数学建模动态优化模型
数学建模中的优化模型ppt课件

2
3
4
• 制订月生产计划,使工厂的利润最大.
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变? 15
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
p(t)w(t) p(t)w(t) 4
每天利润的增值 每天投入的资金
保留生猪直到利润的增值等于每天的费用时出售
由 S(t,r)=3 若 1.8 w 2.2(10%), 则 7 t 13(30%) 建议过一周后(t=7)重新估计 p, p, w, w, 再作计算。
13
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 设r=2不变
t 3 20 g , 0 g 0.15 g
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
7
常用优化软件
1. LINGO软件 2. MATLAB优化工具箱 3. EXCEL软件的优化功能 4. SAS(统计分析)软件的优化功能 5. 其他
8
2.简单的优化模型
——生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80千克重的生猪体重增加2公斤。
市场价格目前为每千克8元,但是预测每天会降 低 0.1元,问生猪应何时出售。
均为整数,重新求解. 17
模型求解 整数规划(Integer Programming,简记IP)
数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。
在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。
本讲将介绍一些简单的优化模型。
一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。
其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。
线性规划模型指的是目标函数和约束条件都是线性的情况。
通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。
二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。
非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。
对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。
这些方法通过迭代的方式逐步靠近最优解。
三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。
整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。
整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。
针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。
四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。
五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。
模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。
数学建模最优化模型

或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
用MATLAB解无约束优化问题
1. 一元函数无约束优化问题: min f (x) x1 x x2
常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options)
(3)[x,fval]= fminbnd(…) (4)[x,fval,exitflag]= fminbnd(…) (5)[x,fval,exitflag,output]= fminbnd(…)
1、无约束极值问题的求解
例1:求函数y=2x3+3x2-12x+14在区间[-3,4]上的最 大值与最小值。
解:令f(x)=y=2x3+3x2-12x+14
f’(x)=6x2+6x-12=6(x+2)(x-1) 解方程f’(x)=0,得到x1= -2,x2=1,又 由于f(-3)=23,f(-2)=34,f(1)=7,f(4)=142, 综上得, 函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7
或[x,fval,exitflag,output]= fminsearch(...)
例 用fminsearch函数求解 输入命令:
f='100*(x(2)-x(1)^2)^2+(1-x(1))^2'; [x,fval,exitflag,output]=fminsearch(f,[-1.2 2])
动态优化模型

动态优化模型动态优化模型是一种利用动态规划理论对优化问题进行建模与求解的方法。
它能够在不同环境下进行模型的动态调整,以求得最优解。
本文将介绍动态优化模型的基本概念与原理,并讨论其在实际问题中的应用。
一、动态规划的基本原理动态规划是一种以递归的方式进行求解的优化方法。
它将大问题分解为一系列子问题,并从子问题的最优解递归地求解出整个问题的最优解。
动态规划的核心思想是"最优子结构"和"重叠子问题"。
1. 最优子结构动态规划中的每个子问题必须具备最优子结构的特点,即如果一个问题的最优解包含了它的子问题的最优解,则称其具有最优子结构。
通过求解子问题得到的最优解可以作为整个问题的最优解的一部分。
2. 重叠子问题动态规划中的子问题往往是重叠的,即包含相同的子问题。
为避免重复计算,可以使用备忘录或者动态规划表来记录已求解的子问题的结果,在需要时直接检索以节省计算时间。
二、动态优化模型的建立动态优化模型通常包括三个基本要素:状态、状态转移方程和边界条件。
1. 状态状态是指问题中的一个变量或一组变量,它能够完整地描述问题的某个特定场景。
状态的选择对模型的性能和求解效果有着重要的影响。
2. 状态转移方程状态转移方程描述了问题中的状态如何转移到下一个状态。
它是建立动态规划模型的核心,通过定义合适的状态转移方程,可以准确地描述问题的演变过程。
3. 边界条件边界条件指定了问题的起始状态和终止状态,以及在某些特定情况下的处理方式。
它是动态规划模型中必不可少的部分,可以确定问题的边界和约束条件。
三、动态优化模型的应用动态优化模型广泛应用于各个领域,如经济学、管理学、运筹学等。
下面以背包问题和路径规划问题为例,说明动态优化模型的具体应用。
1. 背包问题背包问题是一个常见的优化问题,其目标是在给定的背包容量下,选择一定数量的物品放入背包中,使得背包内的物品总价值最大化。
动态优化模型中,可以将背包问题转化为一个二维的状态转移方程,并通过动态规划的方法求解最优解。
数学建模中的优化模型

