成比例线段(一)汇总
4.1 成比例线段(一)

3 5
,
3.已知a、b、c、d是成比例线段,a=4cm, b=6cm,d=9cm,则c=____
x 4、如果2 x 5 y, 那么 y
5.如图所示,在Rt△ABC中,∠C=90°,CD是 斜边AB上的高,且AB=13,BC=12.求CD: AB的值。
6、已知线段x,y
x 5y 1 x (1)当 时, 求 的值。 x y 2 y
CD n
m 表示成比值 n k,那么
AB m .其中,线段 AB,CD分别叫做这个线段比的前项、
,或
AB k 两条线段的比实际上就是两个数的 AB=k×CD. CD
例: 五边形 ABCDE与五边形A’B’C’D’E’形
状相同,AB=5cm,A’B’=3cm。AB:A’B’=5 : 3,
5 3
注意:成比例的四条线段是有顺序的
练习二
• 若b,c, • A , b d
b d • C , c a
B D
a b , c d b c , a d
练习三
判断下列四条线段是否成比例
1.a 2, b 5, c 15, d 2 3; 2.a 2, b 3, c 2, d 3; 3.a 4, b 6, c 5, d 10; 4.a 12, b 8, c 15, d 10. 答: 1.a,b,c,d不成比例,但a,d,b,c成比例. 2.不成比例. 3.不成比例. 4. a,b,c,d成比例.
就是线段AB与线段A‘B’的比。
这个比值刻画了这两个五边形的大小关系。
练习一
(1) : 叫比例尺; (2)若实际距离是图上距离的600 000倍,这 幅图的比例尺是 . (3)若实际距离是120公里,比例尺是 1:2000000,则图上距离为 ( )
3.1成比例线段

3.1成比例线段1.两条线段的比的概念两条线段的比的定义:选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比(ratio )AB ∶CD=m ∶n ,或写成CD AB =nm,其中,线段AB 、CD 分别叫做这两个线段比的前项和后项.如果把n m 表示成比值k ,则CDAB =k 或AB=k ·CD. 注意:在量线段时要选用同一个长度单位. 2.求两条线段的比时要注意的问题(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关; (3)两条线段的长度都是正数,所以两条线段的比值总是正数. 成比例线段:成比例线段的定义:四条线段a,b,c,d 中,如果a 与b 的比等于c 与d 的比,即dcba =,那么这四条线段a,b,c,d 叫做成比例线段,简称比例线段(proportional segments ).比例中项:若cbb a =则把b 叫做a ,c 的比例中项。
线段的比和比例线段的区别和联系:线段的比是指两条线段之间的比的关系,比例线段是指四条线段间的关系.若两条线段的比等于另两条线段的比,则这四条线段叫做成比例线段.线段的比有顺序性,四条线段成比例也有顺序性.如dcb a =是线段a 、b 、c 、d 成比例,而不是线段a 、c 、b 、d 成比例.例1:下列线段能成比例线段的是( )A. 1cm,2cm,3cm,4cmB. 1cm,2cm,22cm,2cmC. 2cm,5cm,3cm,1cmD. 2cm,5cm,3cm,4cm a =2,b =5,c =152,d =55. 例2.判断下列线段是否是成比例线段:(1)a =2cm ,b =4cm ,c =3m ,d =6m ; (2)a =0.8,b =3,c =1,d =2.4.2.比例性质:⑴基本性质:dcb a =⇒ad=bc. ⑵反比性质:d cb a=⇒cd a b = ⑶更比性质:d cb a=⇒d b c a =或a c b d = ⑷合比性质:d c ba=⇒b b a +=d dc + ⑸分比性质 :d c b a =⇒ddc b b a -=-⑹合分比性质:d cb a =⇒d c d c b a b a -+=-+ ⑺等比性质:如果d c b a ==…=n m (b+d+…+n ≠0),那么ban d b m c a =++++++方法等比设k典型例题: 例1:已知d cb a =,则下列等式中不成立的是( ) A 、cd a b = B 、ddc b b a -=- C 、d c c b a a +=+ D 、b a c b d a =++ 例2:已知754z y x ==则=++zy yx 练习:已知53=y x ,则在①41=+-y x y x ,②5353=++y x ,③1332=+y x x ,④38=+x y x ,这四个式子中正确的有几个?例3:已知k bac a c b c b a =+=+=+,则直线y=kx+k 必经过第 象限。
(1).23.1成比例线段(1)成比例线段的概念

ac
ad bc
bd
3、判断四条线段是否成比例的步骤:
一排二算三判断
2 5
25
_5__
排序: a、c、b、d
b d
2 5
15 3
25
__5__
a b cd
∴这四条线段是成比例线段。
(3)a=0.5m,b=25cm,c=0.2m,d=10cm
【解】∵a=0.5m=50cm,c=0.2m=20cm
a b
50 25
2,
c d
20 10
2
a b
c d
∴线段a、b、c、d是成比例线段。
∴线段a、b、c、d是成比例线段。
注意:
比的前、后项 单位统一
(2)a=0.8, b=3,
【解】(2) c 0.64 0.8,
a 0.8
c d ab
c=0.64, d=2.4.
