精品解析:福建省莆田第二十五中学2023-2024学年八年级上学期月考(二)语文试题(原卷版)
福建省莆田第二十五中学2023-2024学年七年级上册月考(二)数学试题(含解析)

16.一轮船往返于甲、乙两码头之间,顺水航行需要19.某学校为表彰在“庆祝党的十九大胜利召开”主题绘画比赛中表现突出的同学,购买了(1)如图1,若点C 在线段上,且,当P 为(2)如图2,若M 为线段的中点,N 为线段的中点.求线段AB 12AC BC =AC AP BQ【分析】设每支水彩笔的价格是x 元,则每本笔记本的价格为(x+6)元,根据总价=单价×购买数量,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每支水彩笔的价格为x 元.由题意,得,解得,答:每支水彩笔的价格为16元【点睛】考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.乙工程队参与铺设14天才能完成这项工程.【分析】本题考查的是一元一次方程的应用,设乙工程队参与铺设天才能完成这项工程,由各部分的工作量之和等于工作总量可得方程,再解方程即可,确定相等关系建立方程是解本题的关键.【详解】解:设乙工程队参与铺设天才能完成这项工程,则,解得:;答:乙工程队参与铺设14天才能完成这项工程.21.(1),(2)参赛者答错了3道题(3)不可能,理由见解析【分析】本题考查了一元一次方程的实际运用,解答时抓住“答对题所得分答错题所扣分总得分”是关键.(1)先由选手算出答对一题所得分数,再由选手算出答错一题扣分即可;(2)设答对了道题,答错了道题,根据题意构造方程,解方程即可;(3)设答对了道题,答错了道题,根据“答对的得分答错的得分分”列方程即可求解.【详解】(1)解:由题意得:答对一题的得分是:(分),答错一题的得分是:(分),故答案为:,;(2)设参赛者答对了道题,答错了道题,由题意得:参赛者答错了3道题;()304061360x x ++=16x =x x ()72002001506300x ⨯++=14x =51-F -=A B x ()20x -y ()20y -+75=100205÷=941951-⨯=-51-F x ()20x -()52082x x --=52082x x -+=6102x =17x =20173-=∴F。
2024-2025学年福建省莆田第二十五中学八年级上学期第一次月考语文试题

2024-2025学年福建省莆田第二十五中学八年级上学期第一次月考语文试题1. 根据提示默写。
(1)道者,文之根本;文者,道之枝叶。
吴均的《与朱元思书》中,“鸢飞戾天者,望峰息心;①________,②________”,借景抒情,表达作者淡泊名利之心。
(2)陶弘景的《答谢中书书》中,“自康乐以来,③________”传达出作者内心的丝丝惋惜和些许自许。
(3)诗者,融情于景,吟咏性情也。
景以抒怀,《黄鹤楼》中抒发游子思乡之情的句子④“________?⑤________”。
(4)《野望》中引用典故,追古怀伤,表现诗人孤独寂寥心情的诗句是:⑥“相顾无相识,________。
”(5)《三峡》中,作者用奔马和御风作比较,体现出夏季三峡水流迅猛急速的句子是:⑦____________,⑧____________。
阅读下面的文字,按要求作答。
星空浩瀚无比,探索永无止境。
一代又一代中国航天人攻坚克难,征战星空,把中国的足迹留在辽阔苍穹。
中国航天人的奉献与担当,始于热血,终于爱国,恒于信仰。
他们始终把使命míng记心间,扛在肩上,唯独把荣誉和光环归于祖国,献给民族。
他们是中华民族的脊梁,他们的名字将永远juān刻在共和国历史的丰碑上。
2. 根据拼音用正楷写出相应的汉字。
míng _____记心间juān _____刻在共和国历史的丰碑上3.文中划线句有语病,请写出正确的句子。
4. 下列句子组成语段顺序排列正确的一项是()①天真的人,才会无穷无尽地追问关于这个世界的道理。
②“成熟的人”永远在告诉你:存在的就是合理的,而合理的就是不必追究的,不变的。
③大学要造就的,正是达尔文的天真,爱因斯坦的天真,黑格尔的天真,顾准的天真④我相信大学精神的本质,并不是为了让我们变得深奥,而恰恰是恢复人类的天真。
⑤也就是那些“成熟的人”不屑一顾的“呆子气”。
A.②④③①⑤B.④①③⑤②C.②⑤④①③D.④③①⑤②阅读下面古诗,完成问题。
2023-2024学年福建省莆田市城厢区八年级上学期12月份月考数学试卷及参考答案

2023-2024学年福建省莆田市城厢区八年级上学期月考数学试卷(12月份)一、单选题 1.2019年6月全国开始实行生活垃圾分类,下列四个图标分别为可回收垃圾、厨余垃圾、湿垃圾和有害垃圾,属于轴对称图形的是( )A .B .C .D .2.下列图形具有稳定性的是( )A .三角形B .正方形C .六边形D .任意多边形3.下列计算结果为5a 的是( )A .23a a ⋅B .23a a +C .()23aD .153a a ÷4.如图,两个三角形为全等三角形,则α∠的度数是( )A .50°B .63°C .67°D .87°第4题 第七题5.运用乘法公式222()2a b a ab b +=++计算2(2)x +,则公式中的2ab 是( )A .4B .xC .2xD .4x6.下列多项式中,能分解出因式m+1的是( )A .m 2﹣2m+1B .m 2+1C .m 2+mD .(m+1)2+2(m+1)+17.如图,点D 为△ABC 的边BC 上一点,且满足AD =DC ,作BE ⊥AD 于点E ,若∠BAC =70°,∠C =40°,AB =6,则BE 的长为( )A .2B .3C .4D .58.如图,在边长为2a 的正方形中央剪去一边长为()2+a 的小正方形()2a >,将剩余部分前开,密铺成一个平行四边形,则该平行四边形的面积为( )A.2−−D.2a aa a++344344 34a−B.224+C.2a a9.已知a2+a-5=0,代数式(a2+5)(a+1)的值是()A.4B.-5C.5D.-4A.①③④B.②③④C.①②③D.①②④二、填空题ABC BAD≌.(要求不再添加任何线段)14.a2-b2=10,a+b=2,则AB DE.求证:ABC DEF≌.22.(1)如图1,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是________;若将图1中的阴影部分裁剪下来,重新拼成如图2的一个长方形,则它的长为________;宽为________;面积为________.(2)由(1)可以得到一个公式:________.(3)利用你得到的公式计算:2−⨯.20222024202023.如图,AD是△ABC的角平分线,DE⊥AB于点E.(1)用尺规完成以下基本作图:过点D作DF⊥AC于点F,连接EF交AD于点G.(不写作法,保留作图痕迹)(2)在(1)中所作的图形中,求证:AD⊥EF.参考答案:1-5 ,BAACD 6-10 CBCBD10.D解:∵B(0,1), C(0,-1),∴BO=CO=1∵OD⊥BC,∴OD是BC的垂直平分线,∴DB = DC,∴∠BDC =2∠BDO,∵∠BAC = 2∠BDO∴∠BAC = ∠BDC,∵∠ANB = ∠CND,∴∠ABD = ∠ACD,故①正确,过D作DF⊥BE于F,如图:∵BD = CD,∠ABD = ∠ACD,∠CMD = ∠BFD = 90°∴△BDF≌△CDM (AAS),∴DM = DF,∴AD是∠CAE的角平分线,故②正确,③∵∠AND = ∠ABD+∠BAC,∠BAC =∠BDC,∴∠AND = ∠ABD+∠BDC,∵∠DAE = ∠ABD + ∠ADB,∠DAE = ∠DAN,∴∠DAN = ∠ABD+∠ADB,∵∠ADB ≠ ∠BDC,∴∠AND≠∠DAN,∴AD≠ND,故③不正确;∵DM = DF AD = AD,∴Rt△AMD≌Rt△AFD(HL),解:aAB DE ,EDF ∠,在ABC 和DEF 中,B E A EDF AC DF ∠=∠∠=∠=,∴(AAS ABC DEF ≌21.(1)解:由题意,8,2122a b ==−,解得,,64a b ==−,(2)由题意,得()()220222022220222=−+−()22202220224=−−22202220224=−+4=.23.(1)解:如图所示,(2)证明:∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC , ∴DE =DF ,在Rt △ADE 和Rt △ADF 中,AD AD DE DF =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADF (HL ),∴AE =AF ,而DE =DF ,∴AD 垂直平分EF ,即AD ⊥EF24(1)解:∵()2261031x x x −+=−+, ∴根据题意,多项式2610x x −+关于3x =对偶;故答案为:3x =(2)解:()2222x bx c x b b c ++=+−+.依题意,得m b +与6m b −+互为相反数,即()()60m b m b ++−+= ∴3b =−;(3)()()()()22228164442x x x x x x ++−+=+− ()()()2224219x x x ⎡⎤⎡⎤=+−=+−⎣⎦⎣⎦。
精品解析:福建省莆田第二十五中学2023-2024学年九年级下学期第一次月考数学试题(解析版)

莆田第二十五中学2023-2024学年下学期月考一试卷九年数学一、选择题(本题共10小题,共40分)1. 的倒数是( )A. B. C. D. 【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】解:∵,∴倒数是.故选C2. 芝麻被称为“八谷之冠”,是世界上最古老的油料作物之一,它作为食物和药物,得到广泛的使用.经测算,一粒芝麻的质量约为0.00000201kg ,将0.00000201用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】将0.00000201表示成的形式,其中,,进而可得结果.【详解】解:将0.00000201表示成的形式,其中,为负整数∵ ,∴0.00000201表示成故选C .【点睛】本题考查了科学记数法.解题的关键在于求出的值.3. 已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A. a >2B. a <2C. a <2且a≠1D. a <-2【答案】C【解析】【分析】当△=b 2-4ac>0时,方程有两个不相等的实数根;当△=b 2-4ac=0时,方程有两个相等的实数的3-31313-3-1313⎛⎫-⨯-= ⎪⎝⎭3-13-82.0110-⨯70.20110-⨯62.0110-⨯520.110-⨯10n a ⨯ 2.01a =6n =-10n a ⨯110a ≤<n 2.01a =6n =-62.0110-⨯,a n根;当△=b 2-4ac<0时,方程没有实数根.【详解】解:Δ=4−4(a−1)=8−4a >0,得a <2.又a−1≠0,所以a <2且a≠1.故选:C .【点睛】本题考查函数的零点以及方程根的关系,是基础题.4. 用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x 的方程为( )A. B. C. D. 【答案】B【解析】【分析】一边长为x 米,则另外一边长为:5-x ,根据它的面积为6平方米,即可列出方程式.【详解】解:一边长为x 米,则另外一边长为:5-x ,由题意得:x (5-x )=6,故选:B .【点睛】本题考查了由实际问题抽相出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.5. 不等式组的解集是( )A. x ≥-2B. -2<x <3C. x >3D. -2≤x <3【答案】D【解析】【分析】先求出每个不等式的解集,然后取公共部分,即可得到不等式组的解集.【详解】解:∵,∴解不等式①,得,解不等式②,得,∴不等式组的解集为;故选:D【点睛】本题考查了解不等式组,解题的关键是熟练掌握解不等式的步骤,从而进行解题.