2018高考一轮复习统计概率专题
2018版高考数学文人教A版大一轮复习配套课件:第十章

至少有 1 个白球和全是黑球不同时发生,且一定有一个
发生.∴②中两事件是对立事件.
答案 B
1 3.(2016· 天津卷)甲、乙两人下棋,两人下成和棋的概率是2, 1 甲获胜的概率是3,则甲不输的概率为( ) 5 2 1 1 A.6 B.5 C.6 D.3
解析 设“两人下成和棋”为事件 A,“甲获胜”为事
①A 与 D 为对立事件;②B 与 C 是互斥事件;③C 与 E 是对
立事件;④P(C∪E)=1;⑤P(B)=P(C).
解析
当取出的 2 个球中一黄一白时,B 与 C 都发生,②不
偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有 试验结果写出来,看所求事件包含哪些试验结果,从而断
定所给事件的关系.
(2)准确把握互斥事件与对立事件的概念. ①互斥事件是不可能同时发生的事件,但可以同时不发生. ②对立事件是特殊的互斥事件,特殊在对立的两个事件不 可能都不发生,即有且仅有一个发生.
定义 符号表示
如果事件A发生,则事件B一定发生, 包含 事件A(或称事件 _____( B⊇A 或A⊆B) 包含关系 这时称事件B______ A包含于事件B) A=B _______
相等关系
并事件(和 事件)
若B⊇A且A⊇B
若某事件发生当且仅当事件A发生或
事件B发生,称此事件为事件A与事 A∪B(或A+B) 并事件 或和事件) 件B的_______(
• 第4讲
随机事件的概率
最新考纲
1.了解随机事件发生的不确定性和频率的稳定性,
了解概率的意义以及频率与概率的区别; 2.了解两个互斥事件
的概率加法公式.
知识梳理
1.频率与概率 (1)在相同的条件 S 下重复 n 次试验,观察某一事件 A 是否 出现, 称 n 次试验中事件 A 出现的次数 nA 为事件 A 出现的
(完整word版)2018年高考数学总复习概率及其计算

第十三章概率与统计本章知识结构图第一节 概率及其计算考纲解读1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。
2.了解两个互斥事件的概率的加法公式。
3.掌握古典概型及其概率计算公式。
4.了解随机数的意义,能运用模拟方法估计概率。
5.了解几何概型的意义。
命题趋势探究1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。
2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。
知识点精讲一、必然事件、不可能事件、随机事件在一定条件下:①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件;③可能发生也可能不发生的事件叫随机事件。
二、概率在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。
对于必然事件A ,;对于不可能事件A ,=0.三、基本事件和基本事件空间在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。
四、两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同()(A)=()A card P A card =Ω包含基本事件数基本事件总数2、几何概型条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为Aμ.()P A =AμμΩ。
五、互斥事件的概率1、互斥事件在一次实验中不能同时发生的事件称为互斥事件。
事件A 与事件B 互斥,则()()()P A B P A P B =+ 。
2、对立事件事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。
()()1P A p A =- 。
3、互斥事件与对立事件的联系对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。
2018-2019届高三数学(文)一轮复习课件:第9章 统计、统计案例、概率 第3节

中a,b是待定数. n n xi- x yi- y xiyi-n x y i=1 ∧ i=1 = , b= n n 2 2 2 x - n x x - x i i i=1 i=1 ∧ ∧ a= y -b x .
(3)回归分析
②如果 k≥k0,就推断“X 与 Y 有关系”,这种推断犯错误 的概率不超过 P(K2≥k0);否则,就认为在犯错误的概率不超过 P(K2≥k0)的前提下不能推断“X 与 Y 有关系”.
质疑探究 2∶k2≥3.841 和 k2≥6.635 分别说明了什么问题?
提示:独立性检验得出的结论带有概率性质,只能说结论 成立的概率有多大,而不能完全肯定一个结论,因此才出现了 临界值,3.841 和 6.635 就是两个常用的临界值,一般认为当 k2≥3.841 时, 则有 95%的把握说事件 A 与 B 有关; 当 k2≥6.635 时,则有 99%的把握说事件 A 与 B 有关.
