复变函数的极限word版
1-2复变函数的极限解析

称为z0的 邻域,记作U (z0 , )
复 变 函 数 与
由 0 |z z0 | ( 0) 所
确定的平面点集,称为
• z0
积
分 变
z0的去心 邻域,
换
记为U o(z0 , ).
内点: 对任意z0属于点集E,若存在U(z0 ,δ),
哈
使该邻域内的所有点都属于E,则称z0
立点所构成.
二、简单曲线(或Jardan曲线)
平面上一条连续曲线可表示为:
哈
尔 滨 工 程 大
x x(t)
y
y(t )
( t ),
学 其中x(t)、y(t)是连续的实变函数。
复 变 函
若x '(t)、y'(t) C[a, b]且[x '(t)]2 [ y'(t)]2 0
尔
滨 工
其边界为点集 :{z | | z a | r}
程
大
学 例2 点集 z r1 z z0 r2是一有界区域,
复
变 函 数
其边界由两个圆周 z z0 r1, z z0 r2构成.
与
积
分 变
如果在圆环内去掉若干个点,它仍是区域,
换 但边界有变化,是两个圆周及其若干个孤
尔
滨
工 程
z( ) z( )的简单曲线,称为简单闭曲线,
大 学
或约当闭曲线.
复
变
函
数
与
积
分 变
z( ) z( )
换
简单闭曲线
z( ) z( )
不是简单闭曲线
约当定理(简单闭曲线的性质)
任一条简单闭曲线C:z=z(t), t∈[a,b],
1-4复变函数的极限和连续

x0 (3) 在y=0,x<0的半直线上 arg z0 arccos x0 x 可是 lim arccos arccos(1)
x x0 y 0
(2) argz在z=0点无意义,因此不连续
x2 y2
所以分段定义的二元函数argz在y=0且x<0这些点处不连续 综上所述,argz在出去负实轴和原点的整个复平面上处处 连续。
则称当z 在E 中趋于无穷大 时 于 ,记作
zE , z
f ( z)
趋
lim
f ( z)
14
函数在某点处连续性的判别 基本解法: (1)把函数f(z)化为形式f(z)=u(x,y)+iv(x,y) (2)利用教材24页定理2判别u(x,y)和v(x,y)在点(x0,y0)处是 否连续 若都连续,则f(z)在z0连续 若不连续,则 f(z0)无意义,即u(x0,y0), v(x0,y0)至少一个不存在
2 n
(2) 有理分式函数 P(z) w , 其中 P ( z ) 和 Q( z ) 都是多项式, Q( z ) 在复平面内使分母不为零的点也是连续的.
定理 4 设 f ( z )在有界闭区域 D (或有限长连续曲 线 C ) 上连续,则 f ( z ) 在 D (或 C ) 上有界. 即存在 M 0, 当 z D (或C )时, f ( z ) M .
lim f ( z ) f ( z0 )
z z0
方法2: 当不能判断f(z)在z0点是否连续时, 首先,把f(z)写成f(z)=u(x,y)+iv(x,y)的形式。 然后,利用教材24页定理2,分别求两个函数u(x,y)和 v(x,y)的极限,即
完整word版,《复变函数》重点难点

重点难点第一篇 复变函数论本篇重点:解析函数、复变函数的积分与留数定理.本篇特色:通过一典型环路积分,将各章节有机联系起来,使复变函数理论成为一个系统的有机整体,并加强了各部分内容之间的相互联系.注重培养创新思维、计算机仿真和解决实际问题的能力..第一章复数与复变函数本章重点:复数的基本知识和复变函数区域的基本概念及其判断方法;复变函数连续和极限的概念; 区域概念及其判断;复变函数的极限和连续。
本章难点:涉及到计算机编程实践, 以培养读者的计算机仿真能力. 读者可以利用Matlab ,Mathcad,Mathmatic 等数学工具软件直接进行复数及复变函数的基本运算, 详细参考第四篇:计算机仿真编程实践部分本章知识点摘要:1.复数的概念定义形如i x y +的数为复数,记作i z x y =+.其中x 、y 分别称为复数z 的实部、虚部,记作()Re x z=,()Im y z =,i 称为虚数单位,它满足2i 1=-.与实数不同,两个复数之间一般不能比较大小.2.复数的表示法(1)几何表示:对于复数i z x y =+可以用平面上起点在()0,0O ,终点在(),P x y的矢量(或向量)OP u u u r 表示;(2)代数表示:对于平面上的点(),P x y可用代数形式i z x y =+表示复数,这种表示法称为代数表示,也可称为直角坐标表示;(3)三角表示:当i 0z x y =+≠时,复数可用三角函数()cos isin z r θθ=+形式表示.