()56x x +=()56x x -=()106x x -=()1026x x -=2124x x -<⎧⎨-≤⎩2124x x -<⎧⎨-≤⎩①②3x <2x ≥-23x -≤<6. 袋子里有三枚除颜色外都相同的棋子,其中有两枚是红色的,一枚是绿色的.从中随机同时摸出两枚,则摸出的两枚棋子颜色相同的概率是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了利用列举法求概率,正确画出树状图是解题关键.先画出树状图,从而可得从中随机同时摸出两枚棋子的所有等可能的结果,再求出摸出的两枚棋子颜色相同的结果,然后利用概率公式求解即可得.【详解】解:由题意,画出树状图如下:由图可知,从中随机同时摸出两枚棋子的所有等可能的结果共有6种,其中,摸出的两枚棋子颜色相同的结果有2种,则摸出的两枚棋子颜色相同的概率为,故选:D .7. 若等腰三角形有一个内角为,则这个等腰三角形的底角是( )A. B. C. D. 【答案】C【解析】【分析】先判断出的内角是这个等腰三角形的顶角,再根据等腰三角形的定义求解即可得.【详解】解:等腰三角形有一个内角,∴这个等腰三角形的底角是,故选:C .【点睛】本题考查了等腰三角形的定义,三角形内角和定理,解题的关键是熟练掌握等腰三角形的两个底角相等.为141223132163P ==110︒70︒45︒35︒50︒110︒ 110︒180110352︒-︒=︒8. 已知二次函数()的图象如图所示,对称轴是直线,下列结论:①abc <0;②2a+b=0;③a ﹣b+c >0;④4a ﹣2b+c <0其中正确的是( )A. ①②B. 只有①C. ③④D. ①④【答案】D【解析】【详解】试题分析:∵抛物线的开口向上,∴a >0,∵,∴b >0,∵抛物线与y 轴交于负半轴,∴c <0,∴abc <0,①正确;∵对称轴为直线,∴,即2a ﹣b=0,②错误;∴时,y <0,∴a ﹣b+c <0,③错误;∴x=﹣2时,y <0,∴4a ﹣2b+c <0,④正确;故选D .考点:二次函数图象与系数的关系.9. 在同一直角坐标系中,一次函数和二次函数的图象大致为( )A. B. C. D.【答案】B【解析】【分析】本题考查二次函数的图象、一次函数的图象,根据各个选项中的图象,可以判断出一次函数和二次函数中a 、c 的正负情况,即可判断哪个选项是正确的,解答本题的关键是明确一次函数和二次函数的性质,利用数形结合的思想解答.【详解】解:A 、一次函数中,,二次函数中,,故选项不2y ax bx c =++0a ≠=1x -02b a -<=1x -12b a-=-=1x -y ax c =+2y ax c =+y ax c =+0a >0c >2y ax c =+a<00c >符合题意;B 、一次函数中,,二次函数中,,故选项符合题意;C 、一次函数中,,二次函数中,,故选项不符合题意;D 、一次函数中,,二次函数中,,故选项不符合题意;故选:B .10. 如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(–1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,–2),……,按这样的运动规律,动点P 第2018次运动到点A. (2018,0)B. (2017,0)C. (2018,1)D. (2017,–2)【答案】B【解析】【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2018除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解: ∵2018÷4=504余2,∴第2014次运动为第505循环组的第2次运动,横坐标为504×4+2-1=2017,纵坐标为0,∴点的坐标为(2017,0).故选B .【点睛】本题是对点的坐标变化规律的考查,观察出每4次运动为一个循环组循环是解题的关键,也是本题的难点.二、填空题(本题共6小题,共24分)11.________【解析】【分析】根据算术平方根的定义,即可得到答案.y ax c =+a<00c >2y ax c =+a<00c >y ax c =+a<00c <2y ax c =+0a >0c <y ax c =+a<00c >2y ax c =+0a >0c <,【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.12. 函数x 的取值范围是_________.【答案】【解析】【分析】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.【详解】解:根据题意得:,解得.故答案为:.13. 如图,是二次函数图象的一部分,其对称轴为直线,若其与x 轴一交点为,要使,则x 满足的条件是______.【答案】【解析】【分析】先根据对称性求出二次函数与x 轴的另一个交点,再根据图象法求解即可.【详解】解:∵二次函数的对称轴为直线,其与x 轴一交点为,∴二次函数与x 轴的另一个交点为,∴由函数图象可知,当时,,∴要使,则x 满足的条件是,3=y =2x >-20x +>2x >-2x >-2y ax bx c =++1x =()30A ,0y <13x -<<2y ax bx c =++1x =()30A ,()10-,13x -<<20y ax bx c =++<0y <13x -<<故答案为:.【点睛】本题主要考查了二次函数图象的性质,正确根据对称性求出二次函数与x 轴的另一个交点是解题的关键.14. 在平面直角坐标系中,若点与点关于原点对称,则的值是___________.【答案】1【解析】【分析】根据关于原点对称的两个点,横、纵坐标互为相反数,进行解答即可.【详解】解:∵点与点关于原点对称,∴.故答案为:1.【点睛】本题主要考查了关于原点对称的两个点的坐标特点,解题的关键是熟练掌握关于原点对称的两个点,横、纵坐标互为相反数.15. 如图,在中,,点D 是的中点,过点D 作,垂足为点E ,连接,若,,则________.【答案】3【解析】【分析】根据直角三角形的性质得到AB =10,利用勾股定理求出AC ,再说明DE ∥AC ,得到,即可求出DE .【详解】解:∵∠ACB =90°,点D 为AB 中点,∴AB =2CD =10,∵BC =8,∴AC=6,∵DE ⊥BC ,AC ⊥BC ,∴DE ∥AC ,13x -<<()2,1P -()2,Q m -m ()2,1P -()2,Q m -1m =Rt ABC 90ACB ∠=︒AB DE BC ⊥CD 5CD =8BC =DE =12DE BD AC AB ==∴,即,∴DE =3,故答案为:3.【点睛】本题考查了直角三角形的性质,勾股定理,平行线分线段成比例,解题的关键是通过平行得到比例式.16. 如图,已知点,,,,,……在轴正半轴上,分别以,,,,……为边在第一象限作等边,等边,等边,……,且点,,,,……在反比例函数上,且,则点的坐标为______.【答案】【解析】【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出、、的坐标,得出规律,进而求出点的坐标.【详解】解:如图,作轴于点,设,则,,.点在反比例函数上,解得,或(舍去),点的坐标为;12DE BD AC AB ==162DE BD AB ==1A 2A 3A 4A 5A x 1OA 12A A 23A A 34A A 11OA B 122A A B 233A A B △1B 2B 3B 4B )0y x =>12OB =2023A ()2A 3A 4A 2023A 2B C x ⊥C 1A C a =2B C =112OC OA A C a =+=+2(2)B a + 2B 0)y x =>(2)a ∴+=1a =-1a =-211222OA OA A C ∴=+=+-=∴2A 0)作轴于点,设,则,,.点在反比例函数上,,解得,点的坐标为;同理可得点的坐标为,即;以此类推,点的坐标为,,点的坐标为.故答案为.【点睛】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出、、的坐标进而得出点的规律是解题的关键.三、解答题(本题共9小题,共86分)17. 计算:.【答案】【解析】【分析】本题主要考查了含乘方的有理数混合计算,按照先计算乘方,再计算乘除法,最后计算加减法,3B D x ⊥D 2A D b =3B D =22OD OA A D b =+=+3B b +) 3B 0)y x =>)b ∴+=b =b =3222OA OA A D ∴=+=+-=∴3A 0)4A 0)(4,0)⋯∴n A 0)∴2023A 0)0)2A 3A 4A n A ()()2132762⎛⎫-÷--+⨯-⎡⎤ ⎪⎣⎦⎝⎭2-有括号先计算括号的运算顺序求解即可.【详解】解:.18. 先化简,再求值:,其中.【答案】,2【解析】【分析】本题考查了分式的乘法、除法法则和求值.能正确根据分式的乘除法法则进行化简是解题的关键.先利用分式的除法法则将原式变形,再利用分式的乘法法则进行化简,最后把m 的值代入计算即可.【详解】∵∴原式.19. 如图,将一张长方形纸片沿折叠,使两点重合.点落点处.已知,.(1)求证:是等腰三角形;(2)求线段的长.在()()2132762⎛⎫⎡⎤-÷--+⨯- ⎪⎣⎦⎝⎭()192762⎛⎫=÷++⨯- ⎪⎝⎭()993=÷+-()13=+-2=-22121124m m m m -+⎛⎫+÷ ⎪--⎝⎭4m =21m m +-22121124m m m m -+⎛⎫+÷ ⎪--⎝⎭()()()21212222m m m m m m --⎛⎫=+÷ ⎪--+-⎝⎭()()()222121m m m m m +--=⋅--21m m +=-4m =2422141m m ++===--ABCD E ,C A D G =4AB 8BC =AEF ∆FD【答案】(1)见解析;(2)3【解析】【分析】(1)根据矩形的性质可得,则,因为折叠,,即可得证;(2)设用含的代数式表示,由折叠,,再用勾股定理求解即可【详解】(1)四边形是矩形因为折叠,则是等腰三角形(2)四边形是矩形,设,则因为折叠,则,,在中即解得:【点睛】本题考查了矩形的性质,等腰三角形的判定定理,图像的折叠,勾股定理,熟悉以上知识点是解题的关键.20. 如图,在平面直角坐标系中,O 为坐标原点.已知反比例函数y=(k 0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为5.//AD BC FEC AFE ∠=∠FEC AEF ∠=∠FD x =x AF AG DC = ABCD ∴//AD BC∴FEC AFE∠=∠FEC AEF∠=∠AEF AFE∴∠=∠∴AEF ∆ ABCD 8,4AD BC CD AB ∴====90D Ð=°FD x =8AF AD x x=-=-FG x =4AG CD ==90G D ∠=∠=︒Rt AGF △222FG AF AG =-222(8)4x x =--3x =∴3FD =k x>(1)求k 和m 的值;(2)当x≥8时,求函数值y 的取值范围.【答案】(1) ;(2)【解析】【分析】(1)根据三角形的面积公式先得到m 的值,然后把点A 的坐标代入y=,可求出k 的值;(2)求出x=8时,y 的值,再根据反比例函数的性质求解.【详解】解:(1)∵A (2,m ),∴OB=2,AB=m ,∴S △AOB =•OB•AB=×2×m=5,∴m=5,∴点A 的坐标为(2,5),把A (2,5)代入y=,得k=10;(2)由(1)得反比例函数解析式为:y=∵当x=8时,y=,又∵反比例函数y=在x >0时,y 随x 的增大而减小,∴当x≥8时,y 的取值范围为0<y≤.【点睛】本题考查了反比例函数图象上点的坐标特征,点在图象上,点的横纵坐标满足图象的解析式;也考查了反比例函数的性质,三角形的面积公式以及代数式的变形能力.21. 