中考真题)设a ,b ,c 为互不相等的实数,且4155b a c =+,则下列结论正确的是( ) A .a b c >> B .c b a >> C .4()a b b c -=- D .5()a c a b -=-5.(2021·湖北武汉市·中考真题)我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( ) A .()()8374x x -=+ B .8374x x +=- C .3487y y -+= D .3487y y +-= 6.(2021·湖南株洲市·中考真题)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十……”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米……”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得粝米为( )A .1.8升B .16升C .18升D .50升7.(2021·湖南中考真题)已知二元一次方程组2521x y x y -=⎧⎨-=⎩,则x y -的值为( ) A .2 B .6 C .2-D .6- 8.(2021·新疆中考真题)某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是( )A .26216x y x y +=⎧⎨+=⎩B .26216x y x y +=⎧⎨+=⎩C .16226x y x y +=⎧⎨+=⎩D .16226x y x y +=⎧⎨+=⎩ 9.(2021·湖北宜昌市·中考真题)我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x 人,物价为y 钱,下列方程组正确的是( )A .8374y x y x =-⎧⎨=+⎩B .8374y x y x =+⎧⎨=+⎩C .8374y x y x =-⎧⎨=-⎩D .8374y x y x =+⎧⎨=-⎩10.(2021·江苏苏州市·中考真题)某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机y 架.根据题意可列出的方程组是( )A .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩B .()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩C .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩D .()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩11.(2021·天津中考真题)方程组234x y x y +=⎧⎨+=⎩的解是( )A .02x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .22x y =⎧⎨=-⎩D .33x y =⎧⎨=-⎩ 12.(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A .510330x y x y +=⎧⎨+=⎩B .531030x y x y +=⎧⎨+=⎩C .305103x y x y +=⎧⎪⎨+=⎪⎩D .305310x y x y +=⎧⎪⎨+=⎪⎩ 13.(2020·湖南益阳市·中考真题)同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( )A.45xy=⎧⎨=-⎩B.45xy=-⎧⎨=⎩C.23xy=-⎧⎨=⎩D.36xy=⎧⎨=-⎩14.(2020·辽宁铁岭市·)我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,所列方程组正确的是()A.2 23400 x yx y=-⎧⎨+=⎩B.223()40050x yx x y=-⎧⎨++=-⎩C.22340050x yx y=+⎧⎨+=-⎩D.223()40050x yx x y=+⎧⎨++=-⎩15.(2020·黑龙江齐齐哈尔市·中考真题)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种16.(2020·黑龙江牡丹江市·朝鲜族学校中考真题)若21ab=⎧⎨=⎩是二元一次方程组3522ax byax by⎧+=⎪⎨⎪-=⎩的解,则x+2y的算术平方根为()A.3B.3,-3CD17.(2020·天津中考真题)方程组241x yx y+=⎧⎨-=-⎩的解是()A.12xy=⎧⎨=⎩B.32xy=-⎧⎨=-⎩C.2xy=⎧⎨=⎩D.31xy=⎧⎨=-⎩18.(2020·浙江绍兴市·中考真题)同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km19.(2020·浙江嘉兴市·中考真题)用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×320.(2020·贵州毕节市·中考真题)由于换季,超市准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元;而按原售价的九折出售,将盈利20元,则该商品的原售价为( )A .300元B .270元C .250元D .230元21.(2020·广西玉林市·中考真题)观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…;若最后三个数之和是3000,则n 等于( )A .499B .500C .501D .100222.(2020·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ). A .1- B .1 C .0 D .223.(2020·江苏盐城市·中考真题)把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .624.(2020·青海中考真题)根据图中给出的信息,可得正确的方程是( )A .2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭B .2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭ C .2286(5)x x ππ⨯=⨯⨯+ D .22865x ππ⨯=⨯⨯ 25.