导数练习
高中数学导数练习题

高中数学导数练习题一、基础题1. 求函数 $f(x) = x^3 3x$ 的导数。
2. 求函数 $f(x) = \sqrt{1+x^2}$ 的导数。
3. 求函数 $f(x) = \frac{1}{x^2}$ 的导数。
4. 求函数 $f(x) = \ln(x^2 + 1)$ 的导数。
5. 求函数 $f(x) = e^{2x}$ 的导数。
二、应用题1. 已知函数 $f(x) = ax^2 + bx + c$,求 $f'(x)$ 并说明其几何意义。
2. 某物体做直线运动,其位移 $s$ 与时间 $t$ 的关系为 $s =t^2 2t + 1$,求物体在 $t=2$ 时的瞬时速度。
3. 已知函数 $f(x) = \frac{1}{\sqrt{x}}$,求曲线在$x=4$ 处的切线方程。
4. 求函数 $f(x) = \sin(x)$ 在区间 $[0, \pi]$ 上的最大值和最小值。
5. 已知函数 $f(x) = \ln(x 1)$,求 $f(x)$ 的单调区间。
三、综合题1. 设函数 $f(x) = (x^2 1)^3$,求 $f'(x)$。
2. 已知函数 $f(x) = \frac{2x + 3}{x 1}$,求 $f'(x)$。
3. 求函数 $f(x) = \sqrt{1 + \sqrt{1 + x^2}}$ 的导数。
4. 已知函数 $f(x) = e^{x^2}$,求曲线在 $x=0$ 处的切线方程。
5. 设函数 $f(x) = \ln(\sin^2 x)$,求 $f'(x)$。
四、拓展题1. 已知函数 $f(x) = \frac{1}{x^2 + 1}$,求 $f''(x)$。
2. 设函数 $f(x) = (x^3 + 1)^4$,求 $f'''(x)$。
3. 已知函数 $f(x) = \arctan(x)$,求 $f'(x)$。
导数的计算练习题及答案

导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。
解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。
f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。
化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。
2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。
(word完整版)导数的运算练习题

导数的运算练习一、常用的导数公式(1)'C = (C 为常数); (2)()'n x = ; (3)(sin )'x = ; (4)(cos )'x = ; (5)()'x a = ; (6)()'x e = ; (7)_____________; (8)_____________;二、导数的运算法则 1、(1) ; (2);(3)______________________________________; (4)=___________________________________;(C 为常数)2、复合函数的导数设 .三、练习1、已知()2f x x =,则()3f '等于( )A .0B .2xC .6D .9 2、()0f x =的导数是( )A .0B .1C .不存在D .不确定 3、32y x = ) A .23xB .213x C .12- D 33x4、曲线n y x =在2x =处的导数是12,则n 等于( )A .1B .2C .3D .45、若()f x =()1f '等于( )A .0B .13- C .3 D .136、2y x =的斜率等于2的切线方程是( ) A .210x y -+=B .210x y -+=或210x y --=C .210x y --=D .20x y -= 7、在曲线2y x =上的切线的倾斜角为4π的点是( ) A .()0,0 B .()2,4 C .11,416⎛⎫ ⎪⎝⎭ D .11,24⎛⎫⎪⎝⎭8、设()sin y f x =是可导函数,则x y '等于( )A .()sin f x 'B .()sin cos f x x '⋅C .()sin sin f x x '⋅D .()cos cos f x x '⋅ 9、函数()22423y x x=-+的导数是( )A .()2823x x -+B .()2216x -+ C .()()282361x x x -+-D .()()242361x x x -+-10、曲线34y x x =-在点()1,3--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-11、点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( )A .0,2π⎡⎤⎢⎥⎣⎦B .30,,24πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C .3,4ππ⎡⎫⎪⎢⎣⎭ D .3,24ππ⎛⎤ ⎥⎝⎦12、求函数212y x =-在点1x =处的导数。
导数的运算专项练习(含答案)

导数的运算一、单选题(共33题;共66分)1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为()A. 0B. 3C. 4D. -2.函数的导数为()A. B. C. D.3.设函数,若,则等于()A. B. C. D.4.设则等于( )A. B. C. D.5.已知函数的导函数,且满足,则=( )A. B. C. 1 D.6.已知函数的导函数为,且,则()A. 2B. 3C. 4D. 57.下列求导运算的正确是()A. 为常数B.C.D.8.已知函数的值为()A. B. C. D.9.下列求导运算正确的是()A. B. C. D.10.已知函数f(x)=sinx-cosx,则f'()=()A. B. C. D.11.若函数f(x)=2+xcos2x,则f'(x)=()A. cos 2x-xsin 2xB. x-sin 2xC. 1-2sin 2xD. cos2x-2sin2x12.函数的导数为()A. =2B. =C. =2D. =13.设函数的导函数为,且,则=( )A. 0B. -4C. -2D. 214.设,若,则()A. B. C. D.15.已知函数,则其导数()A. B. C. D.16.若函数,则的值为()A. 0B. 2C. 1D. -117.已知函数,且,则的值为()A. B. C. D.18.已知函数,为的导函数,则的值为()A. B. C. D.19.下列求导运算正确的是()A. B. C. D.20.已知函数的导函数为,且满足,则()A. B. C. D.21.若,则函数的导函数()A. B. C. D.22.函数的导数为()A. B. C. D.23.下列导数式子正确的是()A. B. C. D.24.已知,则等于()A. -2B. 0C. 2D. 425.已知函数,则()A. B. C. D.26.已知,则()A. B. C. D.27.设,,则x0=( )A. e2B. eC.D. ln 228.下列求导数运算正确的是()A. B. C. D.29.若f(x)=x2-2x-4ln x,则f′(x)>0的解集为()A. (0,+∞)B. (-1,0)∪(2,+∞)C. (-1,0)D. (2,+∞)30.下列求导运算正确的是( )A. B. C. D.31.已知,则 ( )A. B. C. D. 以上都不正确32.设f(x)=xln x,若f′(x0)=2,则x0等于( )A. e2B. eC.D. ln 233.下列导数运算正确的是()A. B. C. D.二、填空题(共11题;共11分)34.已知函数的导函数为,若,则的值为________.35.若函数,则的值为________.36.已知,则________.37.若函数,则________.38.已知函数,则________.39.已知函数,是的导函数,则________.40.