为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按的比例计算出每人的总评成绩.10,5k m ==504y <≤k x 1212k x10x 5410x54442∶∶小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图测试成绩/分选手采访写作摄影总评成绩/分小悦83728078小涵8684▲▲(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分;(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.【答案】(1)69,69,70(2)82分 (3)小涵能入选,小悦不一定能入选,见解析【解析】【分析】(1)从小到大排序,找出中位数、众数即可,算出平均数.(2)将采访、写作、摄影三项测试成绩按的比例计算出的总评成绩即可.(3)小涵和小悦的总评成绩分别是82分,78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.【小问1详解】的442∶∶从小到大排序,67,68,69,69,71,72, 74,∴中位数是69,众数是69,平均数:69,69,70【小问2详解】解:(分).答:小涵的总评成绩为82分.【小问3详解】结论:小涵能入选,小悦不一定能入选理由:由频数直方图可得,总评成绩不低于80分的学生有10名,总评成绩不低于70分且小宁80分的学生有6名.小涵和小悦的总评成绩分别是82分,78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.【点睛】此题考查了中位数、众数、平均数,解题的关键是熟悉相关概念.22. 如图,,,.(1)求证:;(2)用直尺和圆规作图:过点作,垂足为.(不写作法,保留作图痕迹)【答案】(1)见解析(2)见解析【解析】【分析】(1)根据边角边证明即可证明结论成立;(2)根据过直线外一点向直线最垂线的作法得出即可.【小问1详解】证明:∵,,,∴,67686969717274707++++++=864844702442x ⨯+⨯+⨯=++82=AB AE =BC ED =B E ∠=∠AC AD =A AF CD ⊥F ABC AED ≌△△AB AE =B E ∠=∠BC ED =()SAS ABC AED ≌∴;【小问2详解】解:所作图形如图,.【点睛】本题主要考查了全等三角形的判定和性质,过直线外一点向直线最垂线的作法,熟练记忆正确作法是解题关键.23. 为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)满足一次函数关系:y =﹣10x +1200.(1)求出利润S (元)与销售单价x (元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?【答案】y =﹣10x 2+1600x ﹣48000;80元时,最大利润为16000元.【解析】【分析】(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润.【详解】解:(1)S =y (x ﹣20)=(x ﹣40)(﹣10x +1200)=﹣10x 2+1600x ﹣48000;(2)S =﹣10x 2+1600x ﹣48000=﹣10(x ﹣80)2+16000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.【点睛】本题考查了二次函数的应用,解题的关键是求出二次函数的解析式.24. 【知识再现】学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称HL 定AC AD理)”是判定直角三角形全等的特有方法.【简单应用】如图(1),在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别在边AC 、AB 上.若CE =BD ,则线段AE 和线段AD 的数量关系是 .【拓展延伸】在△ABC 中,∠BAC =(90°<<180°),AB =AC =m ,点D 在边AC 上.(1)若点E 在边AB 上,且CE =BD ,如图(2)所示,则线段AE 与线段AD 相等吗?如果相等,请给出证明;如果不相等,请说明理由.(2)若点E 在BA 的延长线上,且CE =BD .试探究线段AE 与线段AD 的数量关系(用含有a 、m 的式子表示),并说明理由.【答案】【简单应用】AE =AD ;【拓展延伸】(1)相等,证明见解析;(2)AE ﹣AD =2AC •cos (180°﹣),理由见解析【解析】【分析】简单应用:证明Rt △ABD ≌Rt △ACE (HL ),可得结论.拓展延伸:(1)结论:AE =AD .如图(2)中,过点C 作CM ⊥BA 交BA 的延长线于M ,过点N 作BN ⊥CA 交CA 的延长线于N .证明△CAM ≌△BAN (AAS ),推出CM =BN ,AM =AN ,证明Rt △CME ≌Rt △BND (HL ),推出EM =DN ,可得结论.(2)如图(3)中,结论:AE ﹣AD =2m •cos (180°﹣).在AB 上取一点E ′,使得BD =CE ′,则AD =AE ′.过点C 作CT ⊥AE 于T .证明TE =TE ′,求出AT ,可得结论.【详解】简单应用:解:如图(1)中,结论:AE =AD .理由:∵∠A =∠A =90°,AB =AC ,BD =CE ,∴Rt △ABD ≌Rt △ACE (HL ),∴AD =AE.αααα故答案为:AE =AD .拓展延伸:(1)结论:AE =AD .理由:如图(2)中,过点C 作CM ⊥BA 交BA 的延长线于M ,过点N 作BN ⊥CA 交CA 的延长线于N .∵∠M =∠N =90°,∠CAM =∠BAN ,CA =BA ,∴△CAM ≌△BAN (AAS ),∴CM =BN ,AM =AN ,∵∠M =∠N =90°,CE =BD ,CM =BN ,∴Rt △CME ≌Rt △BND (HL ),∴EM =DN ,∵AM =AN ,∴AE =AD .(2)如图(3)中,结论:AE ﹣AD =2m •cos (180°﹣).理由:在AB 上取一点E ′,使得BD =CE ′,则AD =AE ′.过点C 作CT ⊥AE 于T .∵CE ′=BD ,CE =BD ,∴CE =CE ′,∵CT ⊥EE ′,∴ET =TE ′,∵AT =AC •cos (180°﹣)=m •cos (180°﹣),∴AE ﹣AD =AE ﹣AE ′=2AT =2m •cos (180°﹣).【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形等知识,解题的关键在于能够熟练寻找全等三角形解决问题.αααα25. 如图1,在平面直角坐标系中,抛物线过原点,与x 轴的正半轴交于点A ,已知B 点为抛物线的顶点,抛物线的对称轴与x 轴交于点D .(1)求a 的值,并直接写出A 、B 两点的坐标;(2)若P 点是该抛物线对称轴上一点,且,求点P 的坐标;(3)如图2,若C 点为线段上一点,求的最小值.【答案】(1),, (2) (3)24【解析】【分析】(1)利用待定系数法求出函数的解析式,即可得到A 、B 两点的坐标;(2)确定, 点P 在上,过点P 作于点E ,设,则,根据,得到,求出,得到,列得方程,求出m,利用勾股定理求出即可;(3)连接,过点C 作于点M ,过点A 作于点N ,证明,,得到,进而求出,当A 、C 、M 三点共线,且三点连线垂直时,最小,根据,求出,最小值即为,则问题得解.【小问1详解】解:∵抛物线过原点,即过点,则代入,得,解得,()234y a x =-+45BOP ∠=︒BD 35BC AC +49a =-()6,0A ()3,4B 33,7P ⎛⎫ ⎪⎝⎭45BOD ∠>︒OB PE OB ⊥OE PE m ==OP =sin sin PBE OBD ∠=∠35PE OD PB OB ==PB 43BE m =453m m +=PD OB CM OB ⊥AN OB ⊥OBD CBM ∽OBD OAN ∽,BC OB AN BD MC OD OA OB==()35555BC AC MC AC AC MC +=+=+OB AC MC +AN BD OA OB =AN AC MC +AN ()234y a x =-+()0,0940a +=49a =-∴抛物线的解析式为,∴顶点B 坐标为,∵抛物线的对称轴为直线,且过原点,∴抛物线与x 轴的另一交点A 的坐标为;【小问2详解】∵,∴,∴,,∴点P 在上,如图,过点P 作于点E ,设,则,∵,∴,∴,∴,∴,解得,∵∴,的()2244834993y x xx =--+=-+()3,43x =()6,0()3,4B 3,4OD BD ==45BOD ∠>︒5OB =OB PE OB ⊥OE PE m ==OP =sin sin PBE OBD ∠=∠35PE OD PB OB ==53PB m =43BE m =453m m +=157=m 3,OD OP ==37PD ===∴;【小问3详解】连接,过点C 作于点M ,过点A 作于点N ,∵,∴,同理可证,,∴,∴,即,∴,∵当A 、C 、M 三点共线,且三点连线垂直时,最小,∴最小值为,如图所示,∵,∴,∴最小值为,即.【点睛】此题是二次函数与几何图形的综合题意,待定系数法求函数解析式,勾股定理,相似三角形的判定和性质,垂线段最短等知识,利用相似三角形得出是解题的关键.33,7P ⎛⎫ ⎪⎝⎭OB CM OB ⊥AN OB ⊥,90OBD CBM ODB CMB ∠=∠∠=∠=︒OBD CBM ∽OBD OAN ∽,BC OB AN BD MC OD OA OB==53BC OB MC OD ==35BC MC =()35555BC AC MC AC AC MC +=+=+OB AC MC +AC MC +AN AN BD OA OB=424655BD AN OA OB =⨯=⨯=AC MC +245()52435AC M BC AC C +=+=35BC MC =。
福建省莆田第二十五中学2023-2024学年八年级下册第一次月考数学试题(含解析)

莆田第二十五中学2023-2024学年下学期月考试卷八年数学一、选择题:本题共10小题,每小题4分,共40分.1x 的取值范围是( )A .B .C .D .2.下列二次根式中,最简二次根式是()A .BCD3.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB //DC ,AD //BCB .AB =DC ,AD =BC C.AO =CO ,BO =DO D .AB//DC ,AD =BC 4.如图,在中,若,则的度数为( )A.B .C .D .5.下列各式计算正确的是( )A .B .CD6.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A ,则点A 表示的数是()A .B .C.D .7.在平行四边形ABCD 中,对角线AC,BD 交于点O ,如果AC =12,BD =10,AB =m ,那么m 的取值范围是( )A .1<m <11B .2<m <22C .10<m <12D .5<m <68.如图,两个较大正方形的面积分别为 576、625,则字母 A 所代表的正方形的边长为( )1x ≥1x >1x ≤1x <ABCD Y 40A D ∠=∠+︒B ∠110︒70︒55︒35︒1-=2==3=-211A .1B .49C .16D .79.如图,在中,D ,E 分别是的中点,, F 是线段上一点,连接,且.若,则的长度是( )A .12B .10C .8D .610.如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的A 处,则蚂蚁到达蜂蜜的最短距离( )cm .A .14B .15C .16D .17二、填空题:本题共6小题,每小题4分,共24分.11.计算: .12.已知直角三角形的一直角边长为1___________.13的算术平方根为 .14.在中,,,则的面积为 .15.如图,在中,,,D ,E 分别是边的中点,以和为边作平行四边形.