数学建模中的优化模型优化模型在数学建模中起着重要的作用。
通过优化模型,我们可以找到最优的解决方案,以满足不同的约束条件和目标函数。
本文将介绍优化模型的基本概念、常见的优化方法以及在实际问题中的应用。
让我们来了解一下什么是优化模型。
优化模型是指在给定的约束条件下,寻找使目标函数达到最大或最小的变量值的过程。
这个过程可以通过建立数学模型来描述,其中包括目标函数、约束条件以及变量的定义和范围。
在优化模型中,目标函数是我们希望最大化或最小化的指标。
它可以是一个经济指标,如利润最大化或成本最小化,也可以是一个物理指标,如能量最小化或距离最短化。
约束条件是对变量的限制,可以是等式约束或不等式约束。
变量则是我们需要优化的决策变量,可以是连续变量或离散变量。
常见的优化方法包括线性规划、非线性规划、整数规划和动态规划等。
线性规划是指目标函数和约束条件都是线性的优化模型。
它可以通过线性规划算法来求解,如单纯形法和内点法。
非线性规划是指目标函数和约束条件中包含非线性项的优化模型。
它的求解方法相对复杂,包括梯度下降法、牛顿法和拟牛顿法等。
整数规划是指变量取值只能是整数的优化模型。
它的求解方法包括分支定界法和割平面法等。
动态规划是一种递推的优化方法,适用于具有最优子结构性质的问题。
优化模型在实际问题中有着广泛的应用。
例如,在生产计划中,我们可以通过优化模型来确定最佳的生产数量和生产时间,以最大化利润或最小化成本。
在资源分配中,我们可以通过优化模型来确定最佳的资源分配方案,以最大化资源利用率或最小化资源浪费。
在交通调度中,我们可以通过优化模型来确定最短路径或最优路径,以最小化行驶时间或最大化交通效率。
优化模型还可以应用于金融投资、供应链管理、电力系统调度、网络优化等领域。
通过建立数学模型和选择合适的优化方法,我们可以在复杂的实际问题中找到最优的解决方案,提高效率和效益。
优化模型在数学建模中是非常重要的。
它通过建立数学模型和选择合适的优化方法,帮助我们找到最优的解决方案,以满足不同的约束条件和目标函数。
数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
数学建模优化模型与Lingo Lindo软件

型
表二 :5名队员4中泳姿百米平均成绩
队员
甲
乙
丙
丁
戊
蝶泳 66.8 57.2
78
70
67.4
仰泳 75.6
66
67.8
74.2
71
蛙泳
87
66.4 84.6
69.6
83.8
自由泳 58.6
53
59.4
57.2
62.4
线 性 规
·划
模 型
决策变量:引入0-1变量xij 若选择队员 i 参加泳姿 j
例-1 某服务部门一周中每天需要不同数目的
雇员:周一到周四每天至少需要50人,周五
需要80人,周六和周日需要90人。现规定应
聘者需连续工作5天,试确定聘用方案,即周
线
一到周日每天聘用多少人,是5在满足需要的 前况下聘用总人数最少?
性
优化模型
规
决策变量:记周一到周日每天聘用的人数分别为X1,
划
X2,X3,X4,X5,X6 ,X7,这就是问题的决策变量。
的比赛,记 xij=1,否则记 xij=0.这就是问题的决策变量, 共20个。
目标函数:当队员队员 i 入选泳姿 j 的比赛时,
cij xij表示他的成绩,否则cij xij=0。于是接力队的成绩
可以表示为:
45
f
cij xij
j1 i1
约束条件:根据组成接力队的要求, xij 应该满足下面
方案。显然这不是解决问题的最好方法,随着问题
线
规模的变大,穷举法的计算量是无法接受的。
性
可以用0-1变量表示一个队员是否入选接力队, 从而建立这个问题的0-1规划模型.
数学建模动态优化模型