若f(x)=x3,f′(x0)=3,则x0的值为________.41.已知在上可导,,则________.42.已知函数的导函数为,且,则________.43.已知f(x)=2x+3xf′(0),则f′(1)=________.44.已知函数f(x)=2e x﹣x的导数为,则的值是________.三、解答题(共6题;共60分)45.求下列函数的导函数.①②③④⑤⑥46.求下列函数的导函数①②③④⑤⑥47.求下列函数的导数:(1);(2).48.求下列函数的导数:(1);(2);(3);(4).49.求下列函数的导数.(1);(2).50.求下列函数的导数.(1)y=3x2+xcos x;(2)y=lgx-;答案解析部分一、单选题1.【答案】B【考点】导数的运算【解析】【解答】解:因为,则,所以,故答案为:B.【分析】先由函数,求得导函数,再求即可得解.2.【答案】D【考点】导数的运算【解析】【解答】因为,则函数的导函数,故答案为:D.【分析】先根据完全平方公式对展开,再运用常见初等函数的求导公式和求导运算法则可求解.3.【答案】D【考点】导数的运算【解析】【解答】,,,解得,故答案为:D,【分析】对函数求导,再由可求出实数的值.4.【答案】D【考点】导数的运算【解析】【解答】由,得.故答案为:D.【分析】由已知利用导数的运算性质进行计算,即可得结果.5.【答案】B【考点】导数的运算【解析】【解答】对函数进行求导,得把代入得,直接可求得。
导数练习题含答案完整版

导数练习题含答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】导数练习题班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( )A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40 B.0.41 C.0.43D.0.443.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A.4 B.4+2ΔxC.4+2(Δx)2D.4x4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6 B.18C.54D.815.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A.3 B.-3C. 2D.-26.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x-2 B.y=xC.y=x+ 2D.y=-x-28.已知曲线y=2x2上一点A(2,8),则A处的切线斜率为( )A.4 B.16 C.8D.29.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0) B.(2,4)C.(14,116)D.(12,14)10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b= 1B.a=-1,b=1C.a=1,b=- 1D.a=-1,b=-111.已知f(x)=x2,则f′(3)=( )A.0 B.2xC. 6D.912.已知函数f(x)=1x,则f′(-3)=( )A. 4 B.19C .-14D .-1913.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2xx +3?2D.3x 2+6x x +3?2 14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( )A .0B .-1C .1D .215.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤18.函数y =4x 2+1x的单调递增区间是( ) A .(0,+∞) B .(-∞,1)C .(12,+∞)D .(1,19.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 20.设x 0为可导函数f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为022.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =( ) A .2 B .3C .4D .523.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有( )A .1个B .2个C .3个D .4个24.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,- 1C .-1D .-325.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5)C .f (2),f (5)D .f (5),f (3)26.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .427.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( )A .-10B.-71C .-15D .-22 28.(2010年高考山东卷)已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件29.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1秒末B .0秒C .4秒末D .0,1,4秒末二、填空题1.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________.2.若曲线y =2x 2-4x +a 与直线y =1相切,则a =________.3.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________.4.令f (x )=x 2·e x ,则f ′(x )等于________.5.函数y =x 2+4x 在x =x 0处的切线斜率为2,则x 0=________. 6.若y =10x ,则y ′|x =1=________.7.一物体的运动方程是s (t )=1t,当t =3时的瞬时速度为________.8.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.9.y =x 3-6x +a 的极大值为________.10.函数y =x e x 的最小值为________.11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.12.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.三、解答题1.求下列函数的导数:(1)y=3x2+x cos x; (2)y=x1+x;(3)y=lg x-e x.2.已知抛物线y=x2+4与直线y=x +10,求:(1)它们的交点; (2)抛物线在交点处的切线方程.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=12x .4.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.导数练习题答案班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( ) A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数答案:A2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44解析:选 B.Δy=f(2.1)-f(2)=2.12-22=0.41.3.