若,则四边形的周长为 .ABC AB AC ,16BC =DE AF CF ,4DE DF =90AFC ∠=︒AC 2=ABC ()230b -=ABC 25cm AB AC ==14cm BC =ABC 2cm Rt ABC △90BAC ∠=︒30B ∠=︒AB BC ,DE AE AEDF 3AC =AEDF16.如图,等边三角形中,P ,Q 两点分别在边上,,D 是的中点.若,则的最小值是 .三、解答题:本题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.17.计算:(2)18.如图,在中,是其对角线的中点,过点,求证:.19.如图,在中,,,,的垂直平分线分别交、于点、.求的长.20.化简,求值:(),其中21.如图,中,,点D 是边上一点,.(1)求证:;(2)若点E 是边上的动点,连接,求线段的最小值.22.如图,,,,分别是,,,的中点.ABC BC AC ,BP CQ =PQ =4BC CD 2ABCD Y O AC EF O BE DF =Rt ABC △90C ∠=︒8AC =10AB =AB AB AC D E AE 2124a a a ++-12a a -÷+12a +-2a =ABC 2113AC BC ==,AC 1216BD AD ==,BD AC ⊥AB DE DE E F G H AB BD CD AC(1)求证:四边形是平行四边形;(2)若,,,,求四边形的周长.23.如图,点E 在▱ABCD 内部,AF ∥BE ,DF ∥CE ,(1)求证:△BCE ≌△ADF ;(2)设▱ABCD 的面积为S ,四边形AEDF 的面积为T,求的值24.阅读下面的材料,并回答问题.,这样的两个含有二次根式的代数式相乘,积不含有二次根式,我都互为有理化因式.在进行含有二次根式的分式计算时,利用有理化因式,可以化去分母中的根号.(1)填空:的有理化因式为;(2)已知,的值;(3)已知正整数,,求,的值.25.如图,在中,对角线AC 与BD 相交于点O ,,点E 在线段OC 上,且.(1)求证:;(2)若F ,G 分别是OD ,AB 的中点,且,EFGH BD CD ⊥6AD =4BD =3CD =EFGH S T ()0a a =≥)()1110b b =-≥113x =y =22x y +a b 3=-a b ABCD Y 2BD AD =OE CE =12OBE ADO ∠=∠10BC =①求证:是等腰三角形;②当时,求的面积.EFG EF EG ABCD Y参考答案与解析1.A 【分析】本题考查了二次根式有意义的条件,根据二次根式有意义的条件可得,解不等式即可求解.【解答】解:∵∴,解得:.故选A .2.A【分析】根据最简二次根式的两个条件逐项判定即可.【解答】解:A 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A 符合题意;B 、被开方数含能开得尽方的因数或因式,故B 不符合题意;C 、被开方数含分母,故C 不符合题意;D 、被开方数含能开得尽方的因数或因式,故D 不符合题意.故选:A .【点拨】本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.D【解答】解:A 、由“AB //DC ,AD //BC ”可知,四边形ABCD 的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B 、由“AB =DC ,AD =BC ”可知,四边形ABCD 的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C 、由“AO =CO ,BO =DO ”可知,四边形ABCD 的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D 、由“AB //DC ,AD =BC ”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .4.B【分析】根据平行四边形的邻角互补的性质求出,再根据对角相等求出的度数即可.【解答】解:在中,,∴,∵,∴,10x -≥10x -≥1x ≥70D ∠=︒B ∠ABCD Y AB CD ∥180A D ∠+∠=︒40A D ∠=∠+︒40180D D ∠+︒+∠=︒∴,∴,故选:B .【点拨】本题考查了平行四边形的性质,解题关键是明确平行四边形对角相等,邻角互补.5.B【分析】根据二次根式的运算法则计算各个选项中式子的正确结果,即可判断哪个选项符合题意.【解答】解:A.A. ,计算正确,故符合题意;A.不是同类二次根式,不能合并,计算错误,故不符合题意;A. ,计算错误,故不符合题意故选:B .【点拨】本题考查二次根式的混合运算,熟练掌握运算法则是解答本题的关键.6.B【分析】根据题意利用勾股定理得出的长,再利用得出点位置,即可得出答案.【解答】解:由题意可得:,故,则点表示的数是:故选:B .【点拨】此题主要考查了勾股定理以及正方形的性质,解题的关键是正确应用勾股定理求解.7.A【分析】根据三角形三边关系判断即可.【解答】∵ABCD 是平行四边形,AC=12,BD=10,O 为AC 和BD 的交点,∴AO=6,BO=5,∴6-5<m<6+5,即1<m <11故选:A .【点拨】本题考查平行四边形的性质和三角形的三边关系,关键在于熟记三角关系.70D ∠=︒70B D ∠=∠=︒=532=-=3=BD AD DB =A 1BC CD == BD ∴=AD A 28.D【分析】根据勾股定理可知,两个较小的正方形面积之和等于大正方形面积进行求解即可.【解答】解:由勾股定理可知,∴字母 A 所代表的正方形的边长为7,故选D .【点拨】本题主要考查了勾股定理,熟知直角三角形中,两直角边的平方和等于斜边的平方是解题的关键.9.A【分析】先由三角形中位线定理得到,再由,求出,最后根据直角三角形斜边上的中线等于斜边的一半即可得到.【解答】解:∵D 、E 分别是的中点,∴是的中位线,∴,∵,∴,∴,∵,点E 是的中点,∴,故选A .【点拨】本题主要考查了三角形中位线定理,直角三角形斜边上的中线的性质,正确求出是解题的关键.10.B【分析】在侧面展开图中,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A′,连接A′C 交EH 于P ,连接AP ,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,求出A′Q ,CQ ,根据勾股定理求出A′C 即可.【解答】解:沿过A 的圆柱的高剪开,得出矩形EFGH ,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A ′,连接A ′C 交EH 于P ,连接AP ,则AP +PC 就是蚂蚁到达蜂蜜的最短距离,∵AE =A ′E ,A ′P =AP ,∴AP +PC =A ′P +PC =A ′C ,∵CQ =×18cm =9cm ,A ′Q =12cm ﹣4cm +4cm =12cm ,在Rt △A ′QC 中,由勾股定理得:A ′C 15cm ,故选:B .62557649A S =-=8DE =4DE DF =6EF =212AC EF ==AB AC 、DE ABC 182DE BC ==4DE DF =124DF DE ==6EF DE DF =-=90AFC ∠=︒AC 212AC EF ==6EF =12【点拨】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.11.【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:.故答案为:.【点拨】此题主要考查了二次根式的乘法,正确掌握二次根式的乘法运算法则是解题关键.12.2【分析】根据勾股定理进行计算即可.【解答】解:在中,一边直角边为1∴另一条直角边长为:.故填:2.【点拨】本题主要考查了勾股定理,解题的关键是熟练掌握勾股定理,如果一个直角三角形的两条直角边分别为、,斜边为,那么.13【分析】本题主要考查了非负数的性质,求一个数的算术平方根,根据几个非负数的和为0,那么这几个非负数的值都为0得到,进而得到,再根据算术平方根的定义求解即可.【解答】解:,∴,∴,,∵13213=13t R ABC 2b ===a b c 222c a b =+6030a b -=-=,63a b ==,()230b +-=()2030b ≥-≥,()230b =-=6030a b -=-=,63a b ==,3===314.168【分析】利用等腰三角形的三线合一性质和勾股定理求出三角形的高,再利用三角形面积公式求解即可.【解答】解:先画图如下,作于点D∵,,,∴∴∴故答案为:168.【点拨】点拨:此题主要考查等腰三角形的高和面积的求法.利用等腰三角形的顶角的平分线、底边上的中线、底边上的高的重合的性质,勾股定理,关键是利用三角形的面积求解.15.9【分析】先证明是等边三角形求出的长,再根据三角形中位线定理求出的长,据此即可求得平行四边形的周长.【解答】解:在中,∵,,∴,∵E 是的中点,∴,∴是等边三角形,∴,∵D 、E 分别是的中点,∴,∴平行四边形的周长.故答案为:9.【点拨】本题考查了三角形中位线定理的运用,熟悉直角三角形的性质,等边三角形的判定和性质.熟练运用三角AD AD BC ⊥AD BC ⊥25cm AB AC ==14cm BC =17cm 2CD BD BC ===()24cm AD ==()2111424168cm 22ABC S BC AD =⋅⋅=⨯⨯=△ACE △AE DE AEDF Rt ABC △90BAC ∠=︒30B ∠=︒60C ∠=︒BC AE CE =ACE △3AE AC ==AB BC 、1322DE AC ==AEDF 32392()=⨯+=形的中位线定理和直角三角形性质是解题的关键.16【分析】建立直角坐标系,过点Q 作轴,设,则,分别求得,,再求出,从而得出点D 在直线上运动,当直线时,最小,据此求解即可.【解答】解:建立如图的直角坐标系,过点Q 作轴,设,则,∵等边三角形中,,∴∴,∴,∵D 是的中点.∴,令∴,即点D 在直线上运动,当直线时,最小,此时【点拨】本题考查了等边三角形的性质及图形运动中的最值问题,解决本题的关键是会用建系法解决图形运动中的最值问题.17.(1)5QH x ⊥BP t =CQ BP t ==()2,0P t -122Q t ⎛⎫- ⎪ ⎪⎝⎭14D t ⎛⎫ ⎪ ⎪⎝⎭y =CD ⊥y =CD QH x ⊥BP t =CQ BP t ==ABC 4BC =4,2,60,AC BC OB OC ACB ====∠=()2,0P t -1,,2CH t QH ==122Q t ⎛⎫- ⎪ ⎪⎝⎭PQ 14D t ⎛⎫ ⎪ ⎪⎝⎭1,,4x t y ==y =y =CD ⊥y =CD CD ==(2)【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,再利用有理数的加减运算法则计算得出答案;(2)根据二次根式的加减运算以及乘除运算法则即可求出答案.【解答】(1;(2)解:【点拨】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的加减运算以及乘除运算法则,本题属于基础题型.18.见解析【分析】先根据平行四边形的性质得出,则,然后利用ASA 证明,则有,利用即可证明结论.【解答】∵四边形ABCD 是平行四边形,,.在和中, ,,,.【点拨】本题主要考查平行四边形的性质和全等三角形的判定及性质,掌握平行四边形的性质和全等三角形的判定及性质是解题的关键.19.【分析】首先连接BE ,根据线段垂直平分线的性质,可得AE =BE ,然后设AE =x ,由勾股定理可得方程: ,继而求得答案.