(2019·内蒙古赤峰市·中考真题)如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉; ②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( ).A .20192B .201812 C .201912 D .20201226.(2019·四川南充市·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8 C .5 D .427.(2019·辽宁朝阳市·中考真题)关于x ,y 的二元一次方程组2mx y n x ny m +=⎧⎨-=⎩的解是02x y =⎧⎨=⎩,则m n +的值为( )A .4B .2C .1D .028.(2019·广西柳州市·中考真题)阅读(资料),完成下面小题.(资料):如图,这是根据公开资料整理绘制而成的2004﹣2018年中美两国国内生产总值(GDP )的直方图及发展趋势线.(注:趋势线由Excel 系统根据数据自动生成,趋势线中的y 表示GDP ,x 表示年数)依据(资料)中所提供的信息,可以推算出中国的GDP 要超过美国,至少要到( )A.2052年B.2038年C.2037年D.2034年29.(2019·江苏南通市·中考真题)已知a、b满足方程组324236a ba b+=⎧⎨+=⎩,则a+b的值为( )A.2B.4C.-2D.-430.(2019·广西贺州市·中考真题)已知方程组2325x yx y+=⎧⎨-=⎩,则26x y+的值是()A.﹣2B.2C.﹣4D.431.(2019·湖南永州市·中考真题)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁32.(2019·湖北荆门市·)已知实数,x y满足方程组3212x yx y-=⎧⎨+=⎩,则222x y-的值为()A.1-B.1C.3D.3-33.(2019·山东菏泽市·中考真题)已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1B.1C.﹣5D.5二、填空题目34.(2021·湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.35.(2021·江苏扬州市·中考真题)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.36.(2021·重庆中考真题)若关于x 的方程442x a -+=的解是2x =,则a 的值为__________. 37.(2021·重庆中考真题)盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A ,B ,C 三种盲盒各一个,其中A 盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B 盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C 盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A 盒的成本为145元,B 盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C 盒的成本为__________元.38.(2021·重庆中考真题)方程2(3)6x -=的解是__________.39.(2021·四川广安市·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______. 40.(2021·浙江金华市·中考真题)已知2x y m=⎧⎨=⎩是方程3210x y +=的一个解,则m 的值是____________. 41.(2021·四川凉山彝族自治州·中考真题)已知13x y =⎧⎨=⎩是方程2ax y +=的解,则a 的值为___________. 42.(2021·浙江嘉兴市·中考真题)已知二元一次方程314+=x y ,请写出该方程的一组整数解_________.43.(2021·四川遂宁市·中考真题)已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____.44.(2021·山东泰安市·中考真题)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱数为x ,乙持钱数为y ,可列方程组为________.45.(2020·辽宁朝阳市·中考真题)已知关于x 、y 的方程221255x y a x y a +=+⎧⎨+=-⎩的解满足3x y +=-,则a 的值为__________. 46.(2020·重庆中考真题)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.47.(2020·甘肃天水市·中考真题)已知1023a b +=,16343a b +=,则+a b 的值为_________. 48.(2020·浙江绍兴市·中考真题)若关于x ,y 的二元一次方程组20x y A +=⎧⎨=⎩的解为11x y =⎧⎨=⎩,则多项式A 可以是_____(写出一个即可). 49.(2020·湖北中考真题)对于实数,m n ,定义运算2*(2)2m n m n =+-.若2*4*(3)a =-,则a =_____.50.(2020·湖北随州市·中考真题)幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方---九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为______.51.(2020·江苏无锡市·中考真题)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是___________尺.52.(2019·河北中考真题)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数. 