[ 答案] B
2.下面是 2×2 列联表: y1 x1 x2 总计 a 22 b y2 21 25 46 ) B.52,50 D.74,52 总计 73 47 120
则表中 a,b 的值分别为( A.94,72 C.52,74
[ 解析] 选 C.
[ 答案]
∵a+21=73, ∴a=52, 又 a+22=b, ∴b=74. 故
近,就称这两个变量之间具有线性相关关系,这条直线叫做回 归直线. (2)回归方程 ①最小二乘法:求回归直线使得样本数据的点到回归直线
距离的平方和 最小的方法叫做最小二乘法. 的________________
∧
∧
∧
②回归方程:方程 y =bx+a是两个具有线性相关关系的变 量的一组数据(x1,y1),(x2,y2),…,(xn,yn)的回归方程,其
2018版高考数学一轮总温习 高考大题冲关系列6 概率与统计的综合问题讲义 理

2×
(
3 4
×23×34
×13+
34×23×
14×23
)
=16404=152
,P(X
=6)=34×
2 3
×34×23=13464=14.
可得随机变量 X 的分布列为
所以数学期望 E(X)=0×1144+1×752+2×12454+3×112 +4×152+6×14=263.
-冲关策略- 解决此类题目的关键是将实际问题转化为数学问题,正确 理解随机变量取每一个值所表示的具体事件,求得该事件 发生的概率.
以频率估计概率得 T 的分布列为
从而 E(T)=25×0.2+30×0.3 +35×0.4 +40×0.1= 32(分钟).
(2)设 T1,T2 分别表示往、返所需时间,T1,T2 的取值 相互独立,且与 T 的分布列相同.设事件 A 表示“刘教授 共用时间不超过 120 分钟”,由于讲座时间为 50 分钟,所 以事件 A 对应于“刘教授在路途中的时间不超过 70 分钟”.
大题冲关系列六
概率与统计的综合问题 命题动向:通过对近五年的高考试题分析,在高考的解 答题中,对概率与随机变量及其分布相结合的综合问题的考 查既是热点又是重点,并且常常与统计相结合,设计成包含 概率计算、概率分布表、随机变量的数学期望与方差、统计 图表的识别等知识为主的综合题.以考生比较熟悉的实际应 用问题为载体,考查学生应用基础知识和基本方法分析问题 和解决问题的能力.
(1)求 N 和[30,35)这组的参加者人数 N1;
(2)已知[30,35)和[35,40)这两组各有 2 名数学教师,现从 这两个组中各选取 2 人担任接待工作,设两组的选择互不影 响,求两组选出的人中都至少有 1 名数学教师的概率?
(完整版)2018年高考统计与概率专题

2018年高考统计与概率专题(全国卷1文)2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B(全国卷1理)2.如图,正方形ABCD 内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π4【考点】:几何概型【思路】:几何概型的面积问题,=P 基本事件所包含的面积总面积.【解析】:()21212=82r S P S r ππ==,故而选B 。
(全国卷2理)6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种(全国卷2文)6。
如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90πB 。
63πC 。
42π D.36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B 。
(天津卷)文(3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫。
从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(A)45(B)35(C)25(D)15(全国卷2文)11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C。
2018版高考数学(理)一轮复习文档:第十一章统计与概率11.2含解析

1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数.4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离.(2)标准差:s=错误!。
(3)方差:s2=错误.【知识拓展】1.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示错误!,频率=组距×频率组距。
