材料力学第2章-拉伸、压缩与剪切

合集下载

材料力学(机械类)第二章 轴向拉伸与压缩

材料力学(机械类)第二章  轴向拉伸与压缩



拉伸压缩与剪切
1
பைடு நூலகம்
§2-1

轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)

2
拉、压的特点:

1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3

§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4

材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。

现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:

N A
F
FN
σ
10
例题2-2
A 1
45°
C
2

材料力学教案 第2章 拉伸、压缩与剪切

材料力学教案 第2章 拉伸、压缩与剪切

第2章拉伸压缩与剪切教学目的:了解材料的力学性质;掌握轴向拉伸、压缩、剪切和挤压的概念;掌握轴向拉压时构件的内力、应力、变形的计算;熟练掌握剪切应力及挤压应力的计算方法并进行强度校核;掌握拉压杆的超静定问题。

教学重点:建立弹性杆件横截面上内力、内力分量的概念;运用截面法画轴力图;掌握低碳钢的力学性质;掌握轴向拉伸和压缩时横截面上正应力计算公式及其适用条件;掌握拉压杆的强度计算;熟练掌握剪切和挤压的实用计算。

教学难点:低碳钢类塑性材料在拉伸过程中反映出的性质;许用应力的确定和使用安全系数的原因;强度计算问题;剪切面和挤压面的确定;剪切和挤压的实用计算;拉压杆超的静定计算。

教具:多媒体。

教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。

举例掌握轴向拉伸、压缩和剪切变形概念,通过例题、作业,加强辅导熟练运用截面法,掌握轴力图的画法;建立变形、弹性变形、应变、胡克定律和抗拉压刚度的概念;教学内容:轴向拉伸和压缩的概念;强度计算;材料的力学性能及应力应变图;许用应力与安全系数;超静定的计算;剪切概念;剪切实用计算;挤压实用计算。

教学学时:8学时。

教学提纲:2.1 轴向拉伸与压缩的概念和实例1.实例(1)液压传动中的活塞杆(2)内燃机的连杆(3)起吊重物用的钢索(4)千斤顶的螺杆(5)桁架的杆件2.概念及简图这些杆件虽然外形各异,受力方式不同,但是它们有共同的特点:(1)受力特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。

(如果两个F 力是一对离开端截面的力,则将使杆发生纵向伸长,这样的力称为轴向拉力; 如果是一对指向端截面的力,则将使杆发生纵向缩短,称为轴向压力)。

(2)变形特点:主要变形是纵向伸长或缩短。

(3)拉(压)杆的受力简图:(4)说明:本章所讲的变形是指受压杆没有被压弯的情况下,不涉及稳定性问题。

2.2 轴向拉伸或压缩时横截面上的内力和应力1.截面法求内力(1)假想沿m-m 横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力(即轴力)的值。

刘鸿文版材料力学第二章

刘鸿文版材料力学第二章
例题2.2
A 1
45°
图示结构,试求杆件AB、CB的 应力。已知 F=20kN;斜杆AB为直 径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B
C
2
FN 1
FN 2 45°
y
B F
F
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
x
∑F ∑F
x y
=0
目录
§2.4 材料拉伸时的力学性能
力学性能:在外力作用下材料在变形和破坏方 面所表现出的力学特性。 一 试 件 和 实 验 条 件
常 温 、 静 载
目录
§2.4 材料拉伸时的力学性能
目录
§2.4 材料拉伸时的力学性能
二 低 碳 钢 的 拉 伸
目录
§2.4 材料拉伸时的力学性能
σ
e
b
σb
f
2、屈服阶段bc(失去抵 抗变形的能力)
目录
FRCy
W
§2.2 轴向拉伸或压缩时横截面上的内力和应力
B d
由三角形ABC求出
0.8m
C 1.9m
α
sin α =
A
Fmax
BC 0.8 = = 0.388 AB 0.82 + 1.92 W 15 = = = 38.7kN sin α 0.388
Fmax
斜杆AB的轴力为
FN = Fmax = 38.7kN
F
a
a′ b′
c
c′ d′
F
b
d
平面假设—变形前原为平面的横截面, 变形后仍保持为平面且仍垂直于轴线。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力