示例:即4+3=7则(1)用含x 的式子表示m =_____;(2)当y =﹣2时,n 的值为_____.53.(2019·内蒙古呼和浩特市·中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.54.(2019·湖北鄂州市·中考真题)若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是____.55.(2019·四川眉山市·中考真题)已知关于x ,y 的方程组21254x y k x y k +=-⎧⎨+=+⎩的解满足x +y =5,则k 的值为_____. 56.(2019·四川内江市·中考真题)若,,x y z 为实数,且2421x y z x y z +-=⎧⎨-+=⎩,则代数式2223x y z -+的最大值是_____. 57.(2019·湖北中考真题)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为______和______.三、解答题58.(2021·湖南邵阳市·中考真题)为庆祝中国共产党成立100周年,某校计划举行“学党史·感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.59.(2021·江苏扬州市·中考真题)已知方程组271x yx y+=⎧⎨=-⎩的解也是关于x、y的方程4ax y+=的一个解,求a的值.60.(2021·四川泸州市·中考真题)某运输公司有A 、B 两种货车,3辆A 货车与2辆B 货车一次可以运货90吨,5辆A 货车与4辆B 货车一次可以运货160吨.(1)请问1辆A 货车和1辆B 货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A 、B 两种货车将全部货物一次运完(A 、B 两种货车均满载),其中每辆A 货车一次运货花费500元,每辆B 货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.61.(2021·重庆中考真题)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”; (1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3nF n =.求满足()F n 各数位上的数字之和是偶数的所有n .62.(2021·四川眉山市·中考真题)解方程组3220021530x y x y -+=⎧⎨+-=⎩63.(2021·浙江台州市·中考真题)解方程组:241 x yx y+=⎧⎨-=-⎩64.(2021·江苏苏州市·中考真题)解方程组:3423 x yx y-=-⎧⎨-=-⎩.65.(2020·辽宁大连市·中考真题)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?66.(2020·江苏镇江市·中考真题)(算一算)如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为,AC长等于;(找一找)如图②,点M、N、P、Q中的一点是数轴的原点,点A、B﹣1,Q 是AB的中点,则点是这个数轴的原点;(画一画)如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);(用一用)学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;②写出a、m的数量关系:.67.(2020·湖北黄石市·中考真题)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子,问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.68.(2020·四川凉山彝族自治州·中考真题)解方程:221123x xx---=-69.(2020·山西中考真题)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张)某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.70.(2020·浙江杭州市·中考真题)以下是圆圆解方程1323+--x x=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.71.(2019·湖南娄底市·中考真题)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?72.(2019·吉林中考真题)问题解决:糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?反思归纳: 现有a 根竹签,b 个山楂.若每根竹签串c 个山楂,还剩余d 个山楂,则下列等式成立的是________(填写序号)⑴bc d a +=;⑵ac d b +=;⑶ac d b -=.73.(2019·湖南张家界市·中考真题)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为1a ,排在第二位的数称为第二项,记为2a ,依此类推,排在第n 位的数称为第n 项,记为n a .所以,数列的一般形式可以写成:1a ,2a ,3a ,…,n a .一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中1a 1=,2a 3=,公差为3a 2=.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为______,第5项是______.(2)如果一个数列1a ,2a ,3a ,…,n a …,是等差数列,且公差为d ,那么根据定义可得到:21a a =d -,32a a d -=,43a a d -=,…,n n 1a a d --=,….所以21a =a +d ,()3211a a d a d d a 2d =+=++=+,()4311a a d a 2d d a 3d =+=++=+,……, 由此,请你填空完成等差数列的通项公式:n 1a =a +(______)d . (3)4041-是不是等差数列5-,7-,9-…的项?如果是,是第几项?祝你考试成功!祝你考试成功!。