(2)频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.2.平均数、方差的公式推广(1)若数据x1,x2,…,x n的平均数为错误!,那么mx1+a,mx2+a,mx3+a,…,mx n+a的平均数是m错误!+a.(2)数据x1,x2,…,x n的方差为s2。
①数据x1+a,x2+a,…,x n+a的方差也为s2;②数据ax1,ax2,…,ax n的方差为a2s2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √)(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( ×)(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.(√)(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.(×)(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √)(6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.(×)1。
(完整word版)2018年高考数学总复习概率及其计算

第十三章概率与统计本章知识结构图统计概率第一节概率及其计算考纲解读1. 了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。
2. 了解两个互斥事件的概率的加法公式。
3. 掌握古典概型及其概率计算公式。
4. 了解随机数的意义,能运用模拟方法估计概率。
5. 了解几何概型的意义。
命题趋势探究1. 本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。
2. 命题设置以两种概型的概率计算及运用互斥、 对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。
知识点精讲一、 必然事件、不可能事件、随机事件在一定条件下:① 必然要发生的事件叫必然事件; ② 一定不发生的事件叫不可能事件; ③ 可能发生也可能不发生的事件叫随机事件。
二、 概率在相同条件下,做次重复实验,事件 A 发生次,测得 A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动, 随着的增加,摆动幅度越来越小,这时就把这个常数叫 做A 的概率,记作。
对于必然事件A,;对于不可能事件 A, =0.三、 基本事件和基本事件空间在一次实验中,不可能再分的事件称为基本事件, 所有基本事件组成的集合称为基本事件空间。
四、 两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件2、每个基本事件发生的可能性相同P AA 包含基本事件数 =card (A) 基本事件总数=card ()2、几何概型条件:每个事件都可以看作某几何区域的子集A ,A 的几何度量(长度、面积、体积或时间)记为五、互斥事件的概率1互斥事件在一次实验中不能同时发生的事件称为互斥事件。
事件A与事件B互斥,则P AUB P A P B2、对立事件事件A,B互斥,且其中必有一个发生,称事件A,B对立,记作B A或A B。
P A 1 p A。
3、互斥事件与对立事件的联系对立事件必是互斥事件,即“事件A, B对立”是”事件 A B互斥“的充分不必要条件。
2018届高考数学一轮复习专题六概率与统计课件文

【标准解答】 (1)当 x≤19 时,y=3 800; 当 x>19 时,y=3 800+500(x-19)=500x-5 700, 所以 y 与 x 的函数解析式为
y=350800x0-,5
70ቤተ መጻሕፍቲ ባይዱ,
x≤19, x>19
(x∈N).(4 分)
(2)由柱状图知,需更换的零件数不大于 18 的频率为 0.46,不
记 x 表示 1 台机器在三年使用期内需更换的易损零件数,y 表示 1 台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同 时购买的易损零件数.
(1)若 n=19,求 y 与 x 的函数解析式; (2)若要求“需更换的易损零件数不大于 n”的频率不小于 0.5, 求 n 的最小值; (3)假设这 100 台机器在购机的同时每台都购买 19 个易损零件, 或每台都购买 20 个易损零件,分别计算这 100 台机器在购买易损零 件上所需费用的平均数,以此作为决策依据,购买 1 台机器的同时 应购买 19 个还是 20 个易损零件?
• 三、听英语课要注重实践
• 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
2019/8/2
最新中小学教学课件
16
thank
you!