其中r z ==称为复数z 的模;=Arg arg 2z z k θπ=+(k 取整数)称为z 的辐角.当0k =时,对应于辐角的主值0arg z θ=,在本书中规定为πarg πz -<≤; 3.复数的运算(1)复数满足常规的四则运算规律.(2)若()1111cos isin z r θθ=+,()2222cos isin z r θθ=+,则()()12121212cos isin z z r r θθθθ=+++⎡⎤⎣⎦()20z ≠(3)方根:设()cos isin z r θθ=+,则()()2π2πcos isink k nnθθ++⎤=+⎥⎦ 0,1,2,,1k n =-L关于复数的模和辐角有以下运算公式1212z z z z =;1122z z z z =()20z ≠ ()1212Arg Arg Arg z z z z =+4.区域和平面曲线本章我们给出了系统的有关区域和平面曲线的概念.(1)区域:严格的定义是指同时满足下列两个条件的点集D :(i) 全由内点组成;(ii)具有连通性: 即点集中的任意两点都可以用一条折线连接起来,且折线上的点全都属于该点集;满足这两个条件的点集D 称为区域.连通的开集称为区域,区域与它的边界一起构成的点集称为闭区域.区域可分为有界区域和无界区域,区域还有单连通区域与复连通区域之分.(2)简单曲线:没有重点的连续曲线,称为简单曲线.简单闭曲线: 如果简单曲线的两个端点重合,则称为简单闭曲线.5.复变函数 极限与连续函数()()(),i ,f z u x y x y =+v 的极限等价于两个二元实函数(),u u x y =和(),x y =v v 的极限.函数()()(),i ,f z u x y x y =+v 在点000i z x y =+处的连续性等价于两个二元实函数(),u x y 和(),x y v 在该点的连续性.解题思路:例 研究什么原像通过映射2z =w 后变为相互垂直的直线,, (,0)u a b a b ==>v .【解】 由2222(i )i2z x y x y xy ==+=-+w ,可以视为从xy 平面到u v 平面的映射,即为从z 平面(原像)到w 平面(像)的映射,易得22,2u x y xy =-=v我们具体考察在w 平面的像为相互垂直的直线,原像应该是什么?由题得到22, 2, (,0)u x y a xy b a b =-==>v =即有22,(0)x y a a -=> 显然原像为双曲线,如图1.11(a )实线所示; 即有 2, (0)xy b b =>v = 显然原像为双曲线,如图1.11(a )虚线所示.另外我们还可以进一步观察双曲线对应的变化关系.1.11(a )的双曲线右分支实线上时,由u a =且2xy =v ,得到,2=v .因此双曲线的右分支的像可以表示为参数形式:,2u a ==v()y -∞<<∞很明显,当点(,)x y 沿着右分支实线向上运动时,它的像如图1.11(b )沿直线u a =向上运动.同样,双曲线左分支的像的参数形式表示为, 2u a ==-v )(∞<<-∞y 当左分支上的点沿曲线向下运动时,它的像也沿直线u a=向上运动. 同样地可以分析:另一双曲线0>图1.112xy b = (0)b >映像到直线b =v .变化趋势如图1.11(a),(b)虚线所示,读者可自行分析.重点难点第二章 解析函数重点:复变函数导数的定义、求导法则及可微性概念; 解析函数的概念; 保角映射的概念; 常用的初等解析函数; 解析函数与调和函数的关系 难点:多值函数产生多值性的原因;如何找出支点以及在什么样的区域内多值函数可以划分为单值的解析分支; 从几何意义上描述解析函数的特征. 特色:(Matlab ,Mathcad ,Mathmatic )编程计算简单的复数方程本章知识点摘要:1.复变函数的导数与微分复变函数的导数定义在形式上和一元实函数的导数定义是类似的:()()()limz f z z f z f z z ∆→+∆-'=∆微分的定义和高等数学里面一元实函数的微分定义也相似,而且可导和可微是等价的,d ()()d f z f z z '=.2.