【解答】解:连接BE ,在Rt △ABC 中,AC =8,AB =10∴BC =6224435=+-=2=+2=-,//,AB CD AB CD AO CO ==FCO EAO ∠=∠COF AOE ≅ CF AE =AB AE CD CF -=-,//,AB CD AB CD AO CO ∴==FCO EAO ∴∠=∠COF AOE △FCO EAO CO AOCOF AOE ∠=∠⎧⎪=⎨⎪∠=∠⎩()COF AOE ASA ∴≅ CF AE ∴=AB AE CD CF ∴-=-BE DF ∴=254()222=6+8x x -∵AB 的垂直平分线分别交AB 、AC 于点D 、E ,∴AE =BE ,AD =BD =5设AE =x ,则BE =x ,EC =AC−AE =8−x ,∵Rt △BCE 中,∠C =90°,BE=x ,EC =8−x ,BC =6,∴解得:,故答案为:,【点拨】此题考查了线段垂直平分线的性质以及勾股定理.此题难度不大,注意掌握数形结合思想与方程思想的应用.20.【分析】根据分式的运算法则先化简,再将字母的值代入得结果即可.【解答】解:原式,,,,,,当时,原式.【点拨】此题考查了分式的化简求值,掌握分式运算法则和二次根式运算及分母有理化是解决问题的关键.21.(1)见解析()222=6+8x x-25=4x 25412a a -()()12122212a a a a a a a ⎡⎤+=+⨯+⎢⎥++---⎢⎥⎣⎦()()()21212212a a a a a a a -++=⨯++---()()221212212a a a a a a a -++=⨯++---()()()21212212a a a a a a -+=⨯++---1122a a a -=+--2a a =-2a =1===(2)【分析】(1)求得,运用勾股定理逆定理可证,得.(2)如图,当时,运用勾股定理,中,,运用等积法,求得,得最小值是.【解答】(1)证明:∵,∴.∵,∴.∴.∴.(2)解:如图,当时,取得最小值;中,.∵,∴,解得.∴最小值是.【点拨】本题考查勾股定理及逆定理,垂线段最短;直角三角形中运用等积法求线段长是解题的关键.22.(1)证明见解析(2)【分析】本题主要考查了三角形中位线定理,平行四边形的判定,勾股定理:(1)由三角形中位线定理证明,即可证明四边形是平行四边形;(2)先利用勾股定理得到,再由三角形中位线定理得到,,由此根据四边形周长计算公式求解即可.【解答】(1)证明:∵,分别是,的中点,∴是的中位线,4855CD AC AD =-==90BDC ∠︒BD AC ⊥DE AB ⊥Rt △ABD 20AB ==1122ABD S AB DE AD BD =⋅=⋅△485DE =48521,16AC AD ==21165CD AC AD =-=-=222222125169,13169BD CD BC +=+===222BD CD BC +==90BDC ∠︒BD AC ⊥DE AB ⊥DE Rt △ABD 20AB ===1122ABD S AB DE AD BD =⋅=⋅△201612DE =⨯485DE =4851112EF HG AD EF HG ==,∥EFGH 5BC =112.5 2.522EH BC FG BC ====,132EF HG AD ===E F AB BD EF ABD △∴,同理可得,∴,∴四边形是平行四边形;(2)解:如图所示,连接,∵,∴,∵,,∴;同理可得,∵,∴四边形的周长.23.(1)证明略;(2)=2【分析】(1)已知AD=BC ,可以通过证明,来证明(ASA );(2)连接EF ,易证四边形ABEF ,四边形CDFE 为平行四边形,则,即可得=2.【解答】(1)证明:∵四边形ABCD 为平行四边形,∴,,又,,,,同理可得:,在和中,12EF AD EF AD =,∥12HG AD HG AD =,∥EF HG EF HG =,∥EFGH BC BD CD ⊥=90BDC ∠︒4BD =3CD =5BC ==112.5 2.522EH BC FG BC ====,132EF HG AD ===EFGH 11EF HG EH FG =+++=S TEBC FAD ∠=∠ECB FDA ∠=∠B C E A D F ≅V V AFE FED ABE CDE AEDF S S S S T S =+=+= 四边形12S =S TAD BC ∥180BAD ABC ︒∴∠+∠=//AF BE 180BAF ABE ︒∴∠+∠=BAD ABE EBC FAD BAD ABE ∴∠+∠+∠=∠+∠+∠EBC FAD ∴∠=∠ECB FDA ∠=∠BCE ADF △(2)解:连接EF ,,,又,∴四边形ABEF ,四边形CDFE 为平行四边形,∴,∴,设点E 到AB 的距离为h 1,到CD 的距离为h 2,线段AB 到CD 的距离为h ,则h= h 1+ h 2,∴,即=2.【点拨】本题考查了三角形全等的判定和性质、平行四边形的判定和性质以及相关面积计算,熟练掌握所学性质定理并能灵活运用进行推理计算是解题的关键.24.(1)(2)14(3),【分析】本题考查了二次根式的混合运算、平方差公式,掌握二次根式的混合运算、平方差公式,分母有理化是解题关键.(1)阅读材料可直接得出结果;(2)先分母有理化化简,再代入求值;(3【解答】(1)解:的有理化因式为EBC FAD BC ADECB FDA ∠=∠⎧⎪=⎨⎪∠=∠⎩BCE ADF∴≅ BCE ADF ≅ ,BE AF CE DF ∴==,AF BE DF CE ∥∥,ABE AFE CDE FED S S S S == AFE FED ABE CDE AEDF S S S S T S =+=+= 四边形()1212111222T AB h CD h AB h h =⋅⋅+⋅⋅=⋅⋅+1122AB h S =⋅⋅=S T33a =10b =1)32a b a --=-33(2)解:∴(3)原式可化为,,.25.(1)见解析(2)①见解析;②120【分析】(1)先由平行四边形的性质,得出,,,再证△BCO是等腰三角形,由等腰三角形三线合一性质即可得出结论;(2)①由(1)△BCO是等腰三角形,由等腰三角形三线合一性质得∠BEA=90°,由直角三角形的性质得到,再由三角形中位线性质得到,根据平行四边形性质得,所以得出结论;②先证GE⊥AB,即,又因G是AB的中点,所以,设,则,所以,在中,由勾股定理求得BE长,从而得出AC长,即可由求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴,,,∴,∵,∴.∴,∵E是CO中点,∴.∴.(2)①证明:由(1)知,2x====2y====((22222214x y+=+=1)3a-=-3a+=-1)32a b a-+=-3a∴=122a b-=-10b∴=AD BC∥AD BC=12DO BO BD==12EG AB=12EF CD=AB CD=EG EF=90BGE∠=︒AE BE=CE x=22AO CO CE x=== 3BE AE x==Rt BEC△2ABCD ABCS S=△AD BC∥AD BC=12DO BO BD==ADO OBC∠=∠2BD AD=AD DO=BC BO=12OBE OBC∠=∠12OBE ADO∠=∠BC BO=∵E 是CO 中点,∴BE ⊥OC ,∴∠BEA=90°,∵G 为AB 中点,∴,∵四边形ABCD 是平行四边形,∴,∵E 、F 分别是OC 、OD 的中点,∴,∴,∴是等腰三角形.②解:∵E 、F 分别是OC 、OD 的中点,∴,∵四边形ABCD 是平行四边形,∴,∴,∴,∵,∴,∴,∵G 是AB 的中点,∴,设,则,∴,在中,,∴,即,解得,∴∴.【点拨】本题考查平行四边形的性质,直角 三角形的性质,等腰三角形的性质,三角形中位线的性质等知识,证得△BCO 和△ABE 是等腰三角形是解题的关键.12EG AB =AB CD =12EF CD =EG EF =EFG EF CD ∥AB CD ∥AB EF ∥BGE GEF ∠=∠⊥EF EG 90GEF ∠=︒90BGE ∠=︒AE BE =CE x =22AO CO CE x ===3BE AE x ==Rt BEC △10BC =222EC BE BC +=()222310x x +=x =AC =BE =1221202ABCD ABC S S ==⨯⨯= △。
福建省莆田第二十五中学2024-2025学年八年级上学期第一次月考物理试题

福建省莆田第二十五中学2024-2025学年八年级上学期第一次月考物理试题一、单选题1.下列几种估测最符合实际情况的是()A.教室内学生课桌的高度约75cm B.一张试卷厚度的大约1mmC.课间眼保健操的时间约45s D.中学生跑步的速度约为60m/s2.下列关于误差的说法中正确的是()A.误差只能尽量减小,而不能消除B.测量可以做到没有误差C.测量中采用多次测量求平均值的方法,可以消灭误差D.测量中的误差是由于错误而造成的,因此是可以避免的3.如图,初中生小鹭沿美丽的鼓浪屿环岛路步行一圈,手机计步APP上的步数恰好增加了10000步。
估算鼓浪屿环岛路长约为()A.6×102m B.2×103m C.6×103m D.2×104m4.如图是用厚刻尺测量木块的长度,其中正确的测量图是()A.B.C.D.5.体育课上测量学生跳远成绩时,教体育的王老师选择下列哪种尺子比较合适()A.分度值为1mm,量程为1m的木尺B.分度值为1cm,量程为10m的卷尺C.分度值为1cm,量程为1.5m的软尺D.分度值为1dm,量程为20m的卷尺6.航天系统对精度要求极高,研磨师叶辉用20年的苦练研磨出了100nm的“航天精度”,此精度是一根头发丝的七百分之一。
关于此“航天精度”,下列单位换算正确的是()A.100nm=100×10-12m=1×10-10m B.100nm=100×10-9m=1×10-7mC.100nm=100×10-6m=1×10-4m D.100nm=100×10-3m=0.1m7.用塑料卷尺测量长度时,若用力拉尺进行测量,那么由此可能引起测量结果()A.偏大B.偏小C.不变D.无法确定8.“两岸青山相对出,孤帆一片日边来”出自《望天门山》。
就此诗句而言,若认为站在帆船上的人是静止的,所选的参照物是()A.青山B.江岸C.帆船D.太阳9.甲、乙两物体都做直线运动,通过的路程之比是4:1,所用时间之比是2:1,则甲、乙两物体运动的平均速度之比是()A.8:1B.1:8C.2:1D.1:210.一物体做直线运动,在前一半路程24m内的速度是8m/s,在后一半路程24m内的速度是12m/s,则全程的平均速度是()A.9m/s B.9.2m/s C.9.6m/s D.10m/s11.行文明事,做文明人。
福建省莆田市第二十五中学2024-2025学年九年级上学期第二次月考物理试题

莆田第二十五中学2024-2025学年上学期月考二试卷九年级物理一、单选题(共32分)1.在国际单位制中,电功的单位是( )A.千瓦B.伏特C.焦耳D.安培2.下列材料或物体中,在通常条件下都属于导体的是( )A.石墨、大地、钢尺B.水银、盐水、橡胶C.铁丝、食用油、塑料D.陶瓷、人体、玻璃3.如图所示,红、绿气球处于静止状态(两气球相互排斥)。
关于两个气球是否带电及带电的种类,下列说法中正确的是( )A.红气球带电,绿气球不带电B.红气球不带电,绿气球带电C.红、绿气球都带电,且带有异种电荷D.红、绿气球都带电,且带有同种电荷4.电路中有一根电阻丝,若要使电路中的电阻变小,可以采取的方法是( )A.增大电路两端的电压B.并联一根相同的电阻丝C.减小通过电路中的电流D.串联一根相同的电阻丝5.如图乙所示的四个电路图中与图甲所示实物图相对应的是( )A. B.C. D.6.下列关于电能、电功和电功率的说法,正确的是( )A.用电器消耗的电能越多,电功率越大B.通过用电器的电流越大,电流做的功越多C.用电器工作时的电功率越大,电流做功越快D.电流做功是把其他形式的能转化为电能的过程7.小红同学设计了一个灯泡亮度可以调节的电路,如图所示,为了使滑动变阻器的滑片P 从C向D移动的过程中,灯泡的亮度逐渐变亮,正确的连接方式是( )A.M接C,N接BB.M接D,N接AC.M接A,N接BD.M接A,N接D8.如图所示,闭合开关S ,两灯都不亮,当用一根导线分别连接a 、b 点,c 、d 接线柱时,两灯都不亮,连接e 、f 接线柱时,只有一只灯泡发光,则电路故障可能是( )A .灯泡L 1短路B .灯泡L 2断路C .灯泡L 2短路D .开关S 断路9.如图是交警查酒驾时的酒精浓度检测仪的简化电路图,电源电压恒定, 为定值电阻、R 为酒精气体传感器,其阻值随酒精气体浓度的增大而减小,当驾驶员酒驾时对酒精浓度检测仪吹气时,下列说法正确的是( )A .Ⓐ表的示数变大,表的示数变小B .Ⓐ表的示数变小,表的示数变大C .表和Ⓐ表的示数比值变大D .电源的输出总功率变大10.电子式电能表上标有“1600imp/(kW·h )”字样,将某用电器单独接在该电能表上正常工作30min ,电能表指示灯闪烁了1600次。