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A. 4B.4+2ΔxC.4+2(Δx)2D.4x解析:选B.因为Δy=[2(1+Δx)2-1]-(2×12-1)=4Δx+2(Δx)2,所以ΔyΔx=4+2Δx,故选B.4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6B.18C.54D.81解析:选B.ΔsΔt=3?3+Δt2-3×32Δt,s′=li mΔt→0ΔsΔt=li mΔt→0(18+3Δt)=18,故选B.5.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A. 3B.-3C. 2D.-2解析:选B.6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直解析:选 B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x- 2B.y=xC.y=x+ 2D.y=-x-2解析:选 A.f′(1)=li mΔx→0-11+Δx+11Δx=li mΔx→011+Δx=1,则在(1,-1)处的切线方程为y+1=x-1,即y=x-2.8.已知曲线y=2x2上一点A(2,8),则A 处的切线斜率为( )A. 4B.16C.8D.2解析:选C.9.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0)B.(2,4)C.(14,116)D.(12,14)故选D.10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A .a =1,b = 1B .a =-1,b =1C .a=1,b=-1D .a =-1,b =-1 解析:选A.11.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9解析:选 C.∵f ′(x )=2x ,∴f ′(3)=6.12.已知函数f (x )=1x,则f ′(-3)=( )A .4B.19C .-14D .-19解析:选 D.∵f ′(x )=-1x 2,∴f ′(-3)=-19.13.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2x x +3?2D.3x 2+6x x +3?2解析:选A14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .0B .-1C .1D .2解析:选 B.∵f (x )=12f ′(-1)x 2-2x +3, ∴f ′(x )=f ′(-1)x -2.∴f ′(-1)=f ′(-1)×(-1)-2.∴f ′(-1)=-1.15.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:选 D.f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤0解析:选D.因为y ′=3ax 2-1,函数y =ax 3-x 在(-∞,+∞)上是减函数,所以y ′=3ax 2-1≤0恒成立,即3ax 2≤1恒成立.当x =0时,3ax 2≤1恒成立,此时a ∈R ;当x ≠0时,若a ≤13x2恒成立,则a ≤0.综上可得a ≤0. 18.函数y =4x 2+1x的单调递增区间是( )A .(0,+∞)B .(-∞,C .(12,+∞)D .(1,+解析:选 C.∵y′=8x-1x2=8x3-1 x2>0,∴x>12.即函数的单调递增区间为(12,+∞).19.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.20.设x0为可导函数f(x)的极值点,则下列说法正确的是( )A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A22.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=( )A.2 B.3C.4 D.5解析:选D.f′(x)=3x2+2ax+3,∵f(x)在x=-3处取得极值,∴f′(-3)=0,即27-6a+3=0,∴a=5.23.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个解析:选A.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如题图所示,函数f(x)在开区间(a,b)内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.24.函数f(x)=-13x3+12x2+2x取极小值时,x的值是( )A.2 B.2,-1C.-1 D.-3解析:选 C.f′(x)=-x2+x+2=-(x-2)(x+1).∵在x=-1的附近左侧f′(x)<0,右侧f′(x)>0,如图所示:∴x=-1时取极小值.25.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分别是( )A.f(2),f(3)B.f(3),f(5)C.f(2),f(5) D.f(5),f(3)解析:选B.∵f′(x)=-2x+4,∴当x∈[3,5]时,f′(x)<0,故f(x)在[3,5]上单调递减,故f(x)的最大值和最小值分别是f(3),f(5).26.f(x)=x3-3x2+2在区间[-1,1]上的最大值是( )A.-2 B.0C.2 D.4解析:选C.f′(x)=3x2-6x=3x(x-2),令f′(x)=0可得x=0或x=2(舍去),当-1≤x<0时,f′(x)>0,当0<x≤1时,f′(x)<0.所以当x=0时,f(x)取得最大值为2. 27.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10 B.-71C.-15 D.-22解析:选B.f′(x)=3x2-6x-9=3(x -3)(x+1).由f′(x)=0得x=3,-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.28.(2010年高考山东卷)已知某生产厂家的年利润y(单元:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A.13万件B .11万件C.9万件D .7万件解析:选C29.一点沿直线运动,如果由始点起经过t秒运动的距离为s=14t4-53t3+2t2,那么速度为零的时刻是( )A.1秒末B .0秒C.4秒末D .0,1,4秒末解析:选D.∵s′=t3-5t2+4t,令s′=0,得t1=0,t2=1,t3=4,此时的函数值最大,故选D.二、填空题1.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________.答案:12.若曲线y=2x2-4x+a与直线y=1相切,则a=________.答案:33.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________.答案:24.令f(x)=x2·e x,则f′(x)等于________.解析:f′(x)=(x2)′·e x+x2·(e x)′=2x·e x+x2·e x=e x(2x+x2).答案:e x(2x+x2)5.函数y=x2+4x在x=x0处的切线斜率为2,则x0=________.解析:2=li mΔx→0x+Δx2+4?x0+Δx-x20-4x0Δx=2x0+4,∴x0=-1.答案:-16.若y=10x,则y′|x=1=________.解析:∵y′=10x ln10,∴y′|x=1=10ln10.答案:10ln107.一物体的运动方程是s(t)=1t,当t=3时的瞬时速度为________.解析:∵s′(t)=-1t2,∴s′(3)=-132=-19.答案:-198.设f(x)=ax2-b sin x,且f′(0)=1,f′(π3)=12,则a=________,b=________.