解析函数的概念解析函数是复变函数中一个十分重要的概念,它是用复变函数的可导性来定义的,若()f z 在0z 及其一个邻域内处处可导,则称()f z 在0z 解析.函数在某一点可导,在这点未必解析,而在某一点解析,在这点一定可导.函数在一个区域内的可导性和解析性是等价的.3.柯西-黎曼条件方程复函数的解析性除了要求其实部和虚部的可微性外,还要求其实部和虚部满足柯西-黎曼方程(即C-R 方程).函数()i f z u =+v 在区域D 内解析,u ⇔v 在D 内可微,且满足C-R 条件:,x y x yu u ==-v v .4.关于解析函数的求导方法 (1) 利用导数的定义求导数(2) 若已知导数存在,可以利用公式()i i i i x x y y x y y xf z u u u u '=+=-=-=+v v v v求导.5初等复变函数初等复变函数的解析性:初等函数解析性的讨论是以指数函数的解析性为基础的,因此在研究初等解析函数的性质时,都可归结到指数函数来研究.6解析函数与调和函数的关系区域D 内的解析函数()(,)i (,)f z u x y x y =+v 的实部和虚部都是D 内的调和函数.要想使得()i f z u =+v 在区域D 内解析,u 和v 还必须满足C-R 条件. 因此若己知一调和函数,可由它构成某解析函数的实部(或虚部),并可相应地求出该解析函数的虚部(或实部),从而求出该解析函数. 平面稳定场求复势就是其典型应用,也是解析函数物理意义的体现. 解题思路例 已知 等势线的方程为22x y c +=,求复势. 【解】若设22u x y =+,则2, 2 0xx yy xx yy u u u u ==∴+≠,故u 不是调和函数.因而不能构建为复势的实部(或虚部).若令 222,()x y u F ρρ=+=,采用极坐标有0uϕ∂=∂,故把极坐标系中的拉普拉斯方程 22211()0u u u ρρρρρϕ∂∂∂∆=+=∂∂∂简化为1()0uρρρρ∂∂=∂∂,即为112,ln uC u C C ρρρ∂=∴=+∂根据极坐标C-R 条件的得到 113,u C C ρϕϕρ∂∂==∴+∂∂v v =C ,故复势为1213123123()ln i i (ln i )i ln , (i )f z C C C C C C C C z C C C C ρϕρϕ=+++=+++=+=+我们可以总结出,当,u v 具有22()nx y ±+的函数形式时,一般采用极坐标运算较为方便.重点难点第三章 复变函数的积分重点:复变函数积分的概念、性质及计算方法;解析函数积分的基本定理−−柯西积分定理; 推广得到的复合闭路定理,闭路变形定理;由柯西积分定理推导出一个基本公式−−柯西积分公式.难点:理解分别以有界单连通域、有界复连通域、无界区域对柯西积分公式进行的证明;理解复变函数积分理论既是解析函数的应用推广 特色:尝试计算机仿真计算积分的值。
复变函数的极限

x l im x 0 u ( x ,y ) u 0 , x l im x 0 v ( x ,y ) v 0
变
y y 0
y y 0
函
数
与 积
例1 试求下列函数的极限.
分
变 换
1 .lim z 2 .lim z z z z 1
z z 1 i
z 1 z 1
例2 证 明 函 数 f ( z ) z 在 z 0 时 极 限 不 存 在 . z
尔 滨 工
例3
考 察 函 数 w z2
程 大
w u i v ( x i y ) 2 x 2 y 2 2 x y i
学
因 此 w z 2 对 应 u x 2 y 2 , v 2 x y
复
变 函
例 4 将定义在全平面除原点区域上的一对
数
与 积
二元实变函数
分
变 换
ux22xy2,vx2yy2,x2y20
第一章 复数与复变函数
哈
尔 滨
第二讲 复变函数的极限与连续性
工
程
大
学
学习要点
复
变
函
数 与
掌握复变函数的概念
积
分 变
掌握复变函数的极限与连续性
换
一 、 复平面上的点集与区域
哈
尔
邻 域 : 复 平 面 上 以 z0 为 心 , 0 为 半 径 的 圆 :
滨 工 程 大 学
|zz0| (0 ),所 确 定 的 平 面 点 集 , 称 为 z0 的 邻 域 , 记 作 U (z0,)
尔
滨 工
0,0,当0zz0 时恒有
程
大 学
f(z)A
复 则称A为函数f(z)当z趋于z0时的极限,记作
复变函数的极限

6在
时极限不存在.