专题05 全等模型-对角互补模型(原卷版)

专题05全等模型-对角互补模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就对角互补模型进行梳理及对应试题分析,方便掌握。

对角互补模型概念:对角互补模型特指四边形中,存在一对对角互补,而且有一组邻边相等的几何模型。

思想方法:解决此类问题常用的辅助线画法主要有两种:①过顶点做双垂线,构造全等三角形;②进行旋转的构造,构造手拉手全等。

常见的对角互补模型含90°-90°对角互补模型、120°-60°对角互补模型、2α-(180°-2α)对角互补模型。

模型1、旋转中的对角互补模型(90°--全等型)1)“共斜边等腰直角三角形+直角三角形”模型(异侧型)条件:如图,已知∠AOB =∠DCE =90°,OC 平分∠AOB .结论:①CD =CE ,②OD +OE OC ,③212ODCE COE COD S S S OC =+= .2)“斜边等腰直角三角形+直角三角形”模型(同侧型)条件:如图,已知∠DCE 的一边与AO 的延长线交于点D ,∠AOB =∠DCE =90°,OC 平分∠AOB .结论:①CD =CE ,②OE -OD OC ,③212COE COD S S OC -= .例1.(2022秋·江苏·八年级专题练习)在△ABC 中,∠BAC =90°,AB =AC ,D 为BC 的中点.(1)如图1,E、F分别是AB、AC上的点,且BE=AF、求证:△DEF是等腰直角三角形例2、在ABC∠=︒,2==,将一块三角板的直角顶点放在斜边AB的中点P处,将此三AC BC∆中,90C角板绕点P旋转,三角板的两直角边分别交射线AC、CB于点D、点E,图①,②,③是旋转得到的三种图形.(1)观察线段PD和PE之间有怎样的大小关系?并以图②为例,并加以证明;(2)观察线段CD、CE和BC之间有怎样的数量关系?并以图③为例,并加以证明;例3.(2022秋·四川绵阳·九年级校联考阶段练习)已知=90ACD ∠︒,AC DC =,MN 是过点A 的直线,过点D 作DB MN ⊥于点B ,连接CB .(1)问题发现:如图(1),过点C 作CE CB ⊥,与MN 交于点E ,BD 、AB 、CB 之间的数量关系是什么?并给予证明.(2)拓展探究:当MN 绕点A 旋转到如图(2)位置时,BD 、AB 、CB 之间满足怎样的数量关系?请写出你的猜想,并给予证明.模型2、旋转中的对角互补模型(60°或120°--全等型)1)“等边三角形对120°模型”(1)条件:如图,已知∠AOB =2∠DCE =120°,OC 平分∠AOB .结论:①CD =CE ,②OD +OE =OC ,③24COD COE S S OC +=.2)“等边三角形对120°模型”(2)条件:如图,已知∠AOB =2∠DCE =120°,OC 平分∠AOB ,∠DCE 的一边与BO 的延长线交于点D ,结论:①CD =CE ,②OD -OE =OC ,③2COD COE S S -= .3)“120°等腰三角形对60°模型”条件:△ABC 是等腰三角形,且∠BAC =120°,∠BPC =60°。

中考数学复习考点知识与题型专题讲解5---平面直角坐标系(解析版)

中考数学复习考点知识与题型专题讲解专题05 平面直角坐标系【思维导图】【知识要点】知识点一平面直角坐标系的基础有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。

【注意】a、b的先后顺序对位置的影响。

平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。

两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。

平面直角坐标系原点:两坐标轴交点为其原点。

坐标平面:坐标系所在的平面叫坐标平面。

象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。

按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。

【注意】坐标轴上的点不属于任何象限。

点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b 分别叫做点A 的横坐标和纵坐标,有序数对A(a ,b)叫做点A 的坐标,记作A(a ,b)。

