大气数据仪表介绍

合集下载

民航概论重要知识点

民航概论重要知识点
9.1919年,巴黎和会(法国草拟航空公约,38个国家签署),巴黎公约,第一部国家间的航空法。
10.1919年,德国,首先在国内民航运输,后成立了“国际航空运输协会”。
第三节中国民航发展历史
1.中国第一架飞机1909年发明,发明者:冯如;
2.中国第一条航线:北京——天津,1920年;
3.中国第一条国际航线:广州——河内,1936年;
4.二战时期从昆明经喜马拉雅山往返印度的“驼峰航线“;
5.建国初期的“两航起义”;
第二章民用航空器第一节民用航空器的分类和发展
1.航空器根据与空气的密度关系及有无动力的分类标准;
答:航空器根据获得升力方式的不同分为两类:一类由于总体的比重轻于空气,依靠空气的浮力而漂浮于空中的称为轻于空气的航空器。这一类中又分为气球和飞艇,气球和飞艇的主要区别在于气球上不装有动力,它的飞行方向不由本身控制;而飞艇上装有动力,它可用本身的动力控制飞行的放向。另一类航空器则本身重于空气,它的升空依靠自身与空气之间的相对运动产生的空气动力克服重力而升空。这类航空器分为非动力驱动和动力驱动的两类,非动力驱动的有滑翔机和风筝,动力驱动的分为飞机(或称固定翼航空器)、旋翼航空器和扑翼机三类。
9.飞机设计为后掠翼的作用(两方面);
答:①减小激波阻力②延缓激波的产生
10.马赫数和临界马赫数的定义;
答:马赫数:物体运动速度与声速之比来衡量空气被压缩的程度。临界马赫数:飞机开始产生局部激波的M数称为临界马赫数。
11.飞机的三轴及绕三轴运动时飞机的姿态名称;
12.飞机在平飞、俯仰运动和侧倾时的受力状况;
4.机翼操纵面(副翼、襟翼、缝翼、扰流板)的作用;
答:副翼:操纵飞机的倾斜襟翼:降低飞机起飞和降落的时速,保持升力缝翼:增升装置扰流板:增加阻力

飞机的仪表系统

飞机的仪表系统

飞机的仪表系统飞机的电子仪表系统共分为三部分,飞行控制仪表系统、导航系统和通信系统。

飞机的电子仪表系统是飞机感知和处理外部情况并控制飞行状态的核心,相当于人的大脑及神经系统,对保障飞行安全、改善飞行性能起着关键作用。

(一)飞行控制系统飞行控制系统的基本功能是控制飞机气动操纵面,改变飞机的布局,增加飞机的稳定性、改善操纵品质、优化飞行性能。

其具体功能有:保持飞机姿态和航向;控制空速及飞行轨迹;自动导航和自动着陆。

该系统的作用是减轻飞行员工作负担,做到安全飞行,提高完成任务的效率和经济性。

飞行控制系统一般由传感器、计算机、伺服作动器、控制显示装置、检测装置及能源部分组成。

飞机的控制仪表系统通过提供飞机飞行中的各种信息和数据,使驾驶员及时了解飞行情况,从而对飞机进行控制以顺利完成飞行任务。

早期的飞机飞行又低又慢,只装有温度计和气压计等简单仪表,其他信息主要是靠飞行员的感觉获得。

现在的飞机则装备了大量仪表,并由计算机统一管理,用先进的显示技术直接显示出来,大大方便了驾驶员的工作。

飞行控制仪表包括以下几种类型。

(1)第一类是大气数据仪表,由气压高度表、飞行速度表、气温度表、大气数据计算机等组成;(2)第二类是飞行姿态指引仪表,该系统可提供一套精确的飞机姿态数据如位置、倾斜、航向、速度和加速度等,实现了飞机导航、控制及显示的一体化;(3)第三类是惯性基准系统,主要包括陀螺仪表。