z 0 0 e +∞ 证 当 沿实轴从 的右方趋向于 时, 1z 趋向了
.当
z 0 0 e 0 z 沿实轴从 的左方趋向于 时, 1z 趋向了 .也就是说 以不同
f (z) 的方式趋于原点时,
趋于了不同的点.由函数极限定义即得
2
结论.
2 复变函数极限定理
定理 2.1 设
f (z)=u(x, y)+iv(x, y), z0 = x0 +i y0,
A= a+ib那么 zl→imz f (z)= A
0
(2.1)
的充要条件是
lim u(x, y)=a 且 lim v(x, y)=b .
( x, y)→( x0 , y0 )
( x, y)→( x0 , y0 )
(2.2)
证明 必要性
因为 zl→imz f (z) = A ε ,所以对 ∀ > 0, ∃ δ (ε ) 0 , 0
定 理 2.6 设 函 数 f (z) 在 z0 可 导 , g(h) 在 h0 = f (z ) g[ 0 处可导,则复合函数 f (z)]在 z0处可导,且
g'[ f (z0)]= g'(h0) f '(z0).
定理 2.7 设 w= f (z), z =ϕ(w)是两个互为反函数
ϕ 的单值函数,且 '(w) ≠ 0,那么
导数.类似地,二阶导数为一阶导数的导数,三阶导数为二阶导数的导
17
(n−1) f (z) n 数,…,一般地,
阶导数的导数称为
的 阶导数,
二阶及二阶以上的导数统称为高阶导数.
18
2.4 解析函数
1 解析函数的概念 2 初等函数的解析性 3 函数解析的充要条件
第一章5复变函数的极限与连续性

复变函数与积分变换第三节复变函数一、区域二、复变函数三、复变函数的极限三、复变函数的连续性1.极限的定义定义:设函数w=f(z)在z0的去心邻域0<z−z0<ρ内有定义,若存在一确定的数A,使得对于任意给定的ε>0,存在δ(ε),0<δ≤ρ,使得当0<z−z0<δ时,有f(z)−A<ε,则称A为f(z)当z→z0时的极限,记作limz→z0f z=A或记作三、复变函数的极限当z→z0时,f(z)→A.3. 极限存在的充要条件定理:设函数f z=u x,y+iv x,y,A=a+ib,z0=x0+iy0,则limz→z0f(z)=A⇔lim(x,y)→(x0,y0)u(x,y)=a,lim(x,y)→(x0,y0)v(x,y)=b说明:这个定理是将复变函数f(z)=u(x,y)+iv(x,y)的极限问题转化为两个二元函数u=u(x,y),v=v(x,y)的极限问题.四、复变函数的连续性若lim z→z 0f z =f z 0,则称函数f z 在点z 0处是连续的.若f z 在区域D 内处处连续,称f z 在D 内连续.1.连续的定义2. 连续的充要条件定理:f(z)=u(x,y)+iv(x,y)在点z 0=x 0+iy 0处连续的充要条件是二元函数u x,y ,v x,y 在x 0,y 0处连续.若lim z→z 0f (z)=f(z 0),z ∈C ,则称f(z)在曲线C 上z 0处连续.例2.讨论函数f(z)=ln(x2+y2)+i(x2−y2)的连续性.二元函数u=ln(x2+y2)在除了(0,0)外处处连续,解:v=x2−y2在复平面上处处连续,故函数f(z)在复平面上除(0,0)外处处连续.定理(1)连续函数的和、差、积、商(分母不为0)是连续函数;(2)连续函数的复合函数是连续函数;(3)f z在有界闭区域D上连续,则f z在D上是有界的;(4)f z在曲线段或包括端点在内的曲线段上连续,则f z在曲线段上有界.谢谢观看!。
复变函数的极限word版

复变函数的极限于秀芝(渤海大学数学系辽宁锦州 121000 中国 )摘要:这是一篇讨论复变函数极限的论文,把我们所熟悉的数学分析中实变函数极限的定义、定理、性质,推广到复变函数中,并加以证明。
但是实变函数极限的定义、定理、性质,并不完全适用于复变函数。
例如:复变函数的极限没有保序性、正性,复变函数没有左、右极限等等。
同时,复变函数极限的定义与数学分析中的二元函数极限的定义相似,故它又具有二元函数的某些性质。
本篇论文由四个方面组成。
首先,我们讨论的是复变函数在某个定点时极限的定义,即描述性极限的定义和表达式极限的定义。
其次,我们讨论的是复变函数极限的定理,如Heine定理、Cauchy 准则、复合函数极限的定理等等,并给出了详细的证明。
再次,我们讨论的是复变函数极限的性质,即唯一性、绝对值的极限、局部有界性、四则运算法则等等,同时,我们也给了详细的证明。
最后,我们讨论的是复变函数在无穷远点的极限。
在这方面,我们将极限从有限的定点逐渐引入到无穷远点,进而给出了函数在无穷远点处极限的定义、运算法则、定理,并给予了相应的应用。
关键词:Heine 定理 Cauchy 准则极限复数列Complex variable function limitYu Xiuzhi(Department of Mathematics Bohai University Liaoning Jinzhou 121000 China) Abstract:This is a discussion about complex variable function limit paper. It promotes the definition, theorem, nature of the real variable function limit to the complex variable function limit and performs to prove it .But the definition, the theorem, the nature of the real variable function limit aren’t completely suitable for the complex variablefunction.For example, complex variable f unction limit doesn’t have order nature,positive nature , and complex variable function doesn’t have left limit and right limit , and so on . Simultaneously,the definition of the complex variable function limit and the definition of the dual function limit of mathematica lanalysis is similar.So it also has some natures of dual function limit.This paper has four aspects.First,We discuss the defination of the complex variable function in some apex time , namely the definition of description limit and the definition of expression limit.Next,we discuss the theorem of the complex variable function limit.For example ,Heine theorem, Cauchy criterion,the theorem of composite function limit,and so on. And it has produced the detailed proof. Once more,we discuss the nature of the complex variable function limit. Namely unique nature , absolute value limit nature ,partially having nature, mathematical operations principle nature ,and so on . At the same time, we have also gave the detailed proof. Finally ,we discuss the complex variable function limit in the infinite point. In this aspect, we gradually introduce the limit from the limited fixed point to the infinite point, and then we have produced the definition and the theorem of limit in the infinite point .And we have gave the corresponding application.Key words : Heine theorem Cauchy criterion Limit Duplicate sequence一、复变函数极限的定义 1.定义定义I :设f 在点0z 的去心邻域内有定义,当z 趋于0z 时 ,()f z 的极限为0w , 或是00lim ()z zf z w →=,指的是()w f z =可以任意接近0w ,只要我们选的点z足够地接近0z ,而不等于它。
复变函数的极限和连续性

如果函数$f(z)$在点$z_0$处连续,则对于任意实数$a$,有$f(z+a)=f(z)+a$,且对于 任意复数$b$,有$f(z+b)=f(z)+b$。
连续性的判定方法
要点一
极限判定法
如果对于复数域内的任意点$z_0$,都有$lim_{z to z_0} f(z)=f(z_0)$,则函数$f(z)$在点$z_0$处连续。
VS
极限法
如果函数在某点的极限存在,且极限值等 于函数值,则该函数在该点可微。
可微性的性质和定理
局部性质
如果复变函数在某点可微,则该函数在该点的导数存在。
链式法则
如果两个复变函数通过乘法或除法组合,且各自在某点可微,则组 合后的函数在该点也可微,且其导数等于各自导数的乘积或商。
参数方程表示
如果复变函数由参数方程表示,且参数方程在某点可微,则该复变函 数在该点也可微。
05
复变函数的应用
在物理中的应用
量子力学
01
复变函数在量子力学中用于描述波函数,通过复数形式表达波
函数的实部和虚部。
电磁学
02
在电磁学中,复数形式的复变函数被用于描述电场和磁场,以
及相关的波动现象。
光学
03
光学中的波动理论使用复变函数来描述光波的传播和性质,如
折射、反射和干涉等现象。
在工程中的应用
04
复变函数的可微性
可微性的定义和性质
定义
如果对于复变函数f(z),其导数f'(z)在某点z0 存在,则称f(z)在z0可微。
性质
复变函数在某点的可微性意味着该函数在该 点有切线,且切线的斜率等于函数的导数值