2025届福建省莆田第二十五中学数学八上期末达标检测模拟试题含解析

2025届福建省莆田第二十五中学数学八上期末达标检测模拟试题 题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分) 1.把()22214a a +-分解因式得( ) A .()221a + B .()221a -C .()()221212a aaa +++-D .22(1)(1)a a +-2.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF=( )A .12B .2C .3D .333.下列实数中是无理数的是( ) A . B .C .0.38D .4.要使分式13x +有意义,则x 的取值应满足( ) A .3x ≥B .-3x <C .3-≠xD .3x ≠5.如图,△ABC 中,AD 平分∠BAC ,DE ∥AC ,且∠B=40°,∠C=60°,则∠ADE 的度数为( )A .80°B .30°C .40°D .50°6.下列各组数中,不能构成直角三角形的是( ) A .a=1,b=43,c=53B .a=5,b=12,c=13C .a=1,b=3,c=10D .a=1,b=1,c=27.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( ) A .352294x y x y +=⎧⎨+=⎩B .354294x y x y +=⎧⎨+=⎩C .354494x y x y +=⎧⎨+=⎩D .352494x y x y +=⎧⎨+=⎩8.在下列黑体大写英文字母中,不是轴对称图形的是( ) A .B .C .D .9.若等腰三角形的两边长分别是3和10,则它的周长是( ) A .16B .23C .16或23D .1310.下列式子不正确的是( ) A .235aa a =B .()222ab a b =C .()010a a =≠D .()235aa =二、填空题(每小题3分,共24分)11.已知关于x 的不等式组0521x a x -≥⎧⎨-⎩只有四个整数解,则实数a 的取值范是______.12.如图,AB ∥CD ,DE ∥CB ,∠B =35°,则∠D =_____°.13.计算:22(1510)(5)x y xy xy -÷=_________.14.等腰三角形一边长为8,另一边长为5,则此三角形的周长为_____. 15.若26x x k -+是完全平方式,则k 的值为______.16.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______.17.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF .给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AC =3EC ,其中正确的结论是_____(填序号).18.如图,在ABC ∆中,90BAC ∠=︒,2ABC C ∠=∠,BE 平分ABC ∠交AC 于E ,AD BE ⊥于D ,下列结论:①AC BE AE -=;②点E 在线段BC 的垂直平分线上;③DAE C ∠=∠;④2BD DE =;⑤4BC AD =,其中正确的有____(填结论正确的序号).三、解答题(共66分)19.(10分)在△ ABC 中,AB = AC(1)如图 1,如果∠BAD = 30°,AD 是BC 上的高,AD =AE ,则∠EDC = (2)如图 2,如果∠BAD = 40°,AD 是BC 上的高,AD = AE ,则∠EDC = (3)思考:通过以上两题,你发现∠BAD 与∠EDC 之间有什么关系?请用式子表示: (4)如图 3,如果AD 不是BC 上的高,AD = AE ,是否仍有上述关系?如有,请你写出来,并说明理由20.(6分)因式分解:(1)24x - (2) 2244ax axy ay -+ 21.(6分)计算下列各式: (x ﹣1)(x+1)= ; (x ﹣1)(x 2+x+1)= ; (x ﹣1)(x 3+x 2+x+1)= ; …(1)根据以上规律,直接写出下式的结果:(x ﹣1)(x 6+x 5+x 4+x 3+x 2+x+1)= ; (2)你能否由此归纳出一般性的结论(x ﹣1)(x n ﹣1+x n ﹣2+x n ﹣3+…+x+1)= (其中n 为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.22.(8分)如图,在△ABC 中,E 是CA 延长线上一点,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1. 求证:∠1=∠2.23.(8分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时,y 1、y 2关于x 的函数图像如下图 所示:(1)根据图像,直接写出y 1、y 2关于x 的函数关系式;(2)若两车之间的距离为S 千米,请写出S 关于x 的函数关系式;(3)甲、乙两地间有A 、B 两个加油站,相距200千米,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离. 24.(8分)已知12x x+=,求221x x +,441x x +的值.25.(10分)计算:(1)1822⎛⎫⨯- ⎪ ⎪⎝⎭(2)148123-+ (3)()()()131313128--+-+--(4)解方程组235,2715.x y x y +=⎧⎨-=-⎩26.(10分)如图,对于边长为2的等边三角形ABC ,请建立适当的平面直角坐标系,并写出各个顶点的坐标.参考答案一、选择题(每小题3分,共30分) 1、D【分析】首先利用平方差公式分解因式,进而利用完全平方公式分解因式得出即可. 【详解】解:()22214a a +-()()221212a a a a =+++- ()()2211a a =+-.故选:D . 【点睛】本题主要考查了公式法因式分解,正确应用乘法公式是解题关键.2、A【解析】∵△ABC是等边三角形,∴∠B=∠BCA=60°,AC=BC=AB,又∵AD=BE,∴AB-AD=BC-BE,即BD=CE,∴△ACE≌△CBD,∴∠CAE=∠BCD,又∵∠AFG=∠ACF+∠CAE,∴∠AFG=∠ACF+∠CAE=∠ACF+∠BCD=∠BCA=60°,∵AG⊥CD于点G,∴∠AGF=90°,∴∠FAG=30°,∴FG=12 AF,∴12 FGAF=.故选A.3、A【解析】根据有理数和无理数的概念解答:无限不循环小数是无理数.【详解】解: A、π是无限不循环小数,是无理数;B、=2是整数,为有理数;C、0.38为分数,属于有理数;D. 为分数,属于有理数.故选:A.【点睛】本题考查的是无理数,熟知初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是解答此题的关键.4、C【分析】根据分式有意义的条件是分母不等于零可得到30x+≠,解不等式即可.【详解】解:由题意得:30x+≠,解得:3x≠-,故选:C.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.本题不难,要注意审题.5、C【解析】根据三角形的内角和可知∠BAC=180°-∠B-∠C=80°,然后根据角平分线的性质可知可得∠EAD=∠CAD=40°,再由平行线的性质(两直线平行,内错角相等)可得∠ADE=∠DAC=40°.故选C.6、D【解析】根据勾股定理的逆定理对四组数据进行逐一判断即可.【详解】A、∵12+(43)2=(53)2,∴能构成直角三角形,不符合题意;B、∵52+122=132,,∴能构成直角三角形,不符合题意;C、∵12+32)2,∴能构成直角三角形,不符合题意;D、∵12+12≠22,∴不能构成直角三角形,符合题意,故选D.【点睛】本题考查的是用勾股定理的逆定理判断三角形的形状,通常是看较小的两边的平方和是否等于最长边的平方,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.7、D【分析】等量关系为:鸡的只数+兔的只数=35,2×鸡的只数+4×兔的只数=94,把相关数值代入即可得到所求的方程组.【详解】解:∵鸡有2只脚,兔有4只脚,∴可列方程组为:35 2494x yx y+=⎧⎨+=⎩,故选D.【点睛】本题考查了由实际问题抽象出二元一次方程组.如何列出二元一次方程组的关键点在于从题干中找出等量关系.8、C【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B .“M ”是轴对称图形,故本选项不合题意;C .“N ”不是轴对称图形,故本选项符合题意;D .“H ”是轴对称图形,故本选项不合题意. 故选:C . 【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 9、B【分析】本题没有明确已知的两边的具体名称,要分为两种情况即:①3为底,10为腰;②10为底,3为腰,可求出周长.注意:必须考虑三角形的三边关系进行验证能否组成三角形.【详解】∵等腰三角形的两边分别是3和10,∴应分为两种情况:①3为底,10为腰,则3+10+10=1; ②10为底,3腰,而3+3<10,应舍去, ∴三角形的周长是1. 故选:B . 【点睛】本题考查等腰三角形的性质和三角形的三边关系,解题的关键是分情况讨论腰长. 10、D【分析】利用同底数幂的乘法运算法则、零次幂性质、积的乘方运算法则以及幂的乘方运算法则逐一计算,然后再加以判断即可. 【详解】A :235a a a =,选项正确; B :()222ab a b =,选项正确; C :()010a a =≠,选项正确;D :()236a a =,选项错误;故选:D. 【点睛】本题主要考查了整数指数幂与运算,熟练掌握相关方法是解题关键.二、填空题(每小题3分,共24分) 11、-3<a ≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a 的范围.详解:0521x a x ①②,-≥⎧⎨->⎩由不等式①解得:x a ≥; 由不等式②移项合并得:−2x >−4, 解得:x <2,∴原不等式组的解集为2a x ,≤< 由不等式组只有四个整数解,即为1,0,−1,−2, 可得出实数a 的范围为3 2.a -<≤- 故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围. 12、1【分析】根据平行线的性质可得∠B=∠C=35°,再根据BC∥DE 可根据两直线平行,同旁内角互补可得答案. 【详解】解:∵AB ∥CD , ∴∠C =∠B =35°. ∵DE ∥CB ,∴∠D =180°﹣∠C =1°. 故答案为:1. 【点睛】此题考查了平行线的性质,解答关键是掌握两直线平行,同旁内角互补. 两直线平行,内错角相等. 13、32x y -【分析】根据整式的除法法则计算可得解. 【详解】()22(1510)5x y xy xy -÷22155105x y xy xy xy =÷-÷ 32x y =-故答案是:32x y -. 14、18或21【解析】当腰为8时,周长为8+8+5=21;当腰为5时,周长为5+5+8=18. 故此三角形的周长为18或21.15、9【分析】利用完全平方公式的结构特征判断即可. 【详解】∵26x x k -+是完全平方式, ∴2226=233x x k x x -+-⨯⨯+, ∴k=9, 故答案为9. 【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的运算. 16、2019112-【分析】根据题目所给计算方法,令23201911112222S ,再两边同时乘以12,求出12S ,用12S S ,求出12S 的值,进而求出S 的值. 