d 2.4 0.8 b3
∴这四条线段是成比例线段。
(3)a=1cm, b=2cm, c=2cm, d=4cm
【解】
为__3_x_,__5___.
在小学学过的比例中,我们有2:3=4:6,便可得 2×__6__=3×___4__.
这就是小学的四个数成比例的性质: _两_内__项__之__积__等_于__两__外__项__之_积__.
其实,在成 比例的线段 中也有同样 的性质
知识概括
知识点2 比例的基本性质
如果a c ,那么 ad bc
bd
如果 ad bc(a、b、c、d都不等于0),
那么 a c 也可表示为 bd
ac
ad bc
bd
比例式
等积式
文字叙述 两内项之积等于两外项之积
成比例的线段 黄金分割(复习整理)

成比例的线段 黄金分割一、梳理知识1、线段的比的定义在同一单位长度下,两条线段 的比叫做这两条线段的比。
2、比例线段的定义 在四条线段中,如果其中两条线段的 等于另外两条线段的 ,那么这四条线段叫做成比例线段,简称 .在a :b=c :d 中,a 、d 叫做比例的 ,b 、c 叫做比例的 ,称d 为a 、b 、c 的 . 3、比例的性质(1)比例的基本性质:如果a ∶b =c ∶d ,那么 ,特别地,若a ∶b=b ∶c ,即 ,则b 叫a ,c 的比例中项. (2)合(分)比性质:若dcb a =,则 . (3)等比性质:若nm f e d c b a ==== ,且 ,则 .4、黄金分割(1)黄金分割的意义:点C 把线段AB 分成两条线段AC 和BC ,如果 ,那么称线段AB 被点C 黄金分割.其中点C 叫做线段AB 的 ,AC 与AB 的比叫做 .二、典例解析例1 (1)已知线段a=2,b=3,c=5时,若a ,b ,c ,d 四条线段成比例,则d=_______. (2)已知1,5,5三个数,如果再添一个数,使之能与已知的三个数成比例,则这个数应该是 .(3)在比例尺为1:n 的某市地图上,规划出一块长5cm ×2cm 的矩形工业区,则该工业区的实际面积是 平方米. 例2 比例的性质(1)若2a=3b ,则(a-b ):(a+b )的值是________.(2)在线段AB 上取一点P ,使AP :PB=1:4,则AP :AB=_____,AB :PB=_______. (3)若5:2=(3-x ):x ,则x=_______ 【仿练】1.如果a=15cm ,b=10cm ,且b 是a 和c 的比例中项,则c=________. 2.已知(a-b ):b=2:3,则a :b=_______.3.在比例尺为1:2 700 000的海南地图上量得海口与三亚间的距离约为8cm ,则海口与三亚两城间的实际距离为________km例3 已知P 是线段AB 上一点,且AP :PB=3:5,求AB :PB 的值.【仿练】若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB =10,23==BQ ΑQ BP AP ,求线段PQ 的长.例4 (1)已知x ∶y ∶z =3∶4∶5,①求zyx +的值; ②若x +y +z =6,求x 、y 、z .【仿练】已知实数x ,y ,z 满足x+y+z=0,3x-y+2z=0,则x :y :z=________.(2)已知a 、b 、c 是非零实数,且k cb a dd a b c d c a b d c b a =++=++=++=++,求k 的值.【仿练】如果k cb a dd b a c d c a b d c b a =++=++=++=++,试求k 的值.(3)若a 、b 、c 是非零实数,并满足ac b a b c b a c c b a ++-=+-=-+,且a b c a c c b b a x ))()((+++=,求x 的值.【仿练】已知实数a ,b ,c 满足cb a b ac a c b +=+=+,求a cb +的值.例5 如图,若点P 是AB 的黄金分割点,则线段A P 、PB 、AB 满足关系式________,即AP 是________与________的比例中项.三、课堂练习1、如果53=-b b a ,那么b a =________.2、若a =2,b =3,c =33,则a 、b 、c 的第四比例项d 为________.3、若753z y x ==,则zy x z y x -++-=________. 