。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数的极限于秀芝(渤海大学数学系辽宁锦州 121000 中国 )摘要:这是一篇讨论复变函数极限的论文,把我们所熟悉的数学分析中实变函数极限的定义、定理、性质,推广到复变函数中,并加以证明。
但是实变函数极限的定义、定理、性质,并不完全适用于复变函数。
例如:复变函数的极限没有保序性、正性,复变函数没有左、右极限等等。
同时,复变函数极限的定义与数学分析中的二元函数极限的定义相似,故它又具有二元函数的某些性质。
本篇论文由四个方面组成。
首先,我们讨论的是复变函数在某个定点时极限的定义,即描述性极限的定义和表达式极限的定义。
其次,我们讨论的是复变函数极限的定理,如Heine定理、Cauchy 准则、复合函数极限的定理等等,并给出了详细的证明。
再次,我们讨论的是复变函数极限的性质,即唯一性、绝对值的极限、局部有界性、四则运算法则等等,同时,我们也给了详细的证明。
最后,我们讨论的是复变函数在无穷远点的极限。
在这方面,我们将极限从有限的定点逐渐引入到无穷远点,进而给出了函数在无穷远点处极限的定义、运算法则、定理,并给予了相应的应用。
关键词:Heine 定理 Cauchy 准则极限复数列Complex variable function limitYu Xiuzhi(Department of Mathematics Bohai University Liaoning Jinzhou 121000 China) Abstract:This is a discussion about complex variable function limit paper. It promotes the definition, theorem, nature of the real variable function limit to the complex variable function limit and performs to prove it .But the definition, the theorem, the nature of the real variable function limit aren’t completely suitable for the complex variablefunction.For example, complex variable f unction limit doesn’t have order nature,positive nature , and complex variable function doesn’t have left limit and right limit , and so on . Simultaneously,the definition of the complex variable function limit and the definition of the dual function limit of mathematica lanalysis is similar.So it also has some natures of dual function limit.This paper has four aspects.First,We discuss the defination of the complex variable function in some apex time , namely the definition of description limit and the definition of expression limit.Next,we discuss the theorem of the complex variable function limit.For example ,Heine theorem, Cauchy criterion,the theorem of composite function limit,and so on. And it has produced the detailed proof. Once more,we discuss the nature of the complex variable function limit. Namely unique nature , absolute value limit nature ,partially having nature, mathematical operations principle nature ,and so on . At the same time, we have also gave the detailed proof. Finally ,we discuss the complex variable function limit in the infinite point. In this aspect, we gradually introduce the limit from the limited fixed point to the infinite point, and then we have produced the definition and the theorem of limit in the infinite point .And we have gave the corresponding application.Key words : Heine theorem Cauchy criterion Limit Duplicate sequence一、复变函数极限的定义 1.定义定义I :设f 在点0z 的去心邻域内有定义,当z 趋于0z 时 ,()f z 的极限为0w , 或是00lim ()z zf z w →=,指的是()w f z =可以任意接近0w ,只要我们选的点z足够地接近0z ,而不等于它。