20世纪70年代以前是机械式陀螺,现代客机使用更先进的激光陀螺。

(二)电子综合仪表系统20世纪60年代后,由于计算机的小型化及显像管的广泛应用,飞机飞行仪表产生了革命性变化,新一代电子综合仪表广泛应用。

该仪表系统由两大部分组成,一是电子飞行仪表系统(包括电子水平状态指示器、电子姿态指引仪、符号发生器及方式控制面板、信号仪表选择板等);一是发动机指示与机组警告系统,可以显示发动机的参数并对其进行自动监控,如出现厂作异常情况则会发出瞥告并记录下故障时的系统参数。

飞机电子设备(第二节大气数据仪表高度表)

飞机电子设备(第二节大气数据仪表高度表)

3、典型高度显示面板
4、气压高度表的使用
气压式高度表可以测量飞机的相对高度、绝 对高度和标准气压高度,其各种测量的方法分别 介绍如下:(用气压调节机构)
1)标准气压高度的测量
利用气压高度表测量标准气压高度时,先转 动调整旋钮使指针指示当地机场对应的标准气压 度,此时气压刻度盘应指示“760”,或1013.25指 针指示的数值就是标准气压高度。
2.2 气压式高度表
一、飞行高度的种类
概念:指飞机在空中距某一个基准面的垂直距离。 1、绝对高度----飞机从空中到海平面的垂直距离; 2、相对高度----飞机从空中到既定机场地面的垂直距离; 3、真实高度-----飞机从空中到正下方的地面目标上顶 的垂直距离; 4、标准气压高度-----飞机从空中到标准海平面(即大 气压力等于760mmHg)的垂直距离。
4)高度表在机场的零位调整
若飞机在飞行中选定某降落机场为基准面,使 高度表测量相对于机场的相对高度时,飞机落地 后,高度表指针应指零位。由于机场地面的气压 经常变化,有时飞机在地面,高度表不指示零位, 这时就需要调整零位。其方法是:先从气象台了 解当时该机场的气压,然后转动调整旋钮,使高 度指示零位。此时气压计数器应指示当时该机场 的气压。
二、高度表的基本原理 (一)气压高度公式(不推导)
1、适用于11000m以下的标准气压高度公式
2、适用于11000m以上的高度公式
式中:Ps为所在高度上的静压; P11为H=11000m时的静压; H11为11000m; T11为11000m时的气温,为216.5K
(二)气压式高度表的工作原理
飞机电子设备Βιβλιοθήκη 第二节 大气数据仪表2.1 大气的基本情况
一、大气层 1、对流层------11KM以下,两极8~11KM 赤道17~18KM 2、平流层----35~40KM 3、中间层----85KM 4、暖层----800KM 5、散逸层----800KM以上