4、已知dcb c=,则下列式子中正确的是( ) A.a ∶b =c 2∶d 2 B.a ∶d =c ∶bC.a ∶b =(a +c )∶(b +d )D.a ∶b =(a -d )∶(b -d )5、如图,已知直角三角形的两条直角边长的比为a ∶b =1∶2,其斜边长为 45 cm ,那么这个三角形的面积是________cm 2.( )A.32B.16C.8D.46、若875c b a ==,且3a -2b +c =3,则2a +4b -3c 的值是( )A.14B.42C.7D.3147、如图,等腰梯形ABCD 的周长是104 cm ,AD ∥BC ,且AD ∶AB ∶BC =2∶3∶5,则这个梯形的中位线的长是________.cm.( )A.72.8B.51C.36.4D.288、已知四条线段a 、b 、c 、d 的长度,试判断它们是否成比例?(1)a =16 cm ,b =8 cm ,c =5 cm ,d =10 cm ; (2)a =8 cm ,b =5 cm ,c =6 cm ,d =10 cm . 9、若65432+==+c b a ,且2a -b +3c =21,试求a ∶b ∶c .10、已知线段AB=a ,在线段AB 上有一点C ,若AC=a 253-,则点C 是线段AB 的黄金分割点吗?为什么?四、课后作业1.等边三角形的一边与这边上的高的比是( )A.3∶2B.3∶1C.2∶3D.1∶32.下列各组中的四条线段成比例的是( )A.a =2,b =3,c =2,d =3B.a =4,b =6,c =5,d =10C.a =2,b =5,c =23,d =15D.a =2,b =3,c =4,d =13.已知线段a 、b 、c 、d 满足ab =cd ,把它改写成比例式,错误的是( )A.a ∶d =c ∶bB.a ∶b =c ∶dC.d ∶a =b ∶cD.a ∶c =d ∶b 4.若ac =bd ,则下列各式一定成立的是( )A.dc b a = B.c cb d d a +=+ C.cd ba =22D.da cd ab = 5.已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是( )A.AM ∶BM =AB ∶AMB.AM =215-AB C.BM =215-AB D.AM ≈0.618AB 6.在1∶500000的地图上,A 、B 两地的距离是64 cm ,则这两地间的实际距离是________. 7.正方形ABCD 的一边与其对角线的比等于________. 8.若2x -5y =0,则y ∶x =________,xyx +=________. 9.若53=-b b a ,则b a =________.10.若AEACAD AB =,且AB =12,AC =3,AD =5,则AE =________. 11.已知342=+x y x ,求yx.12.以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图。
相似及对应线段成比例

线段的比(一)基础知识:1.两条线段的比就是两条线段 的比.线段a 的长度为3厘米,线段b 的长度为6米,两线段a,b 的比为2. 在地图或工程图纸上, 与 的比通常称为比例尺A 、B 两地的实际距离AB=250m ,画在图上的距离A′B′=5cm,求图上的距离与实际距离的比为3.四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即dc b a ,那么这四条线段a ,b ,c ,d叫做成比例线段,简称已知四条线段a 、b 、c 、d 的长度,试判断它们是否成比例?(1)a=16 cm b=8 cm c=5 cm d=10 cm(2)a=8 cm b=5 cm c=6 cm d=10 cm课堂学习:1.两条线段的比的概念如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比(ratio )AB ∶CD =m ∶n ,或写成CD AB =n m ,其中,线段AB 、CD 分别叫做这两个线段比的前项 和后项. 如果把n m 表示成比值k ,则CDAB =k 或AB =k ·CD . 【 例1 】在比例尺为1∶8000的某校地图上矩形运动场的图上尺寸是1cm ×2cm ,那么矩形运动场的实际尺寸是多少?