知识点二 点的坐标的有关性质(考点) 性质一 各象限内点的坐标的符号特征性质二 坐标轴上的点的坐标特征 1.x 轴上的点,纵坐标等于0; 2.y 轴上的点,横坐标等于0; 3.原点位置的点,横、纵坐标都为0. 性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;象限 横坐标x 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限正负在第一、三象限的角平分线上 在第二、四象限的角平分线上 性质四 与坐标轴平行的直线上的点的坐标特征 1.在与x 轴平行的直线上, 所有点的纵坐标相等;m ;2.在与y 轴平行的直线上,所有点的横坐标相等;n ;性质五 点到坐标轴距离在平面直角坐标系中,已知点P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b aXXXY性质六 平面直角坐标系内平移变化性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;2. 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;P (b a ,)abxy OXyPP mm -nOXyP1Pnn -mO小结:【考查题型】考查题型一 用有序数对表示位置【解题思路】要确定位置坐标,需根据题目信息、明确行和列的实际意义是解答本题的关键. 典例1.(2021·湖北宜昌市中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).X-A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.【详解】解:A. 小李现在位置为第1排第4列,故A选项错误;B. 小张现在位置为第3排第2列,故B选项正确;C. 小王现在位置为第2排第3列,故C选项错误;D. 小谢现在位置为第4排第4列,故D选项错误.故选:B.变式1-1.(2018·广西柳州市中考模拟)初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)【答案】C【详解】根据题意知小李所对应的坐标是(7,4).故选C.变式1-2.(2017·北京门头沟区一模)小军邀请小亮去他家做客,以下是他俩的对话: 小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了” 小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…” 根据两人的对话记录,从邮局出发走到小军家应( ) A .先向北直走700米,再向西走100米 B .先向北直走100米,再向西走700米 C .先向北直走300米,再向西走400米 D .先向北直走400米,再向西走300米 【答案】A【分析】根据对话画出图形即可得出答案.【详解】解:如图所示:从邮局出发走到小军家应:向北直走700米,再向西直走100米.故选:A .考查题型二 求点的坐标典例2.(2021·天津中考真题)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是()A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:∵O ,D 两点的坐标分别是()0,0,()0,6,∴OD =6,∵四边形OBCD 是正方形,∴OB ⊥BC ,OB =BC =6 ∴C 点的坐标为:()6,6, 故选:D .变式2-1.(2021·山东滨州市·中考真题)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为() A .()4,5- B .(5,4)-C .(4,5)-D .(5,4)-【答案】D【分析】根据点到坐标轴的距离及点所在的象限解答即可. 【详解】设点M 的坐标为(x ,y ), ∵点M 到x 轴的距离为4, ∴4y =, ∴4y =±,∵点M 到y 轴的距离为5,x=,∴5x=±,∴5∵点M在第四象限内,∴x=5,y=-4,即点M的坐标为(5,-4)故选:D.4,0,点C的坐标变式2-2.(2021·湖北襄阳市模拟)如图,四边形ABCD为菱形,点A的坐标为() 4,4,点D在y轴上,则点B的坐标为()为()A.(4,2)B.(2,8)C.(8,4)D.(8,2)【答案】D【分析】根据菱形的性质得出D的坐标(0,2),进而得出点B的坐标即可.【详解】连接AC,BD,AC、BD交于点E,∵四边形ABCD是菱形,OA=4,AC=4,∴ED=OA=EB=4,AC=2EA=4,∴BD=8,OD=EA=2∴点B 坐标为(8,2), 故选:D .变式2-3.(2021·广东二模)已知点2,24()P m m +-在x 轴上,则点Р的坐标是() A .()4,0 B .()0,8C .()4,0-D .()0,8-【答案】A【分析】根据点P 在x 轴上,即y=0,可得出m 的值,从而得出点P 的坐标. 【详解】解:∵点2,24()P m m +-在x 轴上, ∴240m -=, ∴2m =;∴2224m +=+=, ∴点P 为:(4,0); 故选:A .变式2-4.(2021·广西一模)点M (3,1)关于y 轴的对称点的坐标为( ) A .(﹣3,1) B .(3,﹣1)C .(﹣3.﹣1)D .(1,3)【答案】A【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案. 【详解】点M (3,1)关于y 轴的对称点的坐标为(﹣3,1),故选:A . 考查题型三 点的坐标的规律探索【解题思路】考查坐标的规律探索,解题的关键是根据题意找到坐标的变化规律.典例3.(2021·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2021的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)【答案】A【分析】观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,由于2021÷4=504…3,A2021在x轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.【详解】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2021÷4=504 (3)∴A2021在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2021的横坐标为﹣(2021﹣3)×12=﹣1008.∴A2021的坐标为(﹣1008,0).故选A.变式3-1.