材料力学第二章

材料力学第二章

拉伸和压缩是杆件基本受力与变形形式 中最简单的一种,所涉及的一些基本原理与方 法比较简单,但在材料力学中却有一定的普遍 意义。
承受轴向载荷的拉(压)杆在工程中的应用 非常广泛。
一些机器和结构中所用的各 种紧固螺栓,在紧固时,要对螺 栓施加预紧力,螺栓承受轴向拉 力,将发生伸长变形。
承受轴向载荷的拉(压)杆在工程中的应用 非常广泛。
FN F A A
0 , max p sin cos sin sin 2 45 , max 2
2
A A F F F cos F F F p cos cos A A A p 2 k
一 试 件 和 实 验 条 件
常 温 、 静 载
材料压缩时的力学性能
二 塑 性 材 料 ( 低 碳 钢 ) 的 压 缩
p —
S —
比例极限
e —
弹性极限
屈服极限 E --- 弹性摸量
拉伸与压缩在屈服 阶段以前完全相同。
材料压缩时的力学性能
三 脆 性 材 料 ( 铸 铁 ) 的 压 缩 脆性材料的抗拉与抗压性质不完全 相同 压缩时的强度极限远大于拉伸时的 强度极限 bc bt
观察变形:
横向线ab、cd仍为直线,且仍垂直于杆轴 线,只是分别平行移至a’b’、c’d’。
F
a b
a
b
c
d
c d
F
平面假设—变形前原为平面的横截面, 变形后仍保持为平面且仍垂直于轴线。
直杆轴向拉伸或压缩时横截面上的内力和应力
从平面假设可以判断: (1)所有纵向纤维伸长相等
(2)因材料均匀,故各纤维受力相等 (3)内力均匀分布,各点正应力相等,为常量

2第二章拉伸、压缩与剪切概述

2第二章拉伸、压缩与剪切概述

22
屈服极限的确定方法
σ
b
0.2
o
0.2%
在ε轴上取0.2%的点, 对此点作平行于σ-ε曲线 的直线段的直线(斜率亦为 E),与σ-ε曲线相交点对 应的应力即为σ0.2 .
ε
σb是衡量脆性材料强度的唯一指标。
材料力学 土木工程系 陈爱萍
23
§2.5 材料压缩时的力学性能
国家标准规定《金属压缩试验方法》(GB7314—87)
材料力学 土木工程系 陈爱萍
28
§2.7 失效、 安全因数和强度计算
一、极限应力、安全系数、许用应力
材料破坏时的应力称为极限应力。 由于各种原理使结构丧失其正常工作能力的现象,称为失效

jx


s b
塑性材料 脆性材料
构件工作时允许达到的最大应力值称许用应力
jx
n
材料力学 土木工程系 陈爱萍
(3) 必须是等截面直杆,否则横截面上应力将不是均匀 分布,当截面变化较缓慢时,可近似用该公式计算。
材料力学 土木工程系 陈爱萍
12
§2.3 直杆拉伸或压缩时斜截面上的应力
F
FF


p cos
FN A
cos cos2


p
sin
cos sin
1 sin 2
材料力学 土木工程系 陈爱萍
37
求解超静定问题的基本步骤:
(1)平衡方程; (2)几何方程——变形协调方程; (3)物理方程——弹性定律; (4)补充方程:由几何方程和物理方程得; (5)解由平衡方程和补充方程组成的方程组。
材料力学 土木工程系 陈爱萍
38

材料力学-第二章 拉压与剪切

材料力学-第二章 拉压与剪切

班级 学号 姓名1 试求图示杆件1-1、2-2、3-3横截面上的轴力,并作轴力图。

2、油缸盖与缸体采用6个螺栓连接,如图示。

已知油缸内径D=350mm ,油压p=1MPa 。

若螺栓材料许用应力[ ]=40MPa ,求螺栓的内径。

题1图140 kN 30 kN20 kN122 33班级 学号 姓名3 图示木制桁架受水平力P 作用。

已知P=80kN[][]MPa MPa 10,8==压拉σσ,试设计AB 、AD 两杆的横截面积。

4 图示结构,杆1、2的横截面均为圆形,直径分别为d 1=30mm , d 2=20mm 。

两杆材料相同,许用应力[σ]=160MPa ,在节点A 处受铅直力P=80kN 。

试校核结构的强度。

A B C D P60° 60° 30° 30°BC A P 12 30° 45°班级学号 姓名5、某铣床工作台进给油缸如图示,缸内油压p=2MPa ,油缸内径D=75mm ,活塞杆直径 d=18mm 。

已知活塞材料的许用应力[σ]=50MPa ,试校核活塞杆的强度。

6、简易吊车如图所示。

AB 为木杆,横截面积 21cm 100=A ,许用压应力[]MPa 71=σ。

BC 为钢杆,横截面积22cm 6=A ,许用拉应力[]MPa 1602=σ。

试求许可吊重F 。

F30°AB C木杆 钢杆第二章 拉伸、压缩和剪切班级 学号 姓名7、 图示拉杆沿斜截面m -m 由两部分胶合而成。

设在胶合面上许用拉应力[]MPa 100=σ,许用切应力[]MPa 50=τ,并设胶合面的强度控制杆件的拉力。

试问:为使杆件承受最大拉力F ,α角的值应为多少?若杆件横截面面积为4cm 2,并规定α≤60°,试确定许可载荷F 。

8、变截面杆如图所示。

已知:21cm 8=A ,22cm 4=A , GPa 200=E 。

试求杆的总伸长l ∆。

材料力学综合题

材料力学综合题

题1 如图所示受扭圆轴,正确的扭矩图为图( )
题2 等截面圆轴上装有四个皮带轮,则 四种方案中最合理方案为( )。 (A)将C轮与D轮对调; (B)将B轮与D轮对调; (C)将B轮与C轮对调; (D)将B轮与D轮对调,然后再将B轮与C 轮对调。
题30图
题3 扭转切应力公式适用于哪种杆件?( )。
题5 图示四根受拉杆危险横截面的面积相同, 首先破坏的杆件为