巩固练习:在比例尺是1∶8000000的《中国行政》地图上,量得福州到上海之间的距离为7.5厘米,求福州与上海两地的实际距离是多少千米?归纳与小结:1、(1)度量两条线段的必须统一(2)线段的长度的比与所选择的度量线段的长度单位无关(3)两条线段的长度都是正数,所以两条线段的比值总是2. 比例线段的概念四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即dc b a =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段(proportional segments ).如果a 与b 的比值和c 与d 的比值相等,那么dc b a =或a ∶b =c ∶d ,这时组成比例的四个数a ,b ,c ,d 叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a 、d 为外项,c 、b 为内项.【 例2】 (杭州市)已知:1、、2三个数,请你再添上个数,写出一个比例式 .分析:这是一道多种答案的开放性创新题巩固练习1.线段a=4 , b=9 , a 、b 的比例中项c=_____;a 、b 、c 的第四比例d=______.2.已知三个数1、2、3,请你再添上一个数,使它们构成一个比例式,则这个数是多少?归纳与小结:(1)四条线段成比例时,要将这四条线段按 列出 .(2)线段 又叫做a ,b ,c 的第四比例项 (3)如果比例内项是两条相同的线段,即c b b a =或a ∶b =b ∶c ,那么b 叫做线段a ,c 的比例中项.小结:1.两条线段的比的概念2.比例线段的概念练习:1.如果一张地图的比例尺是1∶150000 , 在地图上量得甲乙两地的距离是4cm , 则甲、乙两地的实际距离是 _________.2.某地的海岸线长250千米 , 在地图上测得这条海岸线长6.25cm , 则这地图的比例尺是 _________.3.某建筑物在地面上的影长为40m , 同时高为1.2m的测竿的影长为2m , 那么该建筑物的高是_________.4. 若a=2,b=3,c=33,则a、b、c的第四比例项d为________.5. 下列各组线段长度成比例的是()A、1㎝,2㎝,3㎝,4㎝B、1㎝,3㎝, 5㎝,5㎝C、1㎝,2㎝,3㎝,4㎝D、1㎝,2㎝,2㎝,4㎝作业:1、在YC市的1:40000最新旅游地图上,景点A与景点B的距离是15㎝,则它们的实际距离是()A、60000米B、6000米C、600米D、60千米2、延长线段AB到C,使BC=2AB,那么AC∶AB=()A、2∶1B、3∶2C、1∶2D、3∶13、等边三角形的边与高的比是 _________.4、一条线段和一个角在放大10倍的放大镜下看是10㎝和60°,则这条线段的实际长是,角的实际是5、在同一时刻 , 量得长2米的测杆影长3.5米 , 一电线杆的影长为17.5米 , 则这电线杆高等于 _________.6、已知线段a、b、c、d是成比例线段,且 a = 2㎝,b = 0.6㎝,c=4㎝,那么d= ㎝.7、如果a∶b=3∶2 , 且b是a和c的比例中项 , 那么b:c为 _________.8、已知线段a=6cm , b=8cm , c=15cm(1)求它们的第四比例项d;(2)求a , b的比例中项X;(3)求a , c的比例中项Y9、某学校如图所示,比例尺是1∶2000,请你根据图中尺寸(单位:㎝),其中AB⊥AD,求出学校的周长及面积.9、如图,在△ABC 中,AB=6㎝,AD=4㎝,AC=5㎝,,且AD AE AB AC =,①求AE 的长;②等式AD AE BD EC= 成立吗?10、已知x 是a 、b 的比例中项,且a=(52+11),b=(52-11),若x <0,则x=__________11、如图,一张矩形报纸ABCD 的长AB=acm ,宽BC=bcm ,E ,F 分别是AB ,CD 的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,则a ∶b 等于( ) (A)2:1 (B)1: 2 (C)3:1 (D)1: 3线段的比(二)基础 1、若x x y -=2,则x y= ; 2、已知0235a b c ==≠,则b c a b ++的值是 课堂学习:1. 