(2021·山东菏泽市·中考真题)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……第n次移动到点n A,则点2019A的坐标是()A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标.【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+,则2019A 的坐标是()1009,0,故选C .变式3-2.(2021·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 100的坐标为( )A .121200,5⎛⎫ ⎪⎝⎭ B .()600,0 C .12600,5⎛⎫ ⎪⎝⎭ D .()1200,0【答案】B 【分析】根据三角形的滚动,可得出:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上,由点A ,B 的坐标利用勾股定理可求出AB 的长,进而可得出点C 2的横坐标,同理可得出点C 4,C 6的横坐标,根据点的横坐标的变化可找出变化规律“点C 2n 的横坐标为2n×6(n 为正整数)”,再代入2n=100即可求出结论.【详解】解:根据题意,可知:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴,∴点C 2的横坐标为4+5+3=12=2×6, 同理,可得出:点C 4的横坐标为4×6,点C 6的横坐标为6×6,…, ∴点C 2n 的横坐标为2n×6(n 为正整数), ∴点C 100的横坐标为100×6=600, ∴点C 100的坐标为(600,0).故选:B .考查题型四 判断点的象限【解题思路】各象限内点的坐标的符号特征需记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 典例4.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点(,2)A a 在第二象限内,则a 的取值可.以.是( ) A .1B .32-C .43D .4或-4 【答案】B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数即可判断.【详解】解:∵点(,2)A a 是第二象限内的点,∴0a <, 四个选项中符合题意的数是32-, 故选:B变式4-1.(2021·江苏扬州市中考真题)在平面直角坐标系中,点()22,3P x +-所在的象限是() A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】直接利用各象限内点的坐标特点分析得出答案.【详解】∵x 2+2>0,∴点P (x 2+2,−3)所在的象限是第四象限.故选:D . 变式4-2.(2021·湖北黄冈市·中考真题)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据点(,)A a b -在第三象限,可得0a <,0b -<,进而判定出点B 横纵坐标的正负,即可解决.【详解】解:∵点(,)A a b -在第三象限,∴0a <,0b -<,∴0b >,∴0ab ->,∴点B 在第一象限,故选:A .变式4-4.(2021·湖南邵阳市·中考真题)已知0,0a b ab +>>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A .(),a bB .(),a b -C .(),a b --D .(),a b -【答案】B 【分析】根据0,0a b ab +>>,得出0,0a b >>,判断选项中的点所在的象限,即可得出答案.【详解】∵0,0a b ab +>>∴0,0a b >>选项A:(),a b 在第一象限选项B:(),a b -在第二象限选项C:(),a b --在第三象限选项D:(),a b -在第四象限小手盖住的点位于第二象限故选:B考查题型五 点坐标的有关性质1.坐标轴上的点的坐标特征1.(2017·四川中考模拟)如果点P(a -4,a)在y 轴上,则点P 的坐标是( )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)【答案】B【解析】由点P(a−4,a)在y 轴上,得a−4=0,解得a=4,P 的坐标为(0,4),故选B.2.(2018·广西柳州十二中中考模拟)点P (m +3,m +1)在x 轴上,则点P 坐标为() A .(0,﹣4) B .(4,0) C .(0,﹣2) D .(2,0)【答案】D【详解】解:∵点P (m+3,m+1)在x 轴上,∴y =0,∴m+1=0,解得:m =﹣1,∴m+3=﹣1+3=2,∴点P 的坐标为(2,0).故选:D .3.(2021·甘肃中考真题)已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( )A .(40),B .(04),C .40)(-,D .(0,4)-【答案】A【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,m=,解得:2∴+=,24m4,0.则点P的坐标是:()故选:A.4.(2021·甘肃中考模拟)已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【答案】A【详解】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得:m=2,∴m+2=4,则点P的坐标是:(4,0).故选:A.5.(2021·广东华南师大附中中考模拟)如果点P(m+3,m+1)在平面直角坐标系的x轴上,则m=() A.﹣1 B.﹣3 C.﹣2 D.0【答案】A【详解】由P(m+3,m+1)在平面直角坐标系的x轴上,得m+1=0.解得:m=﹣1,故选:A.2.象限角的平分线上的点的坐标1.已知点A(-3+a,2a+9)在第二象限角平分线上,则a=_________ 【答案】-2【详解】∵点A在第二象限角平分线上∴它的横纵坐标互为相反数则-3+a+2a+9=0解得a=-22.(2018·广西中考模拟)若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N 的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2)【答案】C【解析】已知点M在第一、三象限的角平分线上,点M到x轴的距离为2,所以点M到y轴的距离也为2.当点M在第一象限时,点M的坐标为(2,2);点M在第三象限时,点M的坐标为(-2,-2).所以,点M的坐标为(2,2)或(-2,-2).故选C.3.与坐标轴平行的直线上的点的坐标特征1.(2021·广西中考模拟)已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1 B.3 C.