2019/8/2
最新中小学教学课件
17
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。
• 一、听理科课重在理解基本概念和规律
• 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解, 同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017高考一轮复习统计概率专题一.解答题(共16小题)1.(2016?山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.2.(2016?天津)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.3.(2016?河北区三模)集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.4.(2016?唐山一模)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元:方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(Ⅰ)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(Ⅱ)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算5.(2016?武汉校级模拟)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.(1)若直方图中后四组的频数成等差数列,试估计全年级视力在以下的人数;(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到右表中数据,根据表中的数据,年级名次1~50951~1000是否近视近视4132不近视918能否在犯错的概率不超过的前提下认为视力与学习成绩有关系(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50的学生人数为X,求X的分布列和数学期望.附:P(K2≥k)k.6.(2016?海南校级模拟)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标为k,当k≥85时,产品为一级品;当75≤k<85时,产品为二级品;当70≤k<75时,产品为三级品.现用两种新配方(分别称为A配方和B配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(以下均视频率为概率)A配方的频数分布表 B配方的频数分布表指标值分组[75,80)[80,85)[85,90)[90,95)指标值分组[75,80)[80,85)[85,90)[90,95)[75,80)频数10304020频数510154030(1)若从B配方产品中有放回地随机抽取3件,记“抽出的B配方产品中至少1件二级品”为事件C,求事件C的概率P(C);(2)若两种新产品的利润率与质量指标值k满足如下关系:y=(其中<t<),从长期来看,投资哪种配方的产品平均利润率较大7.(2016?兴庆区校级二模)袋中装有围棋黑色和白色棋子共7枚,从中任取2枚棋子都是白色的概率为.现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,…,取后均不放回,直到有一人取到白棋即终止.每枚棋子在每一次被摸出的机会都是等可能的.用X表示取棋子终止时所需的取棋子的次数.(1)求随机变量X的概率分布列和数学期望E(X);(2)求甲取到白球的概率.8.(2016?海口模拟)汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:A型车出租天数1234567车辆数51030351532B型车出租天数1234567车辆数1420201615105( I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.9.(2016?大连二模)甲、乙两名乒乓球运动员进行乒乓球单打比赛,根据以往比赛的胜负情况,每一局甲胜的概率为,乙胜的概率为,如果比赛采用“五局三胜制”(先胜三局者获胜,比赛结束).(1)求甲获得比赛胜利的概率;(2)设比赛结束时的局数为X,求随机变量X的分布列和数学期望.10.(2016?泰安二模)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.(1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关课外体育不达标课外体育达标合计男60____________女____________110合计__________________(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取12人,再从这12名学生中随机抽取3人参加体育知识问卷调查,记“课外体育达标”的人数为ξ,求ξ得分布列和数学期望.附参考公式与数据:K2=P(K2≥k0)k011.(2016?辽宁校级模拟)语文成绩服从正态分布N(100,),数学成绩的频率分布直方图如图,如果成绩大于135的则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有x人,求x的分布列和数学期望.(附公式及表)若x~N(μ,σ2),则P(μ﹣σ<x≤μ+σ)=,P(μ﹣2σ<x≤μ+2σ)=.12.(2016?潮南区模拟)某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]芯片甲81240328芯片乙71840296(I)试分别估计芯片甲,芯片乙为合格品的概率;(Ⅱ)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;(ii)求生产5件芯片乙所获得的利润不少于140元的概率.13.