【详解】解:令23201911112222S ,则22023401111122222S ,∴2020111222S S ,∴2020111222S ,则2019112S.故答案为:2019112-【点睛】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键. 17、①②③④【分析】根据平行线的性质结合三线合一的性质证明△ABC 为等腰三角形,即可得到BD=CD ,AD ⊥BC ,故②③正确;通过△CDE ≌△DBF 即可得到DE=DF ,CE=BF ,故①④正确.【详解】∵BC 平分∠ABF ,∴∠FBC=∠ABC ,∵BF ∥AC ,∴∠FBC=∠ACB ,∴∠ACB=∠ABC=∠CBF ,∴AC= AB ,∴△ABC 为等腰三角形,∵AD 是△ABC 的角平分线,∴DB =DC ,故②正确;AD ⊥BC ,故③正确;在△CDE 与△DBF 中,ACB CBF CD BDEDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △CDE ≌Rt △BDF (ASA ),∴DE=DF ,故①正确;CE= BF ,∵AE =2BF ,∴AE =2CE ,AC= AE+CE=2CE+CE=3CE ,故④正确;综上,①②③④均正确;故答案为:①②③④.【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,平行线的性质,掌握全等三角形的判定和性质是解题的关键.18、①②③⑤【分析】根据已知条件可得ABC ∆,ABE ∆,ABD ∆,ADE ∆是含30角的Rt ∆,而BCE ∆是一个等腰三角形,进而利用等腰三进行的判定、垂直平分线的判定以及含30角的直角三角形的性质可以得出AC BE AE -=、点E 在线段BC 的垂直平分线上、DAE C ∠=∠、2AE DE =、4BC AD =,即可判断.【详解】∵90BAC ∠=︒,2ABC C ∠=∠∴30C ∠=︒,60ABC ∠=︒∵BE 平分ABC ∠交AC 于E∴CBE C ∠=∠∴BE CE =∴AC CE AC BE AE -=-=,故①正确;点E 在线段BC 的垂直平分线上,故②正确;∵AD BE ⊥∴30DAE C ∠=∠=︒,故③正确;∴在Rt ADE ∆中,2AE DE =,故④错误;在Rt ABD ∆中,2AB AD =在Rt ABC ∆中,2BC AB =∴4BC AD =,故⑤正确.故答案是:①②③⑤.【点睛】本题图形较为复杂,涉及到知识点较多,主要考查了等腰三进行的判定、垂直平分线的判定以及含30角的直角三角形的性质,属中等题,解题时要保持思路清晰.三、解答题(共66分)19、(1)15°;(2)20°;(3)∠BAD=2∠EDC;(4)成立,理由见解析【分析】(1)根据等腰三角形三线合一,可知∠DAE=30°,再根据AD=AE ,可求∠ADE 的度数,从而可知答案;(2)同理易知答案;(3)通过(1)(2)题的结论可知∠BAD=2∠EDC,(4)由于AD=AE ,所以∠ADE=∠AED,根据已知容易证得∠BAD=2∠EDC.【详解】解:(1)∵在△ABC 中,AB=AC ,AD 是BC 上的高,∴∠BAD=∠CAD=30°∵AD=AE, ∴18018030=7522CAD ADE AED --∠=∠==∠ ∴∠DEC=90°-∠AD =15°;(2)∵在△ABC 中,AB=AC ,AD 是BC 上的高,∴∠BAD=∠CAD=40°∵AD=AE,∴18018040=7022CAD ADE AED --∠=∠==∠ ∴∠DEC=90°-∠ADE=20°;(3)根据前两问可知:∠BAD=2∠EDC(4)仍成立,理由如下:∵AD=AE,∴∠ADE=∠AED∵∠BAD+∠B=∠ADC,∠ADC=∠ADE+∠EDC∴∠ADC=∠AED+∠EDC∵∠AED=∠EDC+∠C∴∠ADC=(∠EDC+∠C)+∠EDC=2∠EDC+∠C又∵AB=AC∴∠B=∠C∴∠BAD=2∠EDC【点睛】本题考查了等腰三角形的三线合一,熟知等腰三角形顶角平分线,底边上的高和中线三线合一是解题的关键.20、(1)x 2)(2)x -+( (2)2(2)a x y -【解析】试题分析:(1)直接利用平方差公式因式分解即可;(2)提公因式a 后再利用完全平方公式因式分解即可.试题解析:(1)()24=x 2)2x x --+(;(2)()()2222244442ax axy ay a x xy y a x y -+=-+=-. 21、x 2﹣1;x 3﹣1;x 4﹣1;(1)x 7﹣1;(2)x n ﹣1;(3)236﹣1.【分析】利用多项式乘以多项式法则计算各式即可;(1)根据上述规律写出结果即可;(2)归纳总结得到一般性规律,写出即可;(3)利用得出的规律计算即可得到结果.【详解】(x ﹣1)(x+1)=x 2﹣1;(x ﹣1)(x 2+x+1)=x 3﹣1;(x ﹣1)(x 3+x 2+x+1)=x 4﹣1,(1)(x ﹣1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7﹣1;(2)(x ﹣1)(x n ﹣1+x n ﹣2+x n ﹣3+…+x+1)=x n ﹣1;(3)1+2+22+23+24+…+235=(2﹣1)(235+234+233+…+2+1)=236﹣1.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22、证明见解析.【解析】试题分析:由AD ⊥BC ,EG ⊥BC ,利用垂直的定义可得,∠EGC=∠ADC=90°,利用平行线的判定可得EG ∥AD ,利用平行线的性质可得,)∠2=∠E ,∠1=∠1,又因为∠E=∠1,等量代换得出结论.试题解析:证明:∵AD ⊥BC ,EG ⊥BC ,∴∠EGC=∠ADC=90°∴EG ∥AD∴∠2=∠E ,∠1=∠1,∵∠E=∠1,∴∠1=∠2.考点:平行线的判定与性质.23、(1)1y 60x =(0≤x≤10);2y 100x 600=-+(0≤x≤6)(2)()15160x 600(0x<)415S 160x 600(x<6)460x 6x 10⎧-+≤⎪⎪⎪=-≤⎨⎪⎪≤≤⎪⎩(3)A 加油站到甲地距离为150km 或300km 【分析】(1)直接运用待定系数法就可以求出y 1、y 2关于x 的函数图关系式; (2)分别根据当0≤x <154时,当154≤x <6时,当6≤x≤10时,求出即可; (3)分A 加油站在甲地与B 加油站之间,B 加油站在甲地与A 加油站之间两种情况列出方程求解即可.【详解】(1)设y 1=k 1x ,由图可知,函数图象经过点(10,600),∴10k 1=600,解得:k 1=60,∴y 1=60x (0≤x≤10),设y 2=k 2x+b ,由图可知,函数图象经过点(0,600),(6,0),则260060b k b +⎧⎨⎩==, 解得:2100600k b ⎩-⎧⎨== ∴y 2=-100x+600(0≤x≤6);(2)由题意,得60x=-100x+600 x=154, 当0≤x <154时,S=y 2-y 1=-160x+600; 当154≤x <6时,S=y 1-y 2=160x-600; 当6≤x≤10时,S=60x ; 即()15160x 600(0x<)415S 160x 600(x<6)460x 6x 10⎧-+≤⎪⎪⎪=-≤⎨⎪⎪≤≤⎪⎩; (3)由题意,得①当A 加油站在甲地与B 加油站之间时,(-100x+600)-60x=200,解得x=52, 此时,A 加油站距离甲地:60×52=150km ,②当B 加油站在甲地与A 加油站之间时,60x-(-100x+600)=200,解得x=5,此时,A 加油站距离甲地:60×5=300km , 综上所述,A 加油站到甲地距离为150km 或300km .24、2,2【分析】将已知的等式左右两边分别平方,再展开求得. 【详解】解:∵12x x +=, ∴221()2x x +=, ∴22124x x ++=, ∴2212x x +=. ∴22221()2x x+=, ∴4412+4x x+=, ∴4412x x+=. 【点睛】本题考查了完全平方公式,关键是把所求代数式整理为与所给等式相关的形式或与得到结果相关的形式.25、(1)2;(2(3)2;(4)122x y ⎧=-⎪⎨⎪=⎩ 【分析】(1)先化简二次根式,然后先做小括号里面的合并同类二次根式,最后做除法;(2)先化简二次根式,然后合并同类二次根式;(3)先求立方根,用平方差公式计算,负整数指数幂的计算,然后进行有理数加减混合运算;(4)用加减消元法解一元二次方程组.【详解】解:(1=2⎭=2 =2;(2=+(3)()1112---=113122⎛⎫-+---⎪⎝⎭=1131+22-+-=2(4)2352715x yx y+=⎧⎨-=-⎩①②①-②得:1020y=解得:y=2把y=2代入①,得2325x+⨯=解得:12x=-所以方程组的解为122xy⎧=-⎪⎨⎪=⎩【点睛】本题考查二次根式的混合运算,平方差公式的计算,负整数指数幂及解一元二次方程组,计算综合题,掌握运算法则及运算顺序,正确计算是解题关键.26、见解析【分析】以BC所在的直线为x轴,以BC边上的高所在的直线为y轴,建立平面直角坐标系,则BO=CO,再根据勾股定理求出AO的长度,点A、B、C的坐标即可写出.【详解】如图,以BC所在是直线为x轴,以过A垂直于BC的直线为y轴,建立坐标系,O为原点,∵△ABC是正△ABC,∴O为BC的中点,而△ABC的边长为2,∴BO=CO=1,在Rt△AOB中,AB2=AO2+BO2,∴AO3,∴B(−1,0),C(1,0),A(03.【点睛】本题主要考查坐标与图形的性质,等边三角形的性质,勾股定理的运用,建立适当的平面直角坐标系是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【乙】(苏秦)说秦王书十上而说不行。黑貂之裘敝,黄金百斤尽,资用乏绝,去秦而归。负书担囊,形容枯槁,面目黧黑,状有愧色。归至家,乃夜发书,陈箧数十,得太公《阴符》之谋,伏而诵之,简①练以为揣摩。读书欲睡,引锥②自刺其股,血流至足。期年,揣摩成,乃说赵王于华屋之下。扺③掌而谈。赵王大说,封为武安君,受相印。
⑫老林心里发凉,原本以为话出口,就是根火柴,“砰”一下,把大伙儿心中的火点着了,没想到却碰了个不大不小的壁。短期见效的门路,还真不好找。心中烦闷,就一个人上山,背着手想心事。
⑬“找不到门路,我这张老脸往哪儿搁?”老林对荆花说,“巧了,我遇到了你。”老林把鼻子凑近荆花,深深地吸了一口,“以前,我还以为你们只能当柴烧呢。”这么说着,自己笑起来。山风猛地一大,野荆摇曳,沙沙作响,好像埋怨他有眼无珠。
莆田第二十五中学2023-2024学年上学期月考二试卷
八年语文
(考试时间:120分钟 试卷满分:150分)
一、积累和运用(23分)
1.请补写出其中的空缺部分。
(1)半卷红旗临易水,__________________。(《雁门太守行》)
(2)_________________,自将磨洗认前朝。(《赤壁》)
(3)天接云涛连晓雾,_________________。(《渔家傲·天接云涛连晓雾》)
(4)无可奈何花落去,____________________。(晏殊《浣溪沙》)
(5)争渡,争渡,____________________。(李清照《如梦令》)
(6)《春望》中写战乱时间之长,突出了家书的珍贵的句子是:__________,___________。
⑯“就是从那时起,我不跟自己赌气了。”老林拭了拭眼睛,“老少爷们这么厚道,给他们实打实办点事,该!”风息了一刻,野荆肃立,荆花开得庄重。
⑰老林沉默了一会儿,又看山下的路,路像一条油亮的丝带,缠着绿野远山。有骑行的驴友、组团的中巴穿行。老林欣慰地笑笑,目光又回到荆花上。
⑱“第一步迈出去,接下来就是修路。”老林说。办手续,跑资金,可资金是难题。虽说有扶贫专项资金,但狼多肉少。老林脸皮薄,不爱找领导,可那时他横下心,要找第一书记的娘家——组织部。
⑦老林沉吟一会儿,就想起三年前,单位派他来这个深度贫困村任驻村书记。说实话,刚开始他真不想来。年纪不小了,就想图个安稳。可老婆老嫌他窝囊,还笑他:“就你,还当书记?别去丢人了!”