定义Ⅱ:00lim ()z zf z w →=,表明对每一个正实数ε,都存在一个正实数δ,使得当:0<0z z |-| <δ时,有|()f z -0()f z |<ε.2.几何意义从几何意义上来说,这个定义指的是:0w 的每一个ε邻域|0|w w -<ε,有0z 的一个去心邻域0<0| z-z |<δ,使得其中的每一个z 的像w 位于0w 的ε邻域中。
|<例如:如果()f z 为常数0w ,那么z 的像,总是整个邻域的中心点,一旦δ被找到,那么它还可以由更小的正实数代替,比如说δ/2。
定义Ⅱ要求f 定义在0z 的去心邻域内,当0z 是()f z 的定义域内的一个内点时,这样的去心邻域当然总是存在的,我们可以通过如下的方式来把极限的定义拓宽到当0z 是边界点的时候,只要让不等式中的z 同时在区域内,而且在去心邻域内。
例1 我们将要证明:如果()f z =2iz 在开圆z ||<1内,那么 1lim ()2z i f z →=。
证明:点1位于f 的定义域的边界上,观察到当在区域1z ||<时,有()2if z |-|= 22iz i|-|= 12z |-|因此,对于这样的z 和任意的正实数ε,我们可以得到,当012z <|-|<ε时 ,有()2if z |-|<ε因此,当δ是等于或者小于2ε的正实数时,在01z <||<中的任意点都满足定义Ⅱ中的条件,如下图所示:如果0z 是f 的定义域的内点,定义I 中的极限存在,定义Ⅱ中的第二个不等式应该对去心邻域00z z <|-|<δ内的所有的点z 都成立。
所以,符号0z z →表示z 允许以任意的方式趋近于0z ,而不是以某一特定的方向趋近于0z 。
下面的例子要强调这一点 。
例2 如果()Zf Z =⎺Z,则极限0lim ()Z f Z →不存在。
证明:<反证法> 如果极限0lim ()Z f Z →存在,则可以使点(,)Z x y =以任意的方式趋于原点,而极限值是唯一的,但是(,0)Z x =是实数轴上的非零点,则此时()10x i f Z x i +==- 且当(0,)Z y =是虚轴上的非零点,则此时0()10iyf Z iy+==--。
于是,让Z 沿实数轴趋于原点时,我们发现极限值为1; 另一方向,让Z 沿虚轴趋于原点时,我们发现极限值为-1。
但是,由复变函数极限值的唯一性知,函数()f z 的极限是不存在的。
(该函数沿实数轴和虚轴趋于原点的图象,为下图所示)二、复变函数的定理定理1 设()f z (,)(,)u x y iv x y =+,000z x iy =+,000w u iv =+,那么00lim ()z zf z w →=,当且仅当00(,)(,)lim (,)x y x y u x y u →=且00(,)(,)lim (,)x y x y v x y v →=。
证明:(充分性)假如00(,)(,)lim (,)x y x y u x y u →=且00(,)(,)lim (,)x y x y v x y v →=成立,那么()f z 的极限存在。
设极限值为000w u iv =+,即 0000lim ()z z f z w u iv →==+。
由00(,)(,)lim (,)x y x y u x y u →=知道,对任意的正实数ε,都存在正实数1δ,使得当10<<δ时,有:02u u ε|-|<(1) 对上述的ε,由000(,)(,)lim(,)x y x y v x y v →=知,存在2δ>0,使得当20<<δ时,有:02v v ε|-|<(2) 令δ取1δ和2δ中较小的数,由00()(u iv u iv |+-+)|= 00)(u u i v v ∣(-+-)∣≤ 0u u |-|+0v v |-|和= 00()()x x i y y ∣-+-∣= ∣00()()x iy x iy +-+∣由(1)(2)所述, 有00()()u iv u iv |+-+| 22εε<+=ε成立,只要0< 00()()x iy x iy |+-+|<δ即可.这就是说,函数()f z 的极限存在。
(必要性)假使函数()f z 的极限存在 ,即 0lim ()z zf z →=0w . 由此,对于每一个正实数ε,都存在一个正实数δ,使得00()()u iv u iv |+-+|< ε (3)成立,只需 0 <00()()x iy x iy |+-+|<δ (4) 但是 0u u |-|≤00)()u u i v v |(-+-|=00()()u iv u iv |+-+|0v v |-|≤00)()u u i v v |(-+-|=00()()u iv u iv |+-+| 并且00()()x iy x iy |+-+|=00()()x x i y y |-+-|=因此,由不等式(3)(4)可知0u u |-|<ε,0v v |-|<ε 成立,只需0<< δ .这样就得到了0(,)(,)lim (,)x y x y u x y → = 0u ,0(,)(,)lim (,)x y x y v x y →=0v .例3 求数列 { n Z }= {1[]2ni +}的极限。