(2016?石嘴山校级一模)在一次考试中,5名同学数学、物理成绩如表所示:学生A B C D E数学(x分)8991939597物理(y分)8789899293(1)根据表中数据,求物理分y对数学分x的回归方程:(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以X表示选中的同学中物理成绩高于90分的人数,求随机变量X的分布列及数学期望E(X).(附:回归方程中,,)14.(2016?重庆模拟)某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:x258911y1210887(Ⅰ)求y关于x的回归方程=x+;(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.(Ⅲ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数,δ2近似为样本方差s2,求P(<X<)附:①回归方程=x+中,=,=﹣b.②≈,≈.若X~N(μ,δ2),则P(μ﹣δ<X<μ+δ)=,P(μ﹣2δ<X<μ+2δ)=.15.(2016春?抚州校级月考)西安世园会志愿者招骋正如火如荼进行着,甲、乙、丙三名大学生跃跃欲试,已知甲能被录用的概率为,甲、乙两人都不能被录用的概率为,乙、丙两人都能被录用的概率为.(1)乙、丙两人各自能被录用的概率;(2)求甲、乙、丙三人至少有两人能被录用的概率.16.(2016?东城区模拟)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.2017高考一轮复习统计概率专题参考答案与试题解析一.解答题(共16小题)1.(2016?山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.【分析】(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,进而可得答案;(II)由已知可得:“星队”两轮得分之和为X可能为:0,1,2,3,4,6,进而得到X的分布列和数学期望.【解答】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==故X的分布列如下图所示:X 012 3 4 6P∴数学期望EX=0×+1×+2×+3×+4×+6×==【点评】本题考查离散型随机变量的分布列和数学期望,属中档题.2.(2016?天津)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.【分析】(1)选出的2人参加义工活动次数之和为4为事件A,求出选出的2人参加义工活动次数之和的所有结果,即可求解概率.则P(A).(2)随机变量X的可能取值为0,1,2,3分别求出P(X=0),P(X=1),P(X=2),P(X=3)的值,由此能求出X的分布列和EX.【解答】解:(1)从10人中选出2人的选法共有=45种,事件A:参加次数的和为4,情况有:①1人参加1次,另1人参加3次,②2人都参加2次;共有+=15种,∴事件A发生概率:P==.(Ⅱ)X的可能取值为0,1,2.P(X=0)==P(X=1)==,P(X=2)==,∴X的分布列为:X012P∴EX=0×+1×+2×=1.【点评】本题考查离散型随机变量的分布列和数学期望,是中档题,在历年的高考中都是必考题型.解题时要认真审题,仔细解答,注意古典概型的灵活运用.3.(2016?河北区三模)集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.【分析】(Ⅰ)由条件利用相互独立事件的概率乘法公式求得3个元件都不能正常工作的概率P1的值,3个元件中的2个不能正常工作的概率P2的值,再把P1和P2相加,即得所求.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),求得P(X=100ξ)=P(ξ=k)的值,可得X的分布列,从而求得X的期望.【解答】解:(Ⅰ)三个电子元件能正常工作分别记为事件A,B,C,则P(A)=,P(B)=,P(C)=.依题意,集成电路E需要维修有两种情形:①3个元件都不能正常工作,概率为P1=P()=P()P()P()=××=.②3个元件中的2个不能正常工作,概率为P2=P(A)+P(B)+P(C)=++×=.所以,集成电路E需要维修的概率为P1+P2=+=.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),而X=100ξ,P(X=100ξ)=P(ξ=k)=??,k=0,1,2.X的分布列为:X0100200P∴EX=0×+100×+200×=.【点评】本题主要考查相互独立事件的概率乘法公式、互斥事件的概率加法公式,离散型随机变量的分布列,属于中档题.4.(2016?唐山一模)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元:方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(Ⅰ)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(Ⅱ)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算【分析】(Ⅰ)先求出顾客获得半价优惠的概率,由此利用对立事件概率计算公式能求出两个顾客至少一个人获得半价优惠的概率.(Ⅱ)分别求出方案一和方案二和付款金额,由此能比较哪一种方案更划算.【解答】解:(Ⅰ)记顾客获得半价优惠为事件A,则P(A)==,两个顾客至少一个人获得半价优惠的概率:P=1﹣P()P()=1﹣(1﹣)2=.