仪表空气质量标准

仪表空气质量标准

仪表空气质量标准仪表空气质量标准是指用于衡量大气环境中各种污染物浓度和空气质量状况的仪器设备。

它是保护公众健康和环境的重要工具,能够提供准确的数据和信息,以便决策者制定相应的环境保护政策和措施。

仪表空气质量标准的制定是基于对大气环境中污染物的研究和监测。

根据国际上的通用标准和我国的实际情况,我国制定了一系列的仪表空气质量标准,用于评估大气环境质量和污染物浓度的程度。

首先,仪表空气质量标准包括了各种大气污染物的浓度限值。

例如,对于颗粒物(PM2.5和PM10)、二氧化硫(SO2)、二氧化氮(NO2)、一氧化碳(CO)和臭氧(O3)等主要污染物,我国制定了相应的浓度限值。

这些限值反映了大气环境中不同污染物的安全范围,超过这些限值则可能对人体健康和环境造成危害。

其次,仪表空气质量标准还包括了不同污染物的评价指标。

例如,对于颗粒物,我国制定了PM2.5和PM10的浓度限值,并规定了相应的评价指标,如空气质量指数(AQI)。

通过计算AQI,可以将大气环境质量划分为不同等级,从而更直观地反映大气污染的程度。

此外,仪表空气质量标准还包括了监测方法和技术要求。

为了保证监测数据的准确性和可比性,我国对大气环境监测设备和方法进行了严格的规定。

例如,对于PM2.5和PM10的监测,我国规定了采样设备、采样时间和采样点位等要求,以确保监测数据的可靠性。

仪表空气质量标准在我国的应用非常广泛。

它被用于城市、工业区、交通干道等地区的大气环境监测和评估。

通过监测和评估,可以及时发现和控制大气污染问题,保护公众健康和环境安全。

然而,仪表空气质量标准也存在一些问题和挑战。

首先,由于大气污染物种类繁多、来源复杂,仪表空气质量标准需要不断更新和完善。

其次,由于监测设备和方法的限制,仪表空气质量标准可能存在一定的误差和局限性。

此外,由于各地区的自然环境、人口密度和产业结构等差异,仪表空气质量标准需要根据实际情况进行调整和适用性评估。

总之,仪表空气质量标准是保护公众健康和环境安全的重要工具。

民航概论飞机的一般介绍

民航概论飞机的一般介绍
气压式高度表 经过测量大气压力来间接测量高度
一、飞机旳电子仪表系统
1、飞行控制仪表系统 — 大气数据仪表
飞行速度表
真空速:指飞机对于空气旳运动速度,也简称为空速。 指示空速:是由测量空气压力旳表上直接指示速度,也叫表速。 升降速度:指飞机对地面运动旳上升或下降旳速度。 地速:指飞机运动速度对地面旳水平分量。 马赫数:是飞行速度和飞机所在声速旳比。
叫气密座舱。
三、飞机座舱环境控制系统
3、空调系统 此系统用于确保座舱内旳温度、湿度和CO2浓度,以保障舒适安全旳飞行环境。
飞机座舱空调引气系统
3、空调系统
三、飞机座舱环境控制系统
四、防冰排雨系统
飞机结冰类型与原因
结冰类型
干结冰
凝华结冰 (霜淞冰)
滴状结冰 (雨淞冰)
引起原因 冰晶云 水蒸气 冷水滴
一、飞机旳电子仪表系统
1、飞行控制仪表系统 — 飞行姿态指导仪表
一、飞机旳电子仪表系统
2、飞机综合电子控制系统
主要涉及飞行管理计算机系统、飞行信息统计系统、飞机自动驾驶系 统、电传操纵系统、近地警告系统和空中警告及避撞系统。
一、飞机旳电子仪表系统
2、飞机综合电子控制系统
飞行信息统计系统
飞机上旳黑匣子
二、机身
1、机身外形: 当代民航机旳机身是筒状旳,机头装置着驾驶舱用来
控制飞机;中部(分上下两部分)是客舱或货舱用来装载 旅客、货品,燃油和设备后部和尾翼相连。
二、机身
1布置:
三、尾翼
尾翼是飞机尾部旳水平尾翼和垂直尾翼旳统称,它旳作 用是用以维持飞机旳方向和水平旳稳定性和操纵性。尾翼 一般涉及水平尾翼和垂直尾翼。
一、机翼
4、机翼旳构造:

第2章 第5节 民用航空器-飞行仪表

第2章 第5节 民用航空器-飞行仪表

第二章 第五节 飞行仪表 九、飞行管理系统
CREW
AUTOTHROTTLE
AUTOPILOT
CDU FCU IRS DME
DISPLAYS
ADC
FMS
VOR ILS
CLOCK
TOTAL FUEL FUEL FLOW RECORDERS
FMC #2
第二章 第五节 飞行仪表 黑匣子 驾驶舱语音记录器 飞行数据记录器
第二章 第五节 飞行仪表 自动驾驶
飞行仪表 眼、脑、手 飞机气动力 人工操纵回路 感应元件 变换放大元件 飞机气动力 自动驾驶仪操纵回路 执行元件 舵面 驾驶杆 舵面
第二章 第五节 飞行仪表 八、自动驾驶
自动驾驶仪的工作方式: 驾驶员操作模式 驾驶员指令模式 全自动模式
第二章 第五节 飞行仪表 自动驾驶和飞行控制的子系统 推力管理系统 偏航阻尼系统 自动安定面配平系统 备用手动和电动配平 自动配平 马赫数配平 速度配平
飞机运动 飞机气动力 运 动 传 感 器 电 信 号 电 传 操纵面 动 气 传 动 操纵面 空气动力 力和力矩
本节重点内容
一、大气数据仪表 (高度表、速度表、升降速度表) 二、陀螺仪表 (地平仪、转弯协调仪) 三、现代综合仪表(PFD、ND、EWD、SD) 四、TCAS和GPWS的作用 五、匣子的记录时间及作用
第二章 第五节 飞行仪表
7.磁罗盘 7.磁罗盘
通过感受地磁场来测量飞机的磁航向。
第二章 第五节 飞行仪表
第二章 第五节 飞行仪表
仪表的T型布局 仪表的 型布局
第二章 第五节 飞行仪表
现代仪表
第二章 第五节 飞行仪表
二、电子综合仪表
第二章 第五节 飞行仪表
第二章 第五节 飞行仪表

大气数据仪表

大气数据仪表
与标准大气压值之差对应的高度值。在海平面附近(或较低高度上), 气压 与高度的换算值约为11 m/ mmHg、8.25 m/ hPa 或1 000 ft/ inHg。 标准气压高度、场压高度和海压高度可以用气压式高度表测量; 真实高 度使用无线电高度表测量。
上一页 下一页 返回
3.1 气压式高度表
在飞越高山、高空摄影、航测, 尤其是盲降着陆时, 需要准确测量真实高 度。 3.绝对高度 飞机到平均海平面的垂直距离叫作绝对高度。在海上飞行时, 需要知道 绝对高度。我国的平均海平面在青岛附近的黄海上, 它是我国地理标高 的“原点”。 相对高度、真实高度、绝对高度都是以地表面上某一水平面作为基准面 的高度, 具有稳定的几何形态, 有的文献称为几何高度。
上一页 下一页 返回
3.1 气压式高度表
6.修正海压高度(HQNH) 修正海压高度即修正海平面气压高度, 简称为海压高度或海压高。它是
以修正海平面气压为基准面的气压高度。修正海平面气压是根据当时机 场的场面气压和标高, 按照标准大气条件推算出来的海平面气压值(由气 象台提供)。在标准大气条件下, 修正海压高度等于绝对高度。 当飞机停在跑道上时, 气压式高度表指示的海压高应为机场标高。准确 地讲, 应为飞机座舱高度加机场标高。
3.1.1 飞行高度及测量方法
飞机的飞行高度是指从飞机到某一个指定基准面之间的垂直距离。根据 所选基准面, 飞行高度可分以下几种, 如图3.1 -1 所示。
1.相对高度 飞机到某一机场场面的垂直距离叫作相对高度。飞机起飞、降落时, 必
须知道相对高度。
下一页 返回
3.1 气压式高度表
2.真实高度 飞机到正下方地面(如地面、水面、山顶等) 的垂直距离叫作真实高度。
上一页 下一页 返回

大气数据与惯导系统-第四章知识点

大气数据与惯导系统-第四章知识点

第四章知识点171543517 马千里1、地平仪1.直读式地平仪换向齿轮的作用若小飞机直接固定在内框轴上,则当飞机倾斜时,飞行员看到的指示情况刚好与飞机实际情况相反。

