离散数学试卷及答案3

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

离散数学(本)形考三答案

离散数学(本)形考三答案

形考任务三单项选择题题目1谓词公式(x)(A(x)→B(x)∨C(x,y))中的()。

选择一项:正确答案是:x是约束变元,y都是自由变元题目2表达式的辖域是( ).选择一项:题目3下列公式成立的为( ).选择一项:正确答案是:┐P∧(P∨Q)Q题目4命题公式 (P∨Q)→R的析取范式是 ( ).选择一项:正确答案是:(┐P∧┐Q)∨R题目5设个体域D是整数集合,则命题的真值是().选择一项:正确答案是:T题目6设个体域D={a, b, c},那么谓词公式消去量词后的等值式为( ).选择一项:题目7下列公式 ( )为重言式.选择一项:正确答案是:Q→(P∨(P∧Q))↔Q →P题目8设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().选择一项:题目9命题公式为( )选择一项:正确答案是:可满足式题目10下列等价公式成立的为( ).选择一项:正确答案是:P→(┐Q→P)┐P→(P→Q)判断题题目11命题公式┐(P→Q)的主析取范式是P∨┐Q.( )选择一项:正确的答案是“错”。

题目12设P:他生病了,Q:他出差了,R:我同意他不参加学习.那么命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→┐R.( )选择一项:正确的答案是“错”。

题目13设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( )选择一项:正确的答案是“对”。

题目14命题公式P→(Q∨P)的真值是T.( )选择一项:正确的答案是“对”。

题目15设个体域D={1,2, 3, 4},A(x)为“x大于5”,则谓词公式(∀x)A(x)的真值为T.( )选择一项:正确的答案是“错”。

题目16设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书.那么命题“我们下午2点或者去礼堂看电影或者去教室看书”符号化的结果为P∨Q.( )正确的答案是“错”。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。

A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。

A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。

A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。

A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。

答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。

答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。

答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。

答案:可达10. 命题逻辑中,合取(AND)的符号是______。

答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。

证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。

因此,若p∧q为真,则p和q都为真。

12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。

请找出f的值域。

答案:根据函数的定义,f的值域是其所有输出值的集合。

因此,f的值域为{4,5,6}。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

离散数学期末考试题(附答案和含解析3)

离散数学期末考试题(附答案和含解析3)

A一、单项选择题2.设集合A={1,2,3},下列关系R 中不是等价关系的是( D )A.R={<1,1>,<2,2>,<3,3>}; B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>};C. R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};D. R={<1,1>,<2,2>,<3,3>,<1,2 >}.3.在公式()F (x ,y )→( y )G (x ,y )中变元x 是( B )x ∀∃A .自由变元;(前面无∀或∃量词) B .既是自由变元,又是约束变元;C .约束变元;(前面有∀或∃量词) D .既不是自由变元,又不是约束变元.4.设A={{1,2,3},{4,5},{6,7,8}},下列选项正确的是( C )A .1∈A ;B .{1,2,3}A ;C .{{4,5}}A ;D .∅∈A.⊆⊆5.设论域为{l ,2},与公式等价的是( A ))()(x A x ∃A.A (1)A (2); B. A (1)A (2); C.A (1)∧A (2);D. A (2)A (1).∨→→6.一棵树有5个3度结点,2个2度结点,其它的都是l 度结点,那么这棵树的结点数是( B )A.13;B.14 ;C.16 ;D.17 .//设一度结点数为n,则有:5×3+2×2+n=2[(5+2+n)-1]解得:n=7, 所以这棵树的结点数为:m=5+2+7=14.7.设A 是偶数集合,下列说法正确的是( A )A .<A ,+>是群;B .<A ,×>是群;C .<A ,÷>是群;D .<A ,+>, <A ,×>,<A ,÷>都不是群。

离散数学试卷及答案三

离散数学试卷及答案三

、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列各图是平面图的是()A.IL J D-2•设G是n个顶点的无向简单图,则下列说法不.正确的是)A. 若G是树,则其边数等于n-1B. 若G是欧拉图,则G中必有割边C•若G中有欧拉路,则G是连通图,且有零个或两个奇度数顶点D.若G中任意一对顶点的度数之和大于等于n-1,则G中有汉密尔顿路3•格L是分配格的充要条件是L不含与下面哪一个选项同构的子格()A.链C.五角格B.钻石格D.五角格与钻石格4•设<G,*>是有限循环群,则下列说法不.正确的是()A. <G,*>的生成元是唯一的B. 有限循环群中的运算*适合交换律C. G中存在一元素a,使G中任一元素都由a的幕组成D. 设a是<G,*>的生成元,则对任一正整数i,存在正整数j使a-i=a j5.在实数集合R上,下列定义的运算中是可结合的只有()A.a*b=a+2b C.a*b=a-b+2abB.a*b=a+b-2ab D.a*b=a-b-2ab6.设群G=<A,*>中,A的元素个数大于1,若元素a€ A的逆元素为b € A,则a*b的运算结果是()A.aC.G中零元素B.bD.G中幺元7.非空集合A上的二元关系R若是自反和对称的,则R是()A.偏序关系C.相容关系B.等价关系D.拟序关系8. 下面的图是A= { 1,2,3} 上关系R的关系图G(R),从G(R)可判断R所具有的性质是()1。