解析:∵f′(x)=2ax-b cos x,f′(0)=-b=1得b=-1,f ′(π3)=23πa +12=12,得a =0.答案:0 -19.y =x 3-6x +a 的极大值为________.解析:y ′=3x 2-6=0,得x =± 2.当x <-2或x >2时,y ′>0;当-2<x <2时,y ′<0.∴函数在x =-2时,取得极大值a +4 2.答案:a +4210.函数y =x e x 的最小值为________.解析:令y ′=(x +1)e x =0,得x =-1.当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.解析:设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x2×x =x 2+256×4x,S ′=2x -256×4x 2,令S ′=0,则x =8,则高h =25664=4 (dm).答案:412.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.解析:设矩形的长为x m ,则宽为16-2x2=(8-x ) m(0<x <8), ∴S (x )=x (8-x )=-x 2+8x∴S ′(x )=-2x +8,令S ′(x )=0,则x =4,又在(0,8)上只有一个极值点,且x∈(0,4)时,S(x)单调递增,x∈(4,8)时,S(x)单调递减,故S(x)max=S(4)=16.答案:16三、解答题1.求下列函数的导数:(1)y=3x2+x cos x;(2)y=x1+x;(3)y=lg x-e x.解:(1)y′=6x+cos x-x sin x.(2)y′=1+x-x1+x2=11+x2.(3)y′=(lg x)′-(e x)′=1x ln10-e x.2.已知抛物线y=x2+4与直线y=x+10,求:(1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎨⎧y=x2+4,y=x+10,得x2+4=10+x,即x2-x-6=0,∴x=-2或x=3.代入直线的方程得y=8或13.∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y=x2+4,∴y′=limΔx→0x+Δx2+4-x2+4?Δx=limΔx→0Δx2+2x·ΔxΔx=limΔx→0(Δx+2x)=2x.∴y′|x=-2=-4,y′|x=3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6.∴在点(-2,8)处的切线方程为4x+y=0;在点(3,13)处的切线方程为6x-y-5=0.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=1 2x .解:(1)函数的定义域为(0,+∞).其导数为y′=1-1 x .令1-1x>0,解得x>1;再令1-1x<0,解得0<x<1.因此,函数的单调增区间为(1,+∞),函数的单调减区间为(0,1).4.已知函数f(x)=x3+ax2+bx+c,当x =-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.解:f′(x)=3x2+2ax+b,依题意可知-1,3是方程3x2+2ax+b=0的两个根,则有⎩⎪⎨⎪⎧-1+3=-23a,-1×3=b3,解得⎩⎨⎧a=-3,b=-9,∴f(x)=x3-3x2-9x+c.由f(-1)=7,得-1-3+9+c=7,∴c=2.∴极小值为f(3)=33-3×32-9×3+2=-25.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.解:(1)f′(x)=x2-4,解方程x2-4=0,得x1=-2,x2=2.当x变化时,f′(x),f(x)的变化情况如下表:从上表可看出,当x=-2时,函数有极大值,且极大值为283;而当x=2时,函数有极小值,且极小值为-4 3 .(2)f(-3)=13×(-3)3-4×(-3)+4=7,f(4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.。
函数求导练习题(含解析)

一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=,C为常数;(2)(xα)′=,α为常数;(3)(a x)′=,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=;(6)(cos x)′=.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).4.求下列函数的导数:(1)y=ln(2x+1);(2).5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.6.求下列函数的导数.(Ⅰ);(Ⅱ).7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).9.求下列函数的导数:(1);(2).10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).11.求下列函数的导数.(1);(2).12.求下列函数的导数:(1)y=;(2)y=.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2)解析一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=0,C为常数;(2)(xα)′=αxα﹣1,α为常数;(3)(a x)′=a x lna,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=cos x;(6)(cos x)′=﹣sin x.分析:根据初等函数的导数公式,直接求解即可.解答:解:(1)(C)′=0,(2)(xα)′=αxα﹣1,(3)(a x)′=a x lna,(4)(log a x)′=,(5)(sin x)′=cos x,(6)(cos x)′=﹣sin x.故答案为:(1)0;(2)αxα﹣1;(3)a x lna;(4);(5)cos x;(6)﹣sin x.点评:本题主要考查初等函数的导数公式,比较基础.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).分析:利用导数的运算性质逐个化简即可求解.解答:解:(1)由已知可得y′=2x﹣7;(2)由已知可得y′=1+2cos x.点评:本题考查了导数的运算性质,属于基础题.3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).分析:(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.解答:解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.点评:本题主要考查导数的基本运算,比较基础.4.求下列函数的导数:(1)y=ln(2x+1);(2).分析:根据导数的公式即可得到结论.解答:解:(1)∵y=ln(2x+1),∴y′=×2=,(2)∵,∴y′=﹣sin(﹣2x)×(﹣2)=2sin(﹣2x)=﹣2sin(2x﹣).点评:本题主要考查导数的基本运算,比较基础.5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.分析:根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.解答:解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x﹣3).(4)∵w(x)=ln(5x+6)2,∴点评:本题考查导数的计算,注意复合函数的导数计算,属于基础题.