﹣1 D.5【答案】B【详解】解:∵AB∥y轴,∴点A横坐标与点A横坐标相同,为1,可得:a -2=1,a=3故选:B.2.(2018·天津中考模拟)如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【答案】A【解析】试题解析:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.3.(2021·广东华南师大附中中考模拟)已知点A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,且B到y轴的距离等于4,那么点B是坐标是()A.(4,﹣2)或(﹣4,﹣2)B.(4,2)或(﹣4,2)C.(4,﹣2)或(﹣5,﹣2)D.(4,﹣2)或(﹣1,﹣2)【答案】A【详解】∵A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,∴B的纵坐标y=﹣2,∵“B到y轴的距离等于4”,∴B的横坐标为4或﹣4.所以点B的坐标为(4,﹣2)或(﹣4,﹣2),故选A.4.(2021·江苏中考模拟)若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1)B.(﹣1,1)C.(5,1)或(﹣1,1)D.(2,4)或(2,﹣2)【答案】C【详解】∵AB∥x轴且AB=3,点A的坐标为(2,1)∴点B的坐标为(5,1)或(﹣1,1)5.(2018·江苏中考模拟)已知点M(﹣1,3),N(﹣3,3),则直线MN与x轴、y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直【答案】D【详解】由题可知,M、N两点的纵坐标相等,所以直线MN与x轴平行,与y轴垂直相交.故选:D.4.点到坐标轴距离1.(2018·天津中考模拟)已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .2.(2018·江苏中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-【答案】C【解析】由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .3.(2017·北京中考模拟)点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A .(﹣3,4)B .( 3,﹣4)C .(﹣4,3)D .( 4,﹣3) 【答案】C【详解】由点且到x 轴的距离为3、到y 轴的距离为4,得|y|=3,|x|=4.由P 是第二象限的点,得x=-4,y=3.即点P 的坐标是(-4,3),故选C.4.(2012·江苏中考模拟)在平面直角坐标系中,点P(-3,4)到x轴的距离为( )A.3 B.-3 C.4 D.-4【答案】C【详解】∵|4|=4,∴点P(-3,4)到x轴距离为4.故选C.5.平面直角坐标系内平移变化1.(2021·山东中考真题)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.2.(2021·北京中考模拟)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4) B.(4,3) C.(-1,-2) D.(-2,-1)【答案】A【详解】∵点A(4,﹣1)向左平移6个单位,再向上平移3个单位得到A′(﹣2,2),∴点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(﹣5,4).故选A.3.(2015·广西中考真题)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5) B.(-8,5) C.(-8,-1) D.(2,-1)【答案】D【解析】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.4.(2016·四川中考真题)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC 平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)【答案】C【解析】因为4-0=4,10-6=4,所以由点A到点A1的平移是向右平移4个单位,再向上平移4个单位,则点B 的对应点1B的坐标为(1,1)故选C.5.(2018·武汉市东西湖区教育局中考模拟)在坐标系中,将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标()A.(2,4)B.(1,5) C.(1,-3) D.(-5,5)【答案】B将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标(1,5).故选B.6.对称点的坐标1.(2021·广东中考模拟)在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)【答案】A【解析】点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.2.(2021·山东中考模拟)已知点P(a+1,2a﹣3)关于x轴的对称点在第二象限,则a的取值范围是()A.﹣1<a<B.﹣<a<1 C.a<﹣1 D.a>【答案】C【详解】依题意得P点在第三象限,∴,解得:a<﹣1.故选C.3.(2014·广西中考真题)已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.3【答案】B关于x 轴对称的两个点的特点是,x 相同即横坐标,y 相反即纵坐标相反,故a=2014,b=-2013,故a+b=14.(2018·广西中考模拟)已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( ) A .a 1<- B .31a 2-<< C .3a 12-<< D .3a 2>【答案】B【解析】∵点P (a +1,2a -3)关于x 轴的对称点在第一象限,∴点P 在第四象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.图表信息题主要包括:①表格信息题;②图形信息题;③图象信息题.2.做表格信息题要通过表格中呈现出数量变化关系,求出函数解析式,以解决问题;做图形信息题要把握不同统计图所反映的不同信息;做图象信息题要清楚图象各部分代表的实际意义,要数形结合.考点一、表格信息题【例1】(2018·湖州市)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?【解析】(1)填表如下:故答案为80﹣x,x﹣10,2×20×(80﹣x),2×20×(x﹣10);【名师点睛】此题考查了一次函数的实际应用问题.