比例的基本性质两条线段的比实际上就是两个数的比.如果a ,b ,c ,d 四个数满足d c b a =,那么ad =bc 吗?反过来,如果ad =bc ,那么d c b a =吗?与同伴交流. 【 例1 】(1)如图,已知d c b a ==3,求b b a +和d d c +; (2)如果d c b a ==k (k 为常数),那么d d c b b a +=+成立吗?为什么? (3)如果dc b a =,那么d d c b b a -=-成立吗?为什么?巩固练习:1、 已知),0,0(32≠≠=y x y x 求:⑴yx ;⑵x y x -;⑶x y x +. 2、如果线段a 、b 、c 、d 满足ad=bc ,则下列各式中不成立的是( )A 、a cb d = B 、1111ac bd ++=++ C 、a b c d b d ±±= D 、a c a b d b ±=±归纳与小结:可以用比例的基本性质,也可用合比性质【 例2】 (1)如果f e d c b a ==,那么ba f db ec a =++++成立吗?为什么? (2)如果d c b a ==…=nm (b +d +…+n ≠0),那么b a n d b m c a =++++++ 成立吗?为什么.?巩固练习:已知a :b :c=2:3:4,且a-2b+3c=20,则a+2b+3c=归纳与小结:连比时,可设比例系数为 k拓展提高:已知x ∶4 =y ∶5 = z ∶6 , 则 求①222x y z xy xz yz+-++ ② ()x y +:(y+z) ③(x+y-3z):(2x-3y+z)小结:1.熟记成比例线段的定义.2.掌握比例的基本性质,并能灵活运用.当堂检测:1、已知2925a b a b +=-,则a :b= ;2、如果y y x + = 47,那么yx 的值是 3、若3x -4y = 0,则y y x +的值是 ;4、若753z y x ==,则z y x z y x -++-=________. 作业:1、如果53=-b b a ,那么b a =________. 2、已知(a -b )∶(a +b )= 3∶7,那么a ∶b 的值是 .3、若875c b a ==,且3a -2b +c =3,则2a +4b -3c 的值是_________. 4、如图4—1—2,等腰梯形ABCD 的周长是104 cm ,AD ∥BC ,且AD ∶AB ∶BC=2∶3∶5,则这个梯形的中位线的长是( )cm .A .72.8B .51C .36.4D .285、已知dc b c =,则下列式子中正确的是( ) A .a ∶b =c 2∶d 2 B .a ∶d =c ∶bC .a ∶b =(a +c )∶(b +d )D .a ∶b =(a -d )∶(b -d )6、已知xy = mn ,则把它改写成比例式后,错误的是 ( )A 、n x =y mB 、m y =x nC 、m x =n yD 、m x =yn 7、若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB=10,23==BQ ΑQ BP AP , 求线段PQ 的长.8、若65432+==+c b a ,且2a -b+3c=21.试求a ∶b ∶c .9、已知:a ∶b ∶c=2∶3∶5,且a 、b 、c 三数之和为100,及b=ma-10,那么m 等于( ) A .2 B .23 C .3 D .35 10.如果a :b=4:3,且c :d=9:14,那么ac bd bd ac 743--的值应等于( ) A .211- B .1411- C .45- D .32- 4.4 相似多边形基础1.各角 ,各边 的两个多边形叫做相似多边形。
初中数学相似三角形题型归类——成比例线段专项练习1(附答案详解)

【解析】
【分析】
根据若点 是线段 的黄金分割点( ),则 = 计算即可.
【详解】
当PM>PN时,PM= MN= ,
故答案为: .
【点睛】
本题考查的是黄金分割,掌握黄金比值是 是解题的关键.
13.
【解析】
【分析】
如图,连接PD.由B、D关于AC对称,推出PB=PD,推出PB+PE=PD+PE,推出当D、P、E共线时,PE+PB的值最小,观察图象可知,当点P与A重合时,PE+PB=9,推出AE=EB=3,AD=AB=6,分别求出PB+PE的最小值,PC的长即可解决问题.