为了解决这个矛盾,小飞机不直接固定在内框轴上,而是通过1:1换向齿轮与内框轴相连,此时小飞机正确反映倾斜角度。

2.远读式地平仪随动托架系统的功能能在360度范围内测量飞机俯仰角和倾斜角。

随动托架:支撑三自由度陀螺。

变压器式感应转换器:敏感外环相对内环的转动角度。

随动托架换向器:当飞机倒飞后将感应转换器的输出进行换向。

随动系统电动机:由双相感应电动机和测速发电机组成(参看右图)。

电动机输出经减速齿轮带动托架轴转动,确保陀螺三轴垂直,测速发电机的作用是阻尼随动系统电动机的振荡。

3.地平仪起动系统的功能组成:电气机械锁紧装置(机械传动部分、程序控制电路)作用:将自转轴直立于地垂线位置。

陀螺转子的转速迅速达到额定转速。

飞机机动飞行结束改平飞后,消除飞行中的积累误差。

起动机械传动部分:由上锁电动机、传动齿轮、摩擦离合器、带传动销的齿轮、带螺旋槽的推筒、滚轮、恢复弹簧、陀螺内、外环锁杆和心形凸轮等组成(参看下图)。

上锁过程的机械传动关系:使随动托架上锁。

陀螺内外环上锁。

开锁过程的机械传动关系:推筒在恢复弹簧的作用下,退回到起始位置。

内、外锁杆在各自的恢复弹簧作用下,退回到起始位置。

推筒退回时,“咔喳”声可作为判断有无故障的现象之一。

自动程序控制电路的工作:主要由P1、P5、P6、P7、P8五个继电器,一个微动电门及指示器上的信号灯和起动按钮等组成(参看下图)自动起动过程:1、启动时,首先接通地平仪辅助直流电源。

2、接通地平仪电门。

3、推筒,滚轮及锁杆向前运动,使微动电门B1的活动接点向左移动。

4、自动开锁后,锁杆,滚轮及推筒返回,陀螺开锁。

5、起动过程结束后,若信号灯一直亮着,说明起动系统工作异常。

6、机动和特技飞行后上锁机构可消除积累误差。

4.地平仪判读倾斜角和俯仰角各有两种判读方式倾斜角:近似判读法:根据活动小飞机和固定人工地平线的相对位置判读精确判读法:根据活动小飞机翼尖指针与倾斜刻度盘上的刻度判读俯仰角:近似判读法:根据活动小飞机和固定人工地平线上下的相对位置判读精确判读法:根据活动小飞机翼尖指针与俯仰刻度盘上的刻度读数判读拧动地平线调整旋钮,可以使人工地平线上下移动,从而消除飞机平飞时迎角指示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大气数据仪表
大气数据仪表 (1)
1.国际标准大气 (2)
2.气压式高度表 (3)
3.升降速度表 (8)
4.空速表 (9)
5.马赫数表 (13)
6.全静压系统 (13)
7.温度及迎角传感器 (15)
8.大气数据计算机 (15)
1.国际标准大气
1.1.大气基本特点
构成对流层、平流层、中间层、电离层、散逸层
飞机运行高度范围:对流层及平流层底部
对流层特点:高度升高,温度和密度逐渐降低,度越高对流层越薄,低纬度对流层大约10-12km,中纬度10km,高纬度8-10km
平流层特点:温度恒定,大约为-56.5°C
1.2.国际标准大气ISA
国际民航组织根据北半球中纬度地区大气平均特点,订出大气状态数值(平均情况,实际天气很少和标准大气相符)
标准大气中气压值为29.92inhg的气压面成为标准海平面
温度15°C
气压高度较低时,高度升高11米,气压大约下降1mmHg
用来估算气压式高度表拨正值误差造成的高度误差
标准大气高度升高1000m,气温降低6.5°C
2.气压式高度表
2.1.功能
高、高度、高度层之间的关系
QFE高度用来测量高,QNH高度用来测高度,QNE高度用来测飞行高度层,只有标准大气情况下测量值与实际值相符(QFE QNE QNH是气压值,QFE高是高度值)
低空时主要用QNH高度或QFE高度,用来保证超障余度
航线高度时主要用QNE高度保持航空器间足够的垂直间隔
因此飞机爬升到航线高度或从航线高度下降到进场高度时需要调基准面
测飞机到地面的垂直距离不是气压式高度表的功能(是无线电高度表的)
2.2.原理
大气压强随高度升高而减小,根据标准大气中压强与高度一一对应的关系,高度表测出压强大小,就可以表示高度的高低,这种高度称为气压高度。