(Ⅰ);(Ⅱ).分析:根据导数的公式即可得到结论.解答:解:(Ⅰ)=.(Ⅱ).点评:本题主要考查导数的基本运算,比较基础.7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.分析:利用导数的运算性质化简即可求解.解答:解:(1)因为f(x)=sin x cos x=sin2x,所以f′(x)=cos2x×=cos2x,(2)∵y=,∴y′==.点评:本题考查了导数的运算性质,考查了学生的运算求解能力,属于基础题.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).分析:根据导数的公式,即可依次求解.解答:解:(1)y'==.(2)因为y=(2x2+3)(3x﹣2)=6x3﹣4x2+9x﹣6,所以y′=18x2﹣8x+9.点评:本题主要考查导数的运算,属于基础题.(1);(2).分析:(1)先展开f(x),然后求导即可;(2)根据基本初等函数和商的导数的求导公式求导即可.解答:解:(1),;(2).点评:本题考查了基本初等函数和商的导数的求导公式,考查了计算能力,属于基础题.10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).分析:结合基本初等函数的求导公式及求导法则求解即可.解答:解:(1)S(t)==t+,所以S′(t)=1﹣;(2)h(x)=(2x2+3)(3x﹣2),所以h′(x)=4x(3x﹣2)+3(2x2+3)=18x2﹣8x+9.点评:本题主要考查了基本初等函数的求导公式及求导法则,属于基础题.11.求下列函数的导数.(1);(2).分析:利用复合函数的导函数的求法,结合导数的运算求解即可.解答:解:(1),所以;(2)所以.点评:本题考查了导函数的求法,重点考查了导数的运算,属基础题.12.求下列函数的导数:(1)y=;(2)y=.分析:直接利用基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算求解即可.解答:解:(1)令t=1﹣2x2,则,所以;(2).点评:本题考查了导数的运算,解题的关键是掌握基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算,考查了运算能力,属于基础题.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).分析:由已知结合函数的求导公式即可求解.解答:解:(1)y′=cos x+;(2)y′=﹣sin x+1;(3)y′=sin x+x cos x;(4)y′==;(5)y′=6x+cos x﹣x sin x;(6)y′==﹣.点评:本题主要考查了函数的求导公式的应用,属于基础题.14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).分析:根据基本初等函数和复合函数的求导公式求导即可.解答:解:(1)y′=3x2﹣2;(2)y′=sin(2x+5)+2x cos(2x+5).点评:本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2).分析:利用导数的运算法则以及常见函数的导数进行求解即可.解答:解:(1)因为y=(x2+3x+3)e x+1,所以y'=[(x2+3x+3)e x+1]'=(x2+3x+3+2x+3)e x+1=(x2+5x+6)e x+1=(x+2)(x+3)e x+1;(2)因为,所以.点评:本题考查了导数的运算,主要考查了导数的运算法则以及常见函数的导数公式,考查了化简运算能力,属于基础题.。
导数概念练习题
试卷第1页,共1页导数概念练习题(含解析)一、填空题1.若函数()f x 在R 上可导,()()2e ln f x xf x +'=,则()e f '=.2.若函数()sin 22cos f x x x =+的导函数为()f x ',则π6f ⎛⎫= ⎪⎝⎭'.3.设函数()f x =,则()f x '=4.函数()2πsin π32f x x ⎛⎫=- ⎪⎝⎭在3x =处的导数()3f '=.5.函数()ln 2f x x x =⋅的导函数()f x '=.6.函数2y x =的极值点为.7.函数()322f x x x =-的图象在点()()22f ,处的切线方程为.8.已知函数()cos f x x =,则()f x '=.9.某汽车启动阶段的路程函数为32()355S t t t =-+,则2t =秒时,汽车的加速度是.10.曲线21e x y x-=在点()01,y 处的切线方程为.11.已知函数()a y f x x x ==-在1x =处的导数()12f '=,则a 的值为.12.若函数2()f x x c =-在区间[]1,m 上的平均变化率为3,则m 等于.13.已知函数2()3f x x x =-,则曲线()y f x =在点(1,2)-处的切线方程为.14.函数21y x =-在区间[]3,4上的平均变化率为.15.函数2()f x x =-在2x =处的导数为16.函数232y x =-在1x =处的导数为.17.已知()cos f x x =,则π3f ⎛⎫'= ⎪⎝⎭.18.函数πcos(3)4y x =-的导数为.19.函数y =是由两个函数复合而成的.。
导数练习题及答案
导数练习题及答案导数练习题及答案导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
以下是导数练习题及答案,欢迎阅读。
一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的`瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx=4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。
完整版)导数大题练习带答案
完整版)导数大题练习带答案1.已知 $f(x)=x\ln x-ax$,$g(x)=-x^2-2$,要求实数 $a$ 的取值范围。
Ⅰ)对于所有 $x\in(0,+\infty)$,都有 $f(x)\geq g(x)$,即$x\ln x-ax\geq -x^2-2$,整理得 $a\leq \ln x +\frac{x}{2}$,对于 $x\in(0,+\infty)$,$a$ 的取值范围为 $(-\infty。
+\infty)$。
Ⅱ)当 $a=-1$ 时,$f(x)=x\ln x+x$,求 $f(x)$ 在 $[m。
m+3]$ 上的最值。
$f'(x)=\ln x+2$,令 $f'(x)=0$,解得 $x=e^{-2}$,在 $[m。
m+3]$ 上,$f(x)$ 单调递增,所以最小值为$f(m)=me^{m}$。
Ⅲ)证明:对于所有 $x\in(0,+\infty)$,都有 $\lnx+1>\frac{1}{x}$。
证明:$f(x)=\ln x+1-\frac{1}{x}$,$f'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{1}{x^2}(x-1)>0$,所以$f(x)$ 在 $(0,+\infty)$ 上单调递增,即对于所有$x\in(0,+\infty)$,都有 $\ln x+1>\frac{1}{x}$。
2.已知函数 $f(x)=\frac{2}{x}+a\ln x-2(a>0)$。
Ⅰ)若曲线 $y=f(x)$ 在点 $P(1,f(1))$ 处的切线与直线$y=x+2$ 垂直,求函数 $y=f(x)$ 的单调区间。
$f'(x)=-\frac{2}{x^2}+a$,在点 $P(1,f(1))$ 处的切线斜率为 $f'(1)=a-2$,由于切线垂直于直线 $y=x+2$,所以 $a-2=-\frac{1}{1}=-1$,解得 $a=1$。
导数公式的练习题及答案
导数公式的练习题及答案1. 导数的物理意义:瞬时速率。