此题难度较大,解题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解.考点二、图形信息题【例2】(2018·烟台市)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.【名师点睛】此题考查了树状图法与列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.考点三、图象信息题【例3】(2018·成都市)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当和时,与的函数关系式;(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?【解析】(1),当时,总费用最低,最低为119000元.此时乙种花卉种植面积为.答:应分配甲种花卉种植面积为,乙种花卉种植面积为,才能使种植总费用最少,最少总费用为119000元.【名师点睛】本题是看图写函数解析式并利用解析式解决问题的题目,考查分段函数的表达和分类讨论的数学思想.1.(2018·烟台市)甲、乙、丙、丁4支仪仗队队员身高的平均数及方差如下表所示:哪支仪仗队的身高更为整齐?A.甲B.乙C.丙D.丁2.(2018·邵阳市)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐A.李飞或刘亮B.李飞C.刘亮D.无法确定3.(2018·盐城市)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段AB所表示的函数表达式.4.(2018·淄博市)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周的读书时间,统计数据如下表:(1)写出这50名学生读书时间的众数、中位数、平均数;(2)根据上述表格补全下面的条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书活动,其中被抽到学生的读书时间不少于9小时的概率是多少?5.(福建省石狮市2017年初中学业质量检查数学试题)某中学团委会开展书法、诵读、演讲、征文四个项目(每人只参加一个项目)的比赛,初三(1)班全体同学都参加了比赛,为了解比赛的具体情况,小明收集整理数据后,绘制了以下不完整的折线统计图和扇形统计图,根据图表中的信息解答下列各题:(1)初三(1)班的总人数为,扇形统计图中“征文”部分的圆心角度数为度;(2)请把折线统计图补充完整;(3)平平和安安两个同学参加了比赛,请用“列表法”或“画树状图法”,求出他们参加的比赛项目相同的概率.6.(2018·黄石市)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往A、B两市的费用别为每吨15元和30元,设从D 市运往B市的救灾物资为x吨.(1)请填写下表(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.1.【答案】D2.【答案】C【解析】李飞的成绩为5、8、9、7、8、9、10、8、9、7,则李飞成绩的平均数为=8,所以李飞成绩的方差为×[(5﹣8)2+2×(7﹣8)2+3×(8﹣8)2+3×(9﹣8)2+(10﹣8)2]=1.8;刘亮的成绩为7、8、8、9、7、8、8、9、7、9,则刘亮成绩的平均数为=8,∴刘亮成绩的方差为×[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]=0.6,∵0.6<1.8,∴应推荐刘亮,故选C.【名师点睛】本题主要考查折线统计图与方差,根据折线统计图得出解题所需数据、熟练应用平均数及方差的计算公式进行求解是解题的关键.3.【解析】(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟.(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100-40=60米/分钟.乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴,解得,∴线段AB所表示的函数表达式为y=40t(40≤t≤60).【名师点睛】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键.4.【解析】(1)观察表格,可知这组样本数据的平均数为:(6×5+7×8+8×12+9×15+10×10)÷50=8.34,故这组样本数据的平均数为8.34;∵这组样本数据中,9出现了15次,出现的次数最多,∴这组数据的众数是9;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数是8和9,∴这组数据的中位数为(8+9)=8.5;(2)补全图形如图所示,(3)∵读书时间是9小时的有15人,读书时间是10小时的有10人,∴读书时间不少于9小时的有15+10=25人,∴被抽到学生的读书时间不少于9小时的概率是.【名师点睛】本题考查了加权平均数、众数以及中位数,用样本估计总体的知识,解题的关键是牢记概念公式.5.【解析】(1)∵演讲人数12人,占25%,∴九(2)全班人数为:12÷25%=48(人);扇形统计图中“征文”部分的圆心角度数为636048=45度;(2)所画折线统计图如下图所示;(3)分别用A、B、C、D表示书法、诵读、演讲、征文,所画树状图如下:∵共有16种等可能的结果,他们参加的比赛项目相同的有4种情况,∴他们参加的比赛项目相同的概率为:41= 164.【名师点睛】此题考查了列表法或树状图法求概率以及折线与扇形统计图的知识. 注意掌握折线统计图与扇形统计图的对应关系.6.【解析】(1)∵D市运往B市x吨,∴D市运往A市(260﹣x)吨,C市运往B市(300﹣x)吨,C市运往A市200﹣(260﹣x)=(x﹣60)吨,故答案为:x﹣60、300﹣x、260﹣x;(2)由题意可得,w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,∴w=10x+10200(60≤x≤260);(3)由题意可得,w=10x+10200﹣mx=(10﹣m)x+10200,当0<m<10时,x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,解得,0<m≤8,当m>10时,x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,解得,m≤,∵<10,∴m>10这种情况不符合题意,由上可得,m的取值范围是0<m≤8.【名师点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.。

相关文档
最新文档