⑧“我偏要赌这口气,”老林脸有些热,“站直了,咱也是个人物!”
⑨一只蜜蜂飞过来,嗡嗡的,不知是赞许还是嘲笑。倒是荆花敛静,只默默地举着花瓣,朝他微笑。
饮酒(其五)
陶渊明
结庐在人境,而无车马喧。
问君何能尔?心远地自偏。
采菊东篱下,悠然见南山。
山气日夕佳,飞鸟相与还。
此中有真意,欲辨已忘言。
4.下列对古诗的理解和分析不正确的一项是( )
A.《饮酒》是陶渊明弃官归隐后写成的一组五言古诗,大多直抒胸臆。
B.前两句写出了官场的喧闹和对自由的向往,表达诗人归隐无望的怅惘。
㉒“不好意思,我好多次把他想成我。”老林说,“我觉得他就是我梦里的样子。有时候,我都分不清他是我还是我是他。”失落,能不失落吗?他到底没能理直气壮地说出那句话:老林,行,是个人物!但他现在想通了,不管是谁,心里装着老百姓,真干了,干好了,都是好样的!
㉓老林舒了口气,这话在心里憋了两年多,终于一吐为快。身上有了困意,便躺下来,不知不觉睡着了,恍惚间,他感到自己全身长出枝条,开满小花,变成了一丛野荆。
③猕猴桃历史记载源远流长,证明其上千年前就出现并被食用,然而中国的猕猴桃直到几十年 前还未进入果园被驯化栽培。猕猴桃喜阴怕晒,畏旱又怕涝,对水份土壤的要求都较高。同时,猕猴桃属于雌雄异株,花朵对蜜蜂的吸引力不强,人工栽培难度较大。即使被少数人移植到庭院里,猕猴桃也只是用来观赏而非食用。
④1904年,命运给了猕猴桃一张通往海另一边的船票。各国的商人和基督传教士们来到中国,一个叫伊莎贝尔的新西兰教育学者来到宜昌。这种被后来的西方人描述成融合了草莓、香蕉、凤梨风味的特殊水果给她留下深刻印象。在返国时,她带上了猕猴桃的种子。温带海洋性气候的新西兰是猕猴桃生长的理想之地,难授粉的问题在新西兰的人工栽培下得到解决,即将蜜蜂种群规模保持在每公顷果园一定的比例,促使猕猴桃在新西兰被广泛种植。1924年,在南太平洋扎根的猕猴桃被培育出新品种,个头更大,表皮绒毛分布均匀,耐受磕碰、适宜储存运输。1966年左右, Kiwifruit(奇异果)这个新名字诞生;1977年,新西兰奇异果国际营销公司成立,出口新西兰的所有奇异果,它们有着唯一品牌“ZESPRI”(佳沛)。
A.归至家/乃夜发书陈/箧数十B.归至/家乃夜发书/陈箧数十
C.归至家/乃夜发书陈箧/数十D.归至家/乃夜发书/陈箧数十
9.把文中画横线的句子翻译成现代汉语。
(1)所以动心忍性,曾益其所不能。
(2)读书欲睡,引锥自刺其股,血流至足。
10.甲乙两文都讲名人的故事,通过故事告诉我们一个什么共同的道理?请结合甲乙两文说说这个共同道理是如何得出的。
(节选自《苏秦以连横说秦》)
【注】①简:选择。②锥:锥子。③扺(zhǐ)掌而谈:指谈得很融洽。扺掌,击掌。
7.解释下列加点词在文中的意思。
(1)行拂乱其所为 拂:_______(2)发于声而后喻 喻:_______
(3)去秦而归 去:_______(4)赵王大说 说:_______
8.下列对文中画波浪线部分的断句,正确的一项是( )
B.“福”既要人付出心血与汗水去缔造,又是来自上天 幸运,要天人合力才能成全。
C.“福”既是来自上天的幸运,又要人付出心血与汗水去创造,要天人合力才能成全。
D.“福”既是来自上天的幸运,又要人付出心血与汗水去缔造,要天人合力就能成全。
3.名著阅读:阅读选段,回答问题。
如果单从外表上看来,它并不令人生畏,相反,看上去它相当美丽,它有纤细而优雅的姿态,淡绿的体色,轻薄如纱的长翼。颈部是柔软的,头可以朝任何方向自由转动。只有这种昆虫能向各个方向凝视,真可谓是眼观六路。它甚至还有一个面孔。这一切都构成了这样一个小动物的温柔。
13.小说为什么以“野荆花”为题?请结合全文,简要分析。
(四)(12分)
阅读下面文字,完成各小题。
猕猴桃的奇异之旅
①猕猴桃奇异之旅的第一站从它的发源地——湖北宜昌市夷陵区开始。早在先秦时期,这里充沛的雨量与湿润空气就催生了一种古老藤本果树的生长蔓延,其椭圆形果子表皮覆盖浓密绒毛,内里是亮绿的果肉和一排黑色的种子。
⑭荆花是宝。那天老林才发现,这满山野荆,是天然的聚宝盆。查了资料,荆花蜜是我国大宗蜜源中最稳收的蜜品之一。老林一拍大腿:“养蜂!”
⑮这事成了,有政策扶持,有熟人提供市场,一户带一户,大户带小户,村里的荆花蜜叫响了品牌。打那儿起,老林在乡亲们眼里,是活菩萨、亲兄弟,山货、蔬菜、散养蛋,送到他屋里,不要都不行。
⑩“论头脑,我老林谁也不输!”老林的话音里一下子有了底气,“过去没机会,现在机会来了,是骡子是马,咱牵出来遛遛!”
⑪这话还真不是吹的,老林心中有盘棋。上项目,这是头等大事,入村不久,他就有了规划:村中民居多为清末建筑,原汁原味,还是省级传统文化村落,加之山色湖光,发展生态旅游得天独厚。但是,要想富,先修路,解决交通问题,更是迫在眉睫。村委会上老林把思路讲了,村主任老梁却灰着脸,说:“好倒是好,可这不是一句话的事,还是给老少爷们找个实实在在的门路要紧。”说着,嘿嘿一笑,“老林你别见笑,咱山里人没见过世面,就讲个实际。”
②(qí)愿追求,也是对“福”的具体指向。“福”是很迷人的字眼。甲骨文中的“福”是双手捧酒浇在祭台上,从示从畐,顺天垂象,腹满之义。可见,“福”既要人付出心血与汗水去构造,又是来自上天的幸运,要天人合力就能成全。八闽地名,福、寿、安、宁皆备,散发浓浓的“福泰永宁,平安长乐”愿求。这就是“福”文化的心理深层内③(hán)。
(7)《得道多助,失道寡助》指出决定战争胜负的三要素及其关系的句子(即中心观点)是:___________,___________。
2.阅读下面文字,按要求作答。
福建是中国唯一以“福”字①(guàn)名的省份。在 ( )传统“福”文化的中国人看来,这个地方的祖先 ( ),起名有水平。要 ( )福建何以谓“福”,需要从福建省名由来说起,“福建”由福州府和建州府各取首字而来。这是对“福”的
⑲野荆在风中点头,似乎在说:“这招真灵,高!”
⑳老林抬头看天,几朵闲云游弋。日头亮得晃眼,好像一个哲人,把他看穿了。老林突然低下头,长长地叹息一声。
㉑“多好啊,生态旅游也发展起来了,这是我的梦,可这梦不是我圆的。”老林鼻子有点酸,连记忆都散发着潮湿的酸味。其实,路没修好,他就病倒了,没辙。接任他的那个年轻人,办法多,魄力大,能跑能熬能吃苦,说话间就把他的梦圆了。
C.“见”字写出一种无意得之、悠然忘我的心境,营造闲远散淡的氛围。
D.“真意”指的是自然的意趣,“忘言”留下了不尽之意让读者去体味。
5.既然“结庐在人境”,为何没有“车马喧”?请用诗中句子作答。
6.“悠然见南山”中的“悠然”一词写出了诗人怎样的心境?
【甲】舜发于畎亩之中,傅说举于版筑之间,胶鬲举于鱼盐之中,管夷吾举于士,孙叔敖举于海,百里奚举于市,故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。
㉔“做一棵野荆,挺好的。”老林在梦里咂咂嘴,对自己说。
(有删改)
11.下列对小说相关内容分析不正确的一项是( )
A.开头从天气和野荆花写起,日光不燥不烈,十分温暖,荆花艳而不妖,既紧扣标题,又为下文奠定了情感基调。
B.老林来到这个深度贫困村工作,原因有三:一是单位安排,二是妻子的激将法,三是他想证明自己有能力。
C.老林入村不久后做 规划十分美好,但遭到了村主任老梁的反对,主要是老梁认为老林没有进行实际调研。