A. 自反,对称,传递B. 反自反,非对称C. 反自反,对称,非传递D. 反自反,对称,反对称,传递9. 设A= {1, 2, 3}, B= { a,b},下列二元关系R为A到B的函数的是()A. R= {<1,a>,<2,a>,<3,a> }B. R= {<1,a>,<2,b> }C. R= {<1,a>,<1,b>,<2,a>,<3,a> }D. R= {<1,b>,<2,a>,<3,b>,<1,a> }10. 设$为空集,P(x)是集合x的幕集,下列论断不.正确的是()A. 0 € P( $ ), $ P( $ )B. { $ } € P ( $ ), { $ }U P ($)C. $ € P (P ($ )), $ §P (P ( $ ))D. { $ } € P ( P ( $ )) ,{ $ }0P (P ( $ ))11. 利用谓词的约束变元改名规则和自由变元代入规则,可将如下公式:(-x)(p(x,y) > ( z)Q(x,z)) (-y)R(x,y)改写成( )A. (-z)(p(z,y) > ( y)Q(z,y)) (-s)R(z,s)B. (—z)(p(z,y)—. ( s)Q(x,s)) (-y)R(z,y)C. (-x)(p(x, m)—;( y)Q(x,y)) (-m)R(m,m)D. (-x)(p(y,y) > ( y)Q(x,y)) (_s)R(y,s)12. 设论域为整数集,下列谓词公式中真值为假的是()A. ( F( y)(x y 0)B. ( -x)( y)(x y =1)C. ( y)(—x)(x y =x)D. (-x)(-y)( z)(x -y z)13. 在命题演算中,语句为真为假的一种性质称为()A.真值B.陈述句C. 命题D.谓词14.设P:明天天晴;q:我去爬山;那么“除非明天天晴,否则我不去爬山。

离散数学试题带答案(三)

离散数学试题带答案(三)

离散数学试题带答案一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 22n.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B={4} ; A⋃B={1,2,3,4};A-B={1,2} .7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1•R2 ={(1,3),(2,2),(3,1)} , R2•R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} ,A∩B ={x | 0≤x≤1, x∈R} , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} .14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是∃x(⌝P(x)∨Q(x)) .15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。

离散数学试题总汇及答案

离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3, 4}中,子集{1, 2}的补集是()。

A. {3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}答案:A2. 命题“若x > 0,则x² > 0”的逆否命题是()。

A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x < 0答案:C3. 函数f(x) = x² + 2x + 1的值域是()。

A. {x | x ≥ 0}B. {x | x ≥ 1}C. {x | x ≥ 2}D. {x | x ≥ -1}答案:B4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 有向树D. 无向树答案:B5. 以下哪个图是二分图()。

A. 完全图B. 非完全图C. 任意两个顶点都相连的图D. 任意两个顶点都不相连的图答案:C6. 以下哪个是哈密顿回路()。

A. 经过每个顶点恰好一次的回路B. 经过每个顶点至少一次的回路C. 经过每个顶点恰好两次的回路D. 经过每个顶点至少两次的回路答案:A7. 以下哪个是欧拉回路()。

A. 经过每条边恰好一次的回路B. 经过每条边至少一次的回路C. 经过每条边恰好两次的回路D. 经过每条边至少两次的回路答案:A8. 以下哪个是二进制数()。

A. 1010B. 1020C. 1102D. 1120答案:A9. 以下哪个是格雷码()。

A. 0101B. 1010C. 1100D. 1110答案:B10. 以下哪个是素数()。

A. 4B. 6C. 7D. 8答案:C二、填空题(每题2分,共20分)11. 集合{1, 2, 3}与{2, 3, 4}的交集是______。

答案:{2, 3}12. 命题“若x > 0,则x² > 0”的逆命题是:若x² > 0,则______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空15%(每空3分)
1、设G 为9阶无向图,每个结点度数不是5就是6,则G 中至少有 个5度结点。