本质上,气压式高度表反映的是所在高度气压与选定基准面气压的压力差,把气压差以高度形式显示出来
只有标准大气情况下,气压高度表指示准确,否则有误差
气压信息来源:静压孔
传统机械式气压高度表依靠真空膜盒(不灵敏,但自主能力强,不需要外界能源,停电也能用,一般小飞机备用气压高度表就是此种),电子式依靠气压传感器(灵敏,但自主能力差)
局限性:高度越高,大气压力随高度变化越小(垂直气压梯度小),致使其灵敏度低。

其次是气压式高度表存在误差,主要包括气温误差和气压误差
2.3.认读
跟手表指针类似,越短指针数量级越大,最小单位100ft
14900ft,气压基准面为29.9inHg
如果指针带倒三角箭头的话,该指针为万英尺位
6500ft,条纹窗出现通常代表高度10000ft以下
高度表拨正值范围大约28.00-31.00inHg
高原机场可能超过拨正范围,因此使用零点高度
机场公布各个时间段的零点高度,用QNE值
2.4.误差(气压高度表本质上反映的是气压差)
气压基准面误差(基准面气压变化或者调错拨正值)
拨正值理解误差
误把QNH当QFE
平均海平面以上的机场容易飞低
平均海平面以下的盆地机场容易飞高
本质上飞机此时是要降落在机场所在的修正海平面上
基准面气压值降低(比如从高压区飞到低压区),多指;增高少指;
从高压区飞到低压区,基准面气压值降低,相当于高度表选定的基准面的位置下降,因此飞机容易飞低,高度表多指,反之亦然
气压拨正值调小了,容易飞高;调大了,容易飞低
比如QNH是29inHg,误调成了30inHg,则高度表选定的基准面比机场的修正海平面位置低,高度表指示相同的气压差时飞机飞得更低
气温误差(气压垂直递减率跟标准大气不一致,而气压式高度表的气压差高度对应关系是在标准大气情况的。


大气实际气温高于标准温度,高度表将出现少指误差,反之,出现多指误差
温度越高,气压垂直递减率越小,即相同的气压差对应的高度差更大,因
此出现少指误差,即飞机飞得高,指示的高度(气压差)小。

3.升降速度表
3.1.升降速度表基本原理
利用静压源,飞机平飞时,表壳内部气压等于飞机外部气压,膜盒内外所受的压力相等,膜盒不膨胀也不收缩,指针指零(表示平飞)。

飞机上升时,飞机外部气压随着飞行高度不断升高而不断减小,膜盒和表壳中的空气同时向外流动。

由于膜盒跟外部连通的导管内径较大,对空气流动的
阻碍作用很小,因此可以认为膜盒内的气压同外部气压一齐变化,二者始终相等。

然而,表壳跟外部连通的毛细管内径很小,对空气流动的阻碍作用很大,故表壳内部气压要比飞机外部气压减小得慢一些,从而大于飞机外部气压。

于是,在膜盒内外(毛细管两端)形成压力差。

在此压力差作用下,膜盒收缩,通过传动机构,使指针向上指示,表示飞机上升。

3.2.识读
大约400ft/min下降
3.3.误差
延迟误差
飞机由升降改为平飞时,在毛细管的阻碍作用下,需要一定时间表壳内外压力差才会逐渐减小到零,指针逐渐回零。