…(5分)(Ⅱ)若选择方案一,则付款金额为320﹣50=270元.若选择方案二,记付款金额为X元,则X可取160,224,256,320.P(X=160)=,P(X=224)==,P(X=256)==,P(X=320)==,则E(X)=160×+224×+256×+320×=240.∵270>240,∴第二种方案比较划算.…(12分)【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法及应用,是中档题,解题时要认真审题,注意对立事件概率计算公式的合理运用.5.(2016?武汉校级模拟)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.(1)若直方图中后四组的频数成等差数列,试估计全年级视力在以下的人数;(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到右表中数据,根据表中的数据,年级名次1~50951~1000是否近视近视4132不近视918能否在犯错的概率不超过的前提下认为视力与学习成绩有关系(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50的学生人数为X,求X的分布列和数学期望.附:P(K2≥k)k.【分析】(1)设各组的频率为f i(i=1,2,3,4,5,6),由已知得后四组频数依次为27,24,21,18,由此能求出估计全年级视力在以下的人数.(2)求出K2,由此能求出在犯错误的概率不超过的前提下认为视力与学习成绩有关系.(Ⅲ)依题意9人中年级名次在1~50名和951~1000名分别有3人和6人,X可取0、1、2、3,分别求出相应在的概率,由此能求出X的分布列和X的数学期望.【解答】解:(1)设各组的频率为f i(i=1,2,3,4,5,6),由图可知,第一组有3人,第二组7人,第三组27人,…(1分)因为后四组的频数成等差数列,所以后四组频数依次为27,24,21,18…(2分)所以视力在以下的频率为:=,故全年级视力在以下的人数约为…(3分)(2)因此在犯错误的概率不超过的前提下认为视力与学习成绩有关系.…(6分)(Ⅲ)依题意9人中年级名次在1~50名和951~1000名分别有3人和6人,X可取0、1、2、3,…(7分),,,,∴X的分布列为:X0123P…(11分)X的数学期望…(12分)【点评】本题考查频率分布直方图的应用,考查离散型机随机变量概率分布列、数学期望的求法,是中档题,解题时要认真审题,注意排列组合的合理运用.6.(2016?海南校级模拟)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标为k,当k≥85时,产品为一级品;当75≤k<85时,产品为二级品;当70≤k<75时,产品为三级品.现用两种新配方(分别称为A配方和B配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(以下均视频率为概率)A配方的频数分布表 B配方的频数分布表指标值分组[75,80)[80,85)[85,90)[90,95)指标值分组[75,80)[80,85)[85,90)[90,95)[75,80)频数10304020频数510154030(1)若从B配方产品中有放回地随机抽取3件,记“抽出的B配方产品中至少1件二级品”为事件C,求事件C的概率P(C);(2)若两种新产品的利润率与质量指标值k满足如下关系:y=(其中<t<),从长期来看,投资哪种配方的产品平均利润率较大【分析】(1)先求出P(抽中二级品)=,由此能求出事件C的概率P(C).(2)分别求出A的分布列,E(A)和B的分布列E(B),由此能求出从长期来看,投资哪种配方的产品平均利润率较大.【解答】解:(1)P(抽中二级品)=,P(没抽中二级品)=,P(C)=1﹣()3=.(3)A的分布列为:y t5t2P∴E(A)=+2t2B的分布列为:y t5t2t2P∴E(B)=+∵<t<,∴E(A)﹣E(B)=t(t﹣)>0,∴E(A)较大,投资A.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.7.(2016?兴庆区校级二模)袋中装有围棋黑色和白色棋子共7枚,从中任取2枚棋子都是白色的概率为.现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,…,取后均不放回,直到有一人取到白棋即终止.每枚棋子在每一次被摸出的机会都是等可能的.用X表示取棋子终止时所需的取棋子的次数.(1)求随机变量X的概率分布列和数学期望E(X);(2)求甲取到白球的概率.【分析】(1)由已知先出白子个数,进而可得随机变量X的概率分布列和数学期望E(X);(2)记事件A=“甲取到白球”,则事件A包括以下三个互斥事件:A1=“甲第1次取球时取出白球”;A2=“甲第2次取球时取出白球”;A3=“甲第3次取球时取出白球”.利用互斥事件概率加法公式,可得:甲取到白球的概率.【解答】解:设袋中白球共有x个,则依题意知:=,即=,即 x2﹣x﹣6=0,解之得x=3,(x=﹣2舍去).…(1分)(1)袋中的7枚棋子3白4黑,随机变量X的所有可能取值是1,2,3,4,5.P(x=1)==,P(x=2)==,P(x=3)==,P(x=4)==,P(x=5)==,…(5分)(注:此段(4分)的分配是每错1个扣(1分),错到4个即不得分.)随机变量X的概率分布列为:X12345P所以E(X)=1×+2×+3×+4×+5×=2.…(6分)(2)记事件A=“甲取到白球”,则事件A包括以下三个互斥事件:A1=“甲第1次取球时取出白球”;A2=“甲第2次取球时取出白球”;A3=“甲第3次取球时取出白球”.依题意知:P(A1)==,P(A2)==,P(A3)==,…(9分)(注:此段(3分)的分配是每错1个扣(1分),错到3个即不得分.)