2、n 阶完全图,K n 的点数X (K n ) = 。

3、有向图 中从v 1到v 2长度为2的通路有 条。

4、设[R ,+,·]是代数系统,如果①[R ,+]是交换群 ②[R ,·]是半群
③ 则称[R ,+,·]为环。

5、设],,[⊕⊗L 是代数系统,则],,[⊕⊗L 满足幂等律,即对L a ∈∀有 。

二、选择15%(每小题3分)
1、 下面四组数能构成无向简单图的度数列的有( )。

A 、(2,2,2,2,2);
B 、(1,1,2,2,3);
C 、(1,1,2,2,2);
D 、(0,1,3,3,3)。

2、 下图中是哈密顿图的为( )。

3、 如果一个有向图D 是强连通图,则D 是欧拉图,这个命题的真值为( )
A 、真;
B 、假。

4、 下列偏序集( )能构成格。

5、 设}4,41
,3,31
,2,21
,1{=s ,*为普通乘法,则[S ,*]是()。

A 、代数系统; B 、半群; C 、群; D 、都不是。

三、证明 48%
1、(10%)在至少有2个人的人群中,至少有2 个人,他们有相同的朋友数。

2、(8%)若图G 中恰有两个奇数度顶点,则这两个顶点是连通的。

3、(8%)证明在6个结点12条边的连通平面简单图中, 每个面的面数都是3。

4、(10%)证明循环群的同态像必是循环群。

5、(12%)设]1,0,,,,[-+⨯B 是布尔代数,定义运算*为)()(*b a b a b a ⨯+⨯=,
求证[B ,*]是阿贝尔群。

四、计算22%
1、在二叉树中
1) 求带权为2,3,5,7,8的最优二叉树T 。

(5分)
2) 求T 对应的二元前缀码。

(5分)
2、 下图所示带权图中最优投递路线并求出投递路线长度(邮局在D 点)。

一、填空(15%)每空3 分
1、 6;
2、n ;
3、2;
4、+对·分配且·对+分配均成立;
5、a a a a a a =⊕=⊗且。

二、选择(15%)每小题3分
三、证明(48%)
1、(10分)证明:用n 个顶点v 1,…,v n 表示n 个人,构成顶点集V={v 1,…,v n},设,,,|{v )
(u v u V v u uv E ≠∈=是朋友且
无向图G=(V ,E )
现证G 中至少有两个结点度数相同。

事实上,(1)若G 中孤立点个数大于等于2,结论成立。

(2) 若G 中有一个孤立点,则G 中的至少有3个顶点,既不考虑孤立点。

设G 中每个结点度数均大于等于1,又因为G 为简单图所以每个顶点度数都小于等于n-1,由于G 中n 顶点其度数取值只能是1,2,…,n-1,由鸽巢原理,必然至少有两个结点度数是相的。

2、(8分)证:设G 中两个奇数度结点分别为u ,v 。

若 u ,v 不连通则至少有两个连通分支G 1、G 2,使得u ,v 分别属于G 1和G 2。

是G 1与G 2中各含有一个奇数度结点,与握手定理矛盾。

因而u ,v 必连通。

3(8分)证:n=6,m=12 欧拉公式n-m+f=2知 f=2-n+m=2-6-12=8
由图论基本定理知:242)deg(=⨯=∑m F ,而3)deg(≥i F ,所以必有3)deg(=i
F ,即每个面用3条边围成。

4(10分) 证:设循环群[A ,·]的生成元为a ,同态映射为f ,同态像为[f (A ),*],于是A a
a m n ∈∀,都有(*)()(n m n a
f a f a a f =⋅对n=1有)()(a f a f =
n=2, 有22))(()(*)()()(a f a f a f a a f a f ==⋅=
若n=k-1时 有11))(()(--=k k a f a
f 对n=k 时,k k k k k a f a f a f a f a f a a f a f ))(()(*))
(()(*)()()(111===⋅=--- 这表明,f(A)中每一个元素均可表示为n a f ))((,所以[f(A),*]为f(a) 生成的循环群。

5、证:
(1) 交换律:B b a ∈∀, 有 a b a b a b b a b a b a *)()()()(*=⨯+⨯=⨯+⨯= (2)
结合律:B c b a ∈∀,, 有 c
b a
c b a c b a c b a c
b a
c a b c b a c b a c
b b a b b a a a
c b a c b a c
b a b a
c b a c b a c b a b a c b a b a c b a b a c b a ⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯+⨯+⨯+⨯+⨯⨯+⨯⨯=⨯+⨯++⨯⨯+⨯⨯=⨯⨯+⨯+⨯⨯+⨯=⨯+⨯=)())()(()())()(()))()(((*))()((*)*(
而: c b a c b a c b a c b a c
b a
c b a c b c b a c b c b a c b c b a c b c b a c b a ⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯+⨯⨯++⨯+⨯=⨯+⨯⨯+⨯+⨯⨯=⨯+⨯=)()())()((())()(())()((*)*(*
)*(**)*(c b a c b a =∴
(3) 幺:B a ∈∀有
a a a a a a a a a a =+=⨯+⨯==+=⨯+⨯=0)0()0(*00)0()0(0*。

B ,幺元是*][0∴
(4) 逆:B a ∈∀ 000)()(*=+=⨯+⨯=a a a a a a。

a a 的逆元是∴
综上所述:[B ,*]是阿贝尔群。

四、计算(22%)
1、(10分)
(1)(5分)由Huffman方法,得最佳二叉树为:
(2)(5分)最佳前缀码为:000,001,01,10,11 2、(12分)
图中奇数点为E、F ,d(E)=3,d(F)=3,d(E,F)=28 p=EGF 复制道路EG、GF,得图G‘,则G‘是欧拉图。

由D开始找一条欧拉回路:DEGFGEBACBDCFD。

道路长度为:
35+8+20+20+8+40+30+50+19+6+12+10+23=281。

相关文档
最新文档