【详解】
如图,连接PD.
∵B、D关于AC对称,
∴PB=PD,
∴PB+PE=PD+PE,
∴当D、P、E共线时,PE+PB的值最小,
观察图象可知,当点P与A重合时,PE+PB=9,
∴AE=EB=3,AD=AB=6,
在Rt△AED中,DE= ,
∴PB+PE的最小值为3 ,
∴点H的纵坐标为3 ,
∵AE∥CD,
【分析】
根据题意先计算出BD=60-13=47,AE=BE=30,AF=37,则E点为AB的中点,则计算BD:AB和AF:AB,然后把计算的结果与0.618比较,则可判断哪一点最接近线段AB的黄金分割点.
【详解】
解:∵线段AB=60,AD=13,DE=17,EF=7,
∴BD=60-13=47,AE=BE=30,AF=37,
∴BD:AB=47:60≈0.783,AF:AB=37:60=0.617,
∴点F最接近线段AB的黄金分割点.
故选:C.
【点睛】
线段成比例

线段成比例一、成比例线段 (一)知识点梳理1.把ba 的值叫做线段b a ,的比,若d cb a =,则称线段dc b a ,,,成比例线段。
2.bc ad d c b a dcb a =⇔=⇔=::,其中dc b a ,,,分别叫第一、第二、第三、第四比例项,d a ,称为外项, (a 称为前项,b 称为后项)c b ,称为内项;外项的积等于内项的积。
3.比例性质:①基本性质:bc ad dc b a =⇔=,如果ad=bc (a ,b ,c ,d 都不等于0,那么d cb a =); ②反比性质:c da b d c b a =⇔=;③更比性质:a c a b b d c d =⇔=; ④合比性质:a c a b c db d b d±±=⇔=; ⑤等比性质:n n b a b a b a b a === 332211,则112121b a b b b a a a n n =+++++ 4.比例中项:若ac b =2,则称b 是ac 的比例中项5.若点P 分线段AB 得到较长线段是较短线段和整条线段的比例中项,则称点P 是线段AB 的黄金分割点;215,215--==较长线段较短线段整条线段较长线段叫做黄金比值。
(试证明) (二)题型讲解例1.下列各组中的四条线段成比例的是( )A.a=2,b=3,c=2,d=3B.a=4,b=6,c=5,d=10C.a=2,b=5,c=23,d=15D.a=2,b=3,c=4,d=1例2.已知线段a 、b 、c 、d 满足ab=cd ,把它改写成比例式,错误的是( ) A.a:d=c:b B.a:b=c:d C.d:a=b:c D.a:c=d:b 例3.若a=2,b=3,c=33,则a 、b 、c 的第四比例项d 为 例4.若ac=bd ,则下列各式一定成立的是( )A.d c b a =B.c c b d d a +=+C.c d b a =22D.dacd ab =例5.已知dcb a =,则下列式子中正确的是( ) A.a:b=c 2:d 2B.a:d=c:bC.a:b=(a+c):(b+d)D.a:b=(a -d):(b -d) 例6.已知5:4:2::=c b a ,且632=+-a b a ,求c b a 23-+的值。
01-第四章1成比例线段

AB 2
AB 2
栏目索引
1 菱形的性质与判定
3.正方形的边长与其对角线长的比是
.
答案 1∶ 2
解析 设正方形的边长为a,则其对角线长为 2 a, ∴所求比为a∶ 2 a=1∶ 2 .
栏目索引
1 菱形的性质与判定
4.已知x∶y∶z=2∶3∶4,求 y z x 的值. z x y
解析 ∵x∶y∶z=2∶3∶4, ∴设x=2k,y=3k,z=4k(k≠0),
1 菱形的性质与判定
栏目索引
题型一 利用比例线段求线段的长 例1 已知a,b,c,d是成比例线段,且a=2 cm,b=0.6 cm,c=4 cm,那么d=
cm.