所以,甲取到白球的概率为P(A)=P(A1)+P(A2)+P(A3)=…(10分)【点评】本题考查的知识点是古典概型的概率计算公式,随机变量的分布列和数学期望,互斥事件概率加法公式,难度中档.8.(2016?海口模拟)汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:A型车出租天数1234567车辆数51030351532B型车出租天数1234567车辆数1420201615105( I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.【分析】(Ⅰ)利用古典概型的概率计算公式即可得出;(Ⅱ)该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天分为以下三种情况:A型车1天B型车3天;A型车B型车都2天;A型车3天B型车1天,利用互斥事件和独立事件的概率计算公式即可得出;(Ⅱ)从数学期望和方差分析即可得出结论.【解答】解:( I)∵出租天数为3天的汽车A型车有30辆,B型车20辆.从中随机抽取一辆,这辆汽车是A型车的概率约为=.( II)设“事件A i表示一辆A型车在一周内出租天数恰好为i天”,“事件B j表示一辆B型车在一周内出租天数恰好为j天”,其中i,j=1,2, (7)则该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率为P(A1B3+A2B2+A3B1)=P(A1B3)+P(A2B2)+P(A3B1)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==.该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率为.(Ⅲ)设X为A型车出租的天数,则X的分布列为X1234567P设Y为B型车出租的天数,则Y的分布列为Y1234567PE(X)=1×+2×+3×+4×+5×+6×+7×=.E(Y)=1×+2×+3×+4×+5×+6×+7×=.一辆A类型的出租车一个星期出租天数的平均值为天,B类车型一个星期出租天数的平均值为天.从出租天数的数据来看,A型车出租天数的方差大于B型车出租天数的方差,综合分析,选择A类型的出租车更加合理.【点评】上来掌握古典概型的概率计算公式、互斥事件和独立事件的概率计算公式、数学期望和方差的计算公式和意义是解题的关键.9.(2016?大连二模)甲、乙两名乒乓球运动员进行乒乓球单打比赛,根据以往比赛的胜负情况,每一局甲胜的概率为,乙胜的概率为,如果比赛采用“五局三胜制”(先胜三局者获胜,比赛结束).(1)求甲获得比赛胜利的概率;(2)设比赛结束时的局数为X,求随机变量X的分布列和数学期望.【分析】(1)甲获得比赛胜利包含三种情况:①甲连胜三局;②前三局甲两胜一负,第四局甲胜;③前四局甲两胜两负,第五局甲胜.由此能求出甲获得比赛胜利的概率.(2)由已知得X的可能取值为3,4,5,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(1)甲获得比赛胜利包含三种情况:①甲连胜三局;②前三局甲两胜一负,第四局甲胜;③前四局甲两胜两负,第五局甲胜.∴甲获得比赛胜利的概率:p=++C()2()2×=.(2)由已知得X的可能取值为3,4,5,P(X=3)==,P(X=4)=+×=,P(X=5)=C()2()2×+C()2()2×=,∴随机变量X的分布列为:X 3 4 5P数学期望EX==.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.10.(2016?泰安二模)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.(1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关课外体育不达标课外体育达标合计男6030 90女90 20 110合计150 50 200(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取12人,再从这12名学生中随机抽取3人参加体育知识问卷调查,记“课外体育达标”的人数为ξ,求ξ得分布列和数学期望.附参考公式与数据:K2=P(K2≥k0)k0【分析】(1)由题意得“课外体育达标”人数为50,则不达标人数为150,由此列联表,求出K2=,从而得到在犯错误的概率不超过的前提下没有理由认为“课外体育达标”与性别有关.(2)由题意得在不达标学生中抽取的人数为9人,在达标学生中抽取人数为3人,则ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).【解答】解:(1)由题意得“课外体育达标”人数为:200×[(+)×10]=50,则不达标人数为150,∴列联表如下:课外体育不达标课外体育达标合计男603090女9020110合计15050200∴K2==,∴在犯错误的概率不超过的前提下没有理由认为“课外体育达标”与性别有关.(2)由题意得在不达标学生中抽取的人数为:12×=9人,在达标学生中抽取人数为:12×=3人,则ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:ξ 0 1 2 3PE(ξ)==.【点评】本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求示,是中档题,解题时要认真审题,注意排列组合知识的合理运用.11.(2016?辽宁校级模拟)语文成绩服从正态分布N(100,),数学成绩的频率分布直方图如图,如果成绩大于135的则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有x人,求x的分布列和数学期望.(附公式及表)。