一般的,函数y?f在x?x0处的瞬时变化率是?x?0limf?f,?x我们称它为函数y?f在x?x0处的导数,记作f?或y?|x?x0,即f?=lim?x?0f?f?x2. 导数的几何意义: 当点Pn趋近于P时,函数y?f 在x?x0处的导数就是切线PT的斜率k,即k?lim3. 导函数二.导数的计算1. 基本初等函数的导数公式. 导数的运算法则. 复合函数求导?x?0f?f?f?xn?x0y?f和u?g,称则y可以表示成为x的函数,即y?f)为一个复合函数 y??f?)?g?三.导数在研究函数中的应用 1.函数的单调性与导数:.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数y?f的极值的方法是:如果在x0附近的左侧f??0,右侧f??0,那么f是极大值; 如果在x0附近的左侧f??0,右侧f??0,那么f是极小值;.函数的最大值与导数函数极大值与最大值之间的关系.求函数y?f在[a,b]上的最大值与最小值的步骤求函数y?f在内的极值;将函数y?f的各极值与端点处的函数值f,f比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题1、已知函数f?2x?1的图象上一点及邻近一点,则2?y等于?xA.4B.4?xC.4?2?xD.4?2?x2、如果质点M按规律S?3?t2运动,则在一小段时间[2,2.1]中相应的平均速度为A.4B.4.1C.0.41D.33、如果质点A按规律S?2t3运动,则在t?3秒的瞬时速度为A.B.18C.54D.8111在点处的切线斜率为_________,切线方程为__________________. x225、已知函数f?ax?2,若f??1,则a?__________.4、曲线y??6、计算:f?5x?7,求f?;f?y?221x?2,求f?;21,求y?|x?0 x?17、在自行车比赛中,运动员的位移与比赛时间t存在函数关系S?10t?5t2,t?20,?t?0.1时的求t?20的速度. 1、函数y??S; ?t的导数是1?4?141323A.xB.xC.x5D.?x55555112、曲线y?x2在点处切线的倾斜角为225???A.1B.?C.D.4443、已知曲线y?x?2x?2在点M处的切线与x轴平行,则点M的坐标是A.B. C.D.2x在点处的切线方程为____________________.x?135、曲线y?x在点处的切线与x轴、直线x?2所围成的三角形面积为__________.4、曲线y?6、求下列函数的导数:y?x?log3x;y??2x?1.13?;y?cos2x.sinx?cosx求f在点处的切线方程;求过点的切线方程.、函数y?的导数是A.6x5?12x B.4?2x C.2 D.2?3x、已知y?333321sin2x?sinx,那么y?是A.仅有最小值的奇函数B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数D.非奇非偶函数 10、曲线y?e1x2在点处的切线与坐标轴所围三角形的面积为2C.2e D.e22211、已知f?ln,若f??1,则实数a的值为__________. A.e2B.4e12、y?sin3x在处的切线斜率为__________________.1?x,?1?x?1. 1?x13、求下列函数的导数:f?f?e?x2?2x?3;y?lncos2x??14、已知f? ,求f.1?sin2x41、函数f?e的单调递增区间是A. B.C. D.2、设函数y?f在定义域内可导,y?f的图象如图1所示,则导函数y?f?可能为A2xB C D3、若函数f?x?ax?x?6在内单调递减,则实数a的取值范围是A.a?1B.a?13C.a?1D.0?a?14、函数f?ax?x在R上为减函数,则实数a的取值范围是______________.、求函数f?2x?lnx的单调区间.、设函数f?xe.kx2求曲线y?f在点)处的切线方程;求函数f的单调区间;若函数f在区间内单调递增,求k的取值范围.、函数y?4x2?1的单调递增区间是 x11A. B. C.D.8、若函数y?x3?x2?mx?1是R上的单调函数,则实数m 的取值范围是A. B.D..函数f?lnx?1313131312x的图象大致是10、如果函数y?f的导函数的图象如下图所示,给出下列判断:①函数y?f在区间内单调递增;②函数y?f在区间内单调递减;③函数y?f在区间内单调递增;④当x?2时,函数y?f有极小值;⑤当x??12121时,函数y?f有极大值.32则上述判断中正确的是____________.11、已知函数f?x?ax?bx?c,g?12x?4,若f?0,且f 的图象在点)处的切线方程为y?g.求实数a,b,c的值;求函数h?f?g的单调区间 12、已知函数f?13、已知函数f?12x?lnx?x在上是增函数,求实数a的取值范围.x?1?alnx,f的单调区间.1.C .B3.C4.4;y?4x?4.?7.210.5;2101?1?381x111.C.C .B4.y??x?2.6.;?;ln?233xln3?sinx?cosx7.y?4x?3;y?e;1?x814.?9111.D.D .A4.a?0.增区间,减区间22116.y?x;k?0时,增区间,减区间kk11k?0时,增区间,减区间;[?1,0)?和,减区间12.a?213.a?0时,增区间为a?0时,在基本初等函数的导数公式及导数运算法则练习姓名班级713?1.曲线y=x-2在点?-1,-处切线的倾斜角为?3?A.30°B.45° C.135°D.60°.设f=31A641-1x2xf′等于57B.C.-667D.63.若曲线y=x的一条切线l与直线x+4y-8=0垂直,则l的方程为A.4x-y-3=032B.x+4y-5=0C.4x-y+3=0 D.x+4y+3=04.已知f=ax+9x+6x-7,若f′=4,则a的值等于A.193B.16101 D.3314325.已知物体的运动方程是st-4t+16t,则瞬时速度为0的时刻是A.0秒、2秒或4秒B.0秒、2秒或16秒C.2秒、8秒或16秒 D.0秒、4秒或8秒6.曲线y=x-2x+1在点处的切线方程为A.y=x-1B.y=-x-1 D.y=-2x-23C.y=2x-2x7.若函数f=esinx,则此函数图象在点)处的切线的倾斜角为A.π2B.0C.钝角D.锐角?ππ8.曲线y=xsinx在点?-,处的切线与x轴、直线x=π所围成的三角形的面积为 ?22?πA.21222B.π C.2πD.+π)29.设f0=sinx,f1=f0′,f2=f1′,…,fn+1=fn′,n∈N,则f2011等于A.sinxB.-sinx C.cosxD.-cosx10.f与g是定义在R上的两个可导函数,若f、g满足f′=g′,则f与g满足A.f=g B.f-g为常数C.f=g=0 11.函数y=在x=1处的导数等于A.1 B.2C.D.412.若对任意x∈R,f′=4x,f=-1,则f=第 - 1 - 页共 1页32D.f+g为常数A.x34mB.x-D.x+21*}的前n项和是 f44C.4x-513.设函数f=x+ax的导数为f′=2x+1,则数列{ A.n+2nn+1B. C.D.n+1n+1n-1nn14.二次函数y=f的图象过原点,且它的导函数y=f′的图象是过第一、二、三象限的一条直线,则函数y=f的图象的顶点在A.第一象限32B.第二象限C.第三象限D.第四象限15.函数y=的导数为A.6x+12xB.4+2xC.24252332D.2·3x316.若函数f=ax+bx+c满足f′=2,则f′=A.-1B.- C.2D.031017.设函数f=,则f′=A.0B.-1 C.-60D.6018.函数y=sin2x-cos2x的导数是π??A.2cos?2x-?4??π??B.cos2x-sin2xC.sin2x+cos2x D.22cos?2x +?4??119.已知曲线y=-3lnx的一条切线的斜率为,则切点的横坐标为42A.3B. C.11D.x220.设函数f是R上以5为周期的可导偶函数,则曲线y=f在x=5处的切线的斜率为1A51B.5D.5?π1221.设f=ax-bsinx,且f′=1,f′?