题6 两根钢制拉杆受力如图,若杆长L2=2L 1,横截面面积A2=2A1,则两杆的伸长Δ L和纵向线应变ε之间的关系应为( )。 (A) ΔL2=ΔL1,ε2=ε1 (B) ΔL2=2ΔL1,ε2=ε1 (C) ΔL2=2ΔL1,ε2=2ε1 (D) ΔL2=ΔL1/2,ε2=2ε1/2
第一章 绪 论
答案:1 强度要求,刚度要求,稳定性 要求。 2 拉伸或压缩,剪切,扭转, 弯曲。
1 为了保证工程结构或机械的正常工作, 构件应有足够的能力负担起应当承受的 载荷。因此,它应当满足以下要求:

2 杆件变形的基本形式有以下几种:


第二章 拉伸与压缩
答案 1-7 ABCDD BD
题1 下列构件中哪些属于轴向拉伸 或压缩? (A)(a)、(b); (B) (b)、(c);
题5 图示(a)、(b)两根梁,它们的( )。 (A) Q、M图都相同 (B) Q、M图都不相同 (C) Q图相同,M图不同 (D) M图相同,Q图不同
题6 梁的某一段内作用有均匀分布力时,则 该段内的内力图为( )。 (A) Q水平线,M斜直线 (B) Q斜直线,M曲线 (C) Q曲线,M曲线 (D) Q斜直线,M带拐点的曲线
(A)矩形截面 (B)任意实心截面 (C)任意材料的圆截面 (D)线弹性材料的圆截面

材料力学 第2章轴向拉伸与压缩

材料力学 第2章轴向拉伸与压缩
15mm×15mm的方截面杆。
A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB

FN 1 A1

28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC

FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 拉伸、压缩与剪切
1、轴向拉伸与压缩概念:作用于杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。

2、直杆轴向拉伸或压缩时横截面上的内力与应力
内力:把拉伸时的轴力(轴力背向截面)为正,压缩时轴力(轴力指向截面)为负。

应力:平面假设(变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。

)规定:拉应力为正,压应力为负。

A
F A dA F N A N =
⇒==⎰σσσ 式中N F 为轴力,A 为横截面面积,σ为正应力。

3、直杆轴向拉伸或压缩时斜截面上的应力
ασσα2cos = αστα2sin 2
= 式中ασ和ατ分别为斜截面的正应力和切应力,σ为横截面的正应力,α为斜截面与横截面的夹角。

4、材料拉伸时的力学性能 应变:l
l ∆=ε l ∆为伸长量,l 为原始长度。

(1)弹性阶段:应力σ与应变ε成正比,即εσE =。

其中E 为与材料有关的比例常数,为弹性模量。

直线部分的最高点a 所对应的应力p σ为比例极限。

b 点所对应的应力e σ为弹性极限。

(2)屈服阶段:通常把下屈服极限称为屈服极限或屈服点,用s σ表示。

其是衡量材料强
度的重要指标。

(3)强化阶段:强化阶段中的最高点e 所对应的应力b σ是材料能承受的最大应力,称为
强度极限。

其是衡量材料强度的另一重要指标。

(4)局部变形阶段:某一局部的横向尺寸急剧缩小,形成缩颈现象。

伸长率:%1001⨯-=
l
l l δ 塑性材料:%5>δ 脆性材料:%5<δ 断面收缩率:%1001⨯-=A A A ψ A 为原始横截面积,1A 为最小横截面积 5、材料压缩时的力学性能
低碳钢压缩时的弹性模量E 和屈服极限s σ与拉伸时相同。

但是得不到强度极限。

铸铁的抗
压强度极限比抗拉极限高5~4倍。

6、失效、安全因数和强度计算
脆性材料断裂时的应力是强度极限b σ,塑性材料屈服时的应力是屈服极限s σ,这二者是
构件失效时的极限应力。

塑性材料:[]s s
n σσ= 脆性材料:[]b b n σσ=
式中,大于1的因数s n 或b n 称为安全因数。

构件轴向拉伸或压缩时的强度条件为[]σσ≤=
A F N 7、轴向拉伸或压缩时的变形 轴向线应变l l ∆=
ε 横截面应力A
F A F N ==σ 应力与应变εσE = 综合上式得:EA Fl EA l F l N ==∆ 其中EA 称为杆件的抗拉(抗压)刚度。

泊松比:当应力不超过比例极限时,横向应变'ε与轴向应变ε之比的绝对值是一个常数,即με
ε=' μ即为横向变形因数或泊松比。

8、剪切与挤压的实用计算 剪切时的切应力:A F s =τ 强度条件:[]ττ≤=A
F s 挤压时的挤压应力:bs bs A F =
σ 强度条件:[]bs bs bs A F σσ≤=。

相关文档
最新文档