解析 因为a,b,c,d是成比例线段,所以 a = c ,则d= bc = 0.6 4 =1.2(cm).
bd
a2
答案 1.2
规律总结 比例线段的有序性:对于利用比例线段关系求线段长的题, 一般先根据线段的关系写出比例式,然后根据比例的基本性质转化成关 于所求线段的等式,最后代入相应的数据.不过,在写比例式时,一定要注 意题目中四条线段成比例的顺序,不能随便更改位置.
栏目索引
2.(2019广西桂林灌阳期中)已知a,b,c,d是成比例线段,其中a=5,b=4,c=10,
则线段d=
.
答案 8
解析 ∵a,b,c,d是成比例线段,
∴ a = c ,即ad=bc,
bd
∵a=5,b=4,c=10, ∴5d=40,解得d=8.
1 菱形的性质与判定
栏目索引
3.(2019天津南开期末)在比例尺为1∶1 000 000的地图上,量得甲、乙两
规律总结 本题运用了分类讨论思想.当题目中给出的数没有顺序时, 要依据所求的数在这个比例式中的位置进行讨论.若使四个数成比例, 则应满足其中两个数的比等于另外两个数的比,或其中两个数的乘积恰 好等于另外两个数的乘积.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个比值刻画了这两个五边 形的大小关系。
想一想
两条线段长度的比与所采用的长度单 位有没有关系?
做一做
如图,设小方格的边长为1,四边形
ABCD与四边形EFGH的顶点都在格点上,那
么AB,CD,EH,EF的长度分别是多少?分
别计算
值。
你发现了什么?
成比例线段 四条线段a,b,c,d中,如果a与b的比
1、你有什么感想、收获…? 2、你有什么发现、探索…?
作业: 1、课本习题
知识技能1、2
则这两条线段之比是
3
2、一条线段的长度是另一条线段长度的
,则这两条线段之比是
5
拓展延伸
1.已知a、b、c、d是成比线段,a=4cm, b=6cm,d=9cm,则c=____
—————
3.把mn pq写成比例式.写错的是
A. m p
B. p n
C. q n
mp D.
qn
mq
mp nq
4、已知a:b:c=2:3:4,且a+b+c=15,则a=___, b=___,c=___.
议一议 如果a,b,c,d四个数成比例,即
a/b=c/d,那么ad=bc吗?反过来如果 ad=bc,那么a,b,c,d四个数成比例吗?
比例的基本性质 如果 = ,那么ad=bc
如果ad=bc(a,b,c,d都不等于零),那么 =
例题
如图,一块矩形绸布的长AB=am,AD=1m,按
照图中所示的方式将它裁成相同的三面矩形彩
AB,CD的长度分别是m、n,那么说这两条线段
的比AB:CD=m:n或写成
.其中,线段
AB,CD分别叫做这个线段比的前项、后项.如果
把 表示成比值k,那么
,或AB=k×CD.
两条线段的比实际上就是两个数的比。
五边形 ABCDE与五边形A’B’C’D’E’形状相 同,AB=5cm,A’B’=3cm。AB:A’B’=5 : 3,
等于c与d的比,即a/b=c/d,那么这四条线 段a,b,c,d叫做成比例线段,简称比例线 段.
上图中AB,EH,AD,EF是成比例线段, AB,AD,EH,EF也是成比例线段。
跟踪练习
1、判断下列四条线段是否成比例
不知你是 否注意到: 比例与叙 述的顺序 有关
答: 1.a,b,c,d不成比例,但a,d,b,c成比例. 2.不成比例. 3.不成比例. 4. a,b,c,d成比例.
成比例线段(一)
情景引入
实际生活中我们经常会看到许多形状
相同的图形。
如图,用同一张底片洗出的不同尺寸 的照片中,汽车的形状还相同吗?
如图,几个足球的形状相同吗? 他们的大小呢?
请在下面图形中找出形状相同的图形? 你发现这些形状相同的图形有什么不同?
线段的比
如果选用同一个长度单位量得两条线段
旗,且使裁出的每面彩旗的长与宽的比与原绸
布的长与宽解决
如图,将一张矩形纸片沿它 的长边对折(EF为折痕),得到 两个全等的小矩形。如果小矩形 长边与短边的比等于原来矩形长 边与短边的比,那么原来矩形的 长边与短边的比是多少?
随堂练习
1、一条线段的长度是另一条线段长度的5倍,