4.空速表
4.1.功能:测空气动压,根据标准海平面大气密度计算空速(表速)
优点:无论高度温度如何变化,重量不变时只要表速相等,俯仰姿态就不变,便于掌握驾驶规律
4.2.原理:利用全压与静压之差得到动压换算表速
动压与表速的关系
表速是根据标准海平面大气密度修正的
如果所在高度空气密度小于标准海平面,则表速小于真空速4.3.认读
120kt
白色弧线:带襟翼飞行的速度范围
低速端Vs0
高速端VFe
绿色弧线:净构型飞行的速度范围
低速端Vs1
高速端Vno最大结构巡航速度
黄色弧线:飞机在平稳气流中的高速运行范围
低速端Vno
高速端VNe
红白条纹指针:飞机所在高度的音速
4.4.误差
仪表机械误差
密度误差(气压式高度表是根据标准海平面空气密度修正的,只要飞机所在高度空气密度不符合标准海平面空气密度,则产生误差)
高度误差,高度越高,空气密度越小,相同表速(动压)对应的真空速越大
温度误差,温度越高,空气密度越小,相同表速对应的真空速越大
因此可以根据所在高度的空气温度将表速修正成真空速(未来领航课会学习)
4.5.误差修正
小飞机通常只修正密度误差(根据高度和温度),大飞机会考虑空气压缩性误差
空气压缩性误差
6000米以下不修正,6000米以上进行修正
飞机在标准大气条件下,依然有密度误差,标准海平面处误差为零,越高少指越严重
心算口诀:高度每升高1000米,TAS比IAS增大约5%
5.马赫数表
5.1.原理:利用动压和静压计算马赫数:真空速/所在高度的音速
飞机超过某一临界马赫数后,飞机的安全性会变化,因此需要观察并避免达到过高的马赫数
5.2.音速公式
影响音速的因子比较多,总的来说,在对流层随着高度升高音速减小。

6.全静压系统
6.1.全静压探头的位置特点
全压孔(皮托管)在迎风面
静压孔一般在机身侧面
6.2.全压孔/静压孔堵塞时对大气数据仪表的影响
如果全压孔积冰堵塞,排水口没堵塞,则全压孔测的是静压
高度表和升降速度表指示正确,空速表指示为零(静压-静压)
如果飞行过程中发现空速表指示归零,可以尝试打开皮托管加热,将全压孔积冰融化
如果全压孔和排水孔都积冰堵塞,或者根本没有排水孔的皮托管,则全压孔测的是堵塞前的全压
由于高度表和升降速度表不用全压,因此没有影响
如果飞机保持气压高度不变飞行,无论加减速,空速表指示均不变(为堵塞前的表速)
如果飞机爬升,静压减小,全压减静压值增大,指示空速增大,跟实际飞机是否加速无关,反之亦然
如果进入积冰天气,发现飞机升高就指示加速,降低就指示减速,应打开皮托管加热,此时空速表不可靠
如果静压孔堵塞,则静压孔测量的是堵塞前的静压(比如停机时虫子爬进静压孔,静压孔不像皮托管有防止虫子怕入的套)
无论飞机爬升还是下降,高度表和升降速度表指示飞机高度不变,升降速度为零
飞机爬升时,静压孔测的静压大于实际静压,因此测的动压偏小,表速偏小
如果发现爬升时高度表指示不变,升降速度表为零,并且空速减小的
话,应判定静压孔堵塞,可以切换到备用静压孔(小飞机的静压孔一般
没有加热除冰装置,大飞机才有)
6.3.了解某些机型左右座驾驶员看到大气数据仪表指示读数有差异的原因——左右座各用一套独立探头
7.温度及迎角传感器
7.1.温度传感器的基本原理
利用热敏元件测量温度(总温)TAT
总温反映了外界静止温度和相对气流动能所转换的动温
根据表速(动压)修正动温得到实际外界温度静温SAT
7.2.迎角传感器
风标式
锥型迎角传感器
大型飞机可以根据迎角传感器修正迎角对全压探头的影响,小飞机忽略
8.大气数据计算机
8.1.通过全压和静压、总温和迎角,计算大气数据
一般而言,大型飞机测量静压和总压不再利用真空膜盒或者开口膜盒,直接利用电子式气压传感器,更加灵敏,但是需要依靠电气系统。

相关文档
最新文档