=a=________,b=________.?3?222.设f=x-3x-9x+1,则不等式f′<0的解集为________.3.曲线y=cosx在点P?32?π,1处的切线的斜率为______.?32?x24.已知函数f=ax+be图象上在点P处的切线与直线y=-3x平行,则函数f的解析式是____________.25.若f=x,φ=1+sin2x,则f[φ]=_______,φ[f]=________.6.设函数f=cos,若f+f′是奇函数,则φ=________.7.函数y=的导数为________.8.函数y=x1+x的导数为________.三、解答题第 - - 页共 1页22829.求下列函数的导数:1111+x1x24x4xy=x;y=;y=sin+cosy=xx44x1-x1x30.求下列函数的导数:e+1x+cosxy=xsinx; y=ln;yx y=.e-1x+sinx22x.31.求下列函数的导数:y=cos;y=cosx·sin3x; y=xloga; y=log2 2sinx232.设f=f′=·g,求g.1+x33.求下列函数的导数:是可导函数)第 - - 页共 1页222x-1. x+1?1?2y=f??;y=fx+1).?x?34.已知两条曲线y=sinx、y=cosx,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.17.已知曲线C1:y=x与C2:y=-.直线l与C1、C2都相切,求直线l的方程.18.求满足下列条件的函数f:f是三次函数,且f=3,f′=0,f′=-3,f′=0;f′是一次函数,xf′-f=1.222第 - - 页共 1页基本初等函数的导数公式及导数运算法则答案一、选择题7?13?1.曲线yx-2在点?-1,-?处切线的倾斜角为?3?A.30° C.135° [答案] B[解析] y′|x=-1=1,∴倾斜角为45°..设f31A67C6[答案] B1-1B.45° D.60°x2xx,则f′等于5B.67D.63.若曲线y=x的一条切线l与直线x+4y-8=0垂直,则l的方程为 A.4x-y-3=0C.4x-y+3=0[答案] A [解析] ∵直线l的斜率为4,而y′=4x,由y′=4得x=1而x=1时,y=x=1,故直线l的方程为:y-1=4即4x-y-3=0.4.已知f=ax+9x+6x-7,若f′=4,则a的值等于 A.C.193103B.D.16313332344B.x+4y-5=0 D.x+4y+3=0[答案] B[解析] ∵f′=3ax+18x+6,16∴由f′=4得,3a-18+6=4,即a=.3∴选B.第 - - 页共 1页2基本初等函数的导数公式及导数运算法则1.y?x31导数为 x22.y=xsin2x导数为3.y?x2lnx导数为ex4.y?导数为 x5.函数y=2在x=1处的导数等于6.函数y=2的导数为7.设函数f=10,则f′=8.函数y=sin2x-cos2x的导数是9.函数y=1+x的导数为________.10.若对任意x∈R,f′=4x3,f=-1,则f=11.江西)若函数f=ax4+bx2+c满足f′=2,则f′=基本初等函数的导数公式及导数运算法则1.y?x31导数为 x22.y=xsin2x导数为3.y?xlnx导数为ex4.y?导数为 x5.函数y=2在x=1处的导数等于6.函数y=2的导数为7.设函数f=10,则f′=8.函数y=sin2x-cos2x的导数是9.函数y=1+x的导数为________.10.若对任意x∈R,f′=4x3,f=-1,则f=11.江西)若函数f=ax4+bx2+c满足f′=2,则f′=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考总复习.文科数学
已知f(x)=ex-ax-1. 已知f(x)=e ax-1. (1)求f(x)的单调增区间; f(x)的单调增区间; 的单调增区间 (2)若f(x)在定义域R内单调递增,求a的取值范围; f(x)在定义域R内单调递增, 的取值范围; (3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0, 是否存在a,使f(x)在 a, 上单调递减, +∞)上单调递增?若存在,求出a的值;若不存在, +∞)上单调递增?若存在,求出a的值;若不存在,说明理 由. 解析:f′(x)=ex-a. (1)若a≤0,f′(x)=ex-a≥0恒成立,即f(x)在R上递增. 若a>0,ex-a≥0,∴ex≥a,x≥lna. ∴f(x)的单调递增复习.文科数学
(2)∵f(x)在R内单调递增,∴f′(x)≥0在R上恒成立. ∴ex-a≥0,即a≤ex在R上恒成立. ∴a≤(ex)min,又∵ex>0,∴a≤0. (3)解法一由题意知ex-a≤0在(-∞,0]上恒成立. ∴a≥ex在(-∞,0]上恒成立. ∵ex在(-∞,0]上为增函数. ∴x=0时,ex最大为1.∴a≥1.同理可知ex-a≥0在[0,+∞)上 恒成立. ∴a≤ex在[0,+∞)上恒成立.∴a≤1,∴a=1. 解法二由题意知,x=0为f(x)的极小值点. ∴f′(0)=0,即e0-a=0,∴a=1.
(2) 1 7 + 17 , 3 16
高考总复习.文科数学
2.用导数求函数单调区间也可按如下步骤进行 2.用导数求函数单调区间也可按如下步骤进行 用导数求函数单调区间也可按如下步骤进行 (1)求函数f(x)的导数f′(x); 求函数f(x)的导数f′(x); f(x)的导数f′(x) (2)令f′(x)>0,解不等式得x的范围就是递增区间; f′(x)> 解不等式得x的范围就是递增区间; (3)令f′(x)<0,解不等式得x的范围就是递减区间. f′(x)< 解不等式得x的范围就是递减区间. 3.讨论含参数的函数的单调性时,必须注意分类讨论. 3.讨论含参数的函数的单调性时,必须注意分类讨论. 讨论含参数的函数的单调性时
高考总复习.文科数学
(2009年陕西卷)已知函数f(x)=x3-3ax-1,a≠0. 2009年陕西卷)已知函数f(x)=x 3ax-1,a≠0. 年陕西卷 (1)求f(x)的单调区间; f(x)的单调区间; 的单调区间 (2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有 f(x)在x=- 处取得极值,直线y=m与y=f(x)的图象有 y=m 三个不同的交点, 三个不同的交点,求m的取值范围. 的取值范围. 解析:(1)f′(x)=3x2-3a=3(x2-a), ①当a<0时,对x∈R,有f′(x)>0,所以当a<0时,f(x)的单 调增区间为(-∞,+∞); ②当a>0时,由f′(x)>0解得x< − a 或x> 由f′(x)<0解得 − a <x<
a ,
a ,所以当a>0时, f(x)的单调增区间为(-∞, − a ),( a ,+∞); f(x)的单调减区间为( − a , a ).
高考总复习.文科数学
(2)因为f(x)在x=-1处取得极值, 所以f′(-1)=3×(-1)2-3a=0,∴a=1. 所以f(x)=x3-3x-1,f′(x)=3x2-3, 由f′(x)=0解得x1=-1,x2=1. 由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值 f(-1)=1,在x=1处取得极小值f(1)=-3. 因为直线y=m与函数y=f(x)的图象有三个不同的交点,结合f(x) 的单调性可知,m的取值范围是(-3,1).
高考总复习.文科数学
3.函数y=3x2-2lnx的单调增区间为__________,单调减区间 3.函数y=3x 2lnx的单调增区间为__________, 函数 的单调增区间为__________ 为__________. 答案:( 3 ,+∞) (0, 3 )
3 3
4.若函数h(x)=2x-(k/x)+(k/3)在(1,+∞)上是增函数,则 若函数h(x)=2x- h(x)=2x (1,+∞)上是增函数, 上是增函数 实数k的取值范围是__________. 实数k的取值范围是__________. __________.
高考总复习.文科数学
(3)当a>0时, ' ( x ) = 0 ⇒ x = ± 1 , a>0时 f a f(x)在 1,①若 1 ≤1,即a≥1时,f(x)在 [-1,- 1 ] 和 [ a 1 1 a 上单调递增, 上单调递减. 上单调递增,在 (, ) 上单调递减. a a
1 ,1] a
1 所以 f ( x ) min f ( − 1 ), f ( a f ( − 1) = − a + 4 ≥ 0 ⇒ 1 1 f ( ) =1− 2 ≥ 0 a a
2.(2010年凤阳中学月考)若函数f(x)=ax-lnx在(1,+∞)上 (2010年凤阳中学月考)若函数f(x)=ax-lnx在(1,+∞)上 年凤阳中学月考 f(x)=ax 是增函数,则实数a的取值范围是( 是增函数,则实数a的取值范围是( ) A.(- A.(-∞,1) 答案:D B.(-∞,1] B.(-∞,1] C.(1,+∞) D.[ D.[1,+∞)
高考总复习.文科数学
1.(2009年广州白云区检测)函数f(x)=x3-3x2+1是减函数的 1.(2009年广州白云区检测)函数f(x)=x +1是减函数的 (2009年广州白云区检测 区间为( 区间为( ) B.(-∞,2) .(- C.(-∞,0) .(- D.(0,2) A.(2,+∞) 答案:D
高考总复习.文科数学
求函数f(x)=xlnx的单调区间. 求函数f(x)=xlnx的单调区间. f(x)=xlnx的单调区间 解析:由f(x)=xlnx易知x>0,所以函数的定义域为(0,+∞), f′(x)=lnx+1>0解得x>1/e, 由f′(x)=lnx+1<0,解得0<x<1/e, 故函数f(x)=xlnx的单调递增区间是(e-1,+∞), 单调递减区 间是(0,e-1).
高考总复习.文科数学
变式探究 5.(2009年大同中学检测 年大同中学检测) 5.(2009年大同中学检测)设函数 f(x)=( 3a2x+1,0< 1. f(x)=(-1/3)x3+2ax2-3a2x+1,0<a<1. (1)求函数f(x)的单调区间; 求函数f(x)的单调区间; f(x)的单调区间 (2)若x∈[1-a,1+a]时,恒有-a≤f′(x)≤a成立(其中 a,1+a] 恒有(x)≤ 成立( f′(x)是函数f(x)的导函数),试确定实数a的取值范围. (x)是函数f(x)的导函数),试确定实数a的取值范围. 是函数f(x)的导函数),试确定实数 答案:(1)f(x)的单调递增区间为(a,3a); f(x)的单调递减区间为(-∞,a)和(3a,+∞)
高考总复习.文科数学
2009年江苏卷 函数f(x)=x 年江苏卷) 33x+6的单调减区 1.(2009年江苏卷)函数f(x)=x3-15x2-33x+6的单调减区 间为
答案:(-1,11)(或[-1,11]或(-1,11]或[-1,11))
高考总复习.文科数学
(2008年江苏卷)f(x)=ax3-3x+1对于x∈[-1,1], 2008年江苏卷) 3x+1对于x 1,1], 年江苏卷 对于 总有f(x)≥ 成立, 总有f(x)≥0成立,则a=_________. f(x) 思路分析:本小题考查函数单调性及恒成立问题的综合运用, 思路分析:本小题考查函数单调性及恒成立问题的综合运用, 体现了分类讨论的数学思想. 体现了分类讨论的数学思想. 解析:要使f(x)≥ 恒成立,只要f(x) ≥0在 [-1,1 1,1] 解析:要使f(x)≥0恒成立,只要f(x)min≥0在x∈[-1,1] f(x) 上恒成立.f′(x)=3ax 1) 上恒成立.f′(x)=3ax2-3=3(ax2-1) 2<0, (1)当a=0时,f(x)=-3x+1,所以f(x)min=-2<0,不符合题 a=0时 f(x)=-3x+1,所以f(x) 意,舍去. 舍去. 1)<0, f(x)单调递 (2)当a<0时,f′(x)=3ax2-3=3(ax2-1)<0,即f(x)单调递 a<0时 =f(1)=a- 减,f(x)min=f(1)=a-2≥0 a≥2,舍去. ⇒ a≥2 舍去.
) ≥ 0 ⇒ a = 4.
高考总复习.文科数学
②当
a≥2 不符合题意,舍去. f(x)min=f(1)=a-2≥0 min=f(1)=a- ⇒ a≥2,不符合题意,舍去.
1 >1, a<1时 f(x)在 [-1,1 上单调递减, 1,1] >1,即a<1时,f(x)在x∈[-1,1]上单调递减, a
高考总复习.文科数学
点评:通过构造函数, 点评:通过构造函数, 利用导数判断出所构造的函数的单调 性,再将x赋值, 利用单调性证明不等式.这也是证明不等式 再将x赋值, 利用单调性证明不等式. 的一种有效方法. 的一种有效方法. 变式探究 4.证明不等式e 1+x. 4.证明不等式ex≥1+x. 证明不等式 提示:构造函数f(x)=ex-1-x,利用导数证明函数f(x)=ex-1- x是增函数,∴ex≥1+x.
答案:[-2,+∞)
高考总复习.文科数学
当x>0时,证明不等式:1+2x<e2x. 证明不等式:1+2x< 思路分析:假设构造函数f(x)=e 2x.∵f(0)=e 思路分析:假设构造函数f(x)=e2x-1-2x.∵f(0)=e0-1-0=0, f(x)= 如果能够证明f(x)在(0, 如果能够证明f(x)在(0,+∞)上是增函数,那么f(x)>0,则 f(x) 上是增函数,那么f(x)> f(x) 不等式就可以得到证明. 不等式就可以得到证明. 证明: f(x)=e 2x. 证明:令f(x)=e2x-1-2x. 1), ∴f′(x)=2e2x-2=2(e2x-1), (x)=2e e0=1, 2(e 1)> (x)>0. ∵x>0,∴e2x>e0=1,∴2(e2x-1)>0, 即f′(x)>0. 2x在(0, 上是增函数. ∴f(x)=e2x-1-2x在(0,+∞)上是增函数. f(x)=e 0=0.∴ f(x)>f(0)=0, ∵f(0)=e0-1-0=0.∴当x>0时,f(x)>f(0)=0, f(0)=e 2x>0.∴1+2x< 即e2x-1-2x>0.∴1+2x<e2x