数学建模动态优化模型数学建模是一种通过建立数学模型来解决实际问题的方法。
动态优化模型则是指在一定的时间尺度内,通过调整决策变量,使系统在约束条件下达到最优效果的数学模型。
本文将介绍数学建模中动态优化模型的基本原理、方法和应用。
动态优化模型是一种考虑时间因素的优化模型。
在解决实际问题时,往往需要考虑到系统随时间变化的特性,因此单纯的静态优化模型可能无法满足需求。
动态优化模型对系统的演化过程进行建模,通过引入时间因素,能够更准确地描述系统的行为,并找到最优的策略。
动态优化模型的核心是建立一个数学模型来描述系统的演化过程。
在建模过程中,需要确定决策变量、目标函数、约束条件和系统的动态特性。
决策变量是指在不同时间点上的决策变量值,目标函数是指目标的数量指标,约束条件是系统必须满足的条件,系统的动态特性是指系统状态随时间的变化规律。
动态优化模型的建模方法有很多种,常见的方法包括状态空间建模、差分方程建模和优化控制建模等。
其中,状态空间建模是一种通过描述系统状态和系统状态之间的关系来建立模型的方法;差分方程建模是一种通过描述离散时间点上系统的状态之间的关系来建立模型的方法;优化控制建模则是一种将优化方法和控制方法相结合的建模方法。
动态优化模型在实际问题中有广泛的应用。
例如,在生产调度问题中,我们需要根据不同时间的产销情况来安排生产任务,以使得产能得到充分利用并满足市场需求;在交通控制问题中,我们需要根据交通流量的变化来调整信号灯的配时方案,以最大程度地减少交通拥堵;在能源管理问题中,我们需要根据电网的负荷变化来调整发电机组的出力,以实现能源的有效利用。
在建立动态优化模型时,需要考虑到模型的复杂性和求解的难度。
一方面,动态优化模型往往比静态优化模型复杂,需要考虑到系统的动态特性和约束条件的演化;另一方面,求解动态优化模型需要考虑到系统的运行时间和求解算法的效率。
因此,在建立动态优化模型时,需要合理选择模型和算法,以保证模型的可行性和求解的可行性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I ( x(t ), u(t )) [ F (t , x, u) (t )( f (t , x, u) x)]dt
( H x)dt
t1 t2
H (t , x, u) F (t , x, u) (t ) f (t , x, u)
欧拉方程
d ( H x) x ( H x) x 0 dt d )u ( H x)u 0 (H x dt
下达到极值, 且x(t)X (容许集合) 最优控制问题: u(t)~控制函数, x(t)~状态函数(轨线).
泛函的条件极值 用拉格朗日乘子化为无条件极值
J (u(t )) F (t , x(t ), u(t ))dt
t1 t2 t1 t2
x(t ) f (t , x(t ), u(t ))
[ F ( x) Fx ] t t 2 0
• x=(t)垂直于横轴 (t2固定) o
x x=(t) x(t)
. A
.B
t2
t
Fx
t t 2
0
• x=(t)平行于横轴
[ F xFx ] t t 2 0
包含多个未知函数泛函的欧拉方程
J ( x(t ), u(t )) F (t , x(t ), x(t ), u(t ), u(t ))dt
• 生产费用随着生产率(单位时间的产量)的增加而变大. • 贮存费用随着已经生产出来的产量的增加而变大.
• 生产计划用每一时刻的累积产量表示.
建模目的
寻求最优生产计划, 使完成生产任务所需的总费用 (生产费用与贮存费用之和)最小.
分析与假设
生产任务: t=0开始生产, t=T提供数量为Q的产品. 生产计划(累积产量): x(t)
y
1 y 2 dt dx 2 gy
满足条件
J ( y ( x))
x1
0
1 y 2 dx 2 gy
y (0) 0, y ( x1 ) y1
求y(x) 使 J(y(x)) 达到最小.
短 程 线 问 题
z
给定曲面上的两个点A, B, 求曲面上连接A, B的最短曲线. 建立坐标系 曲面方程f(x,y,z)=0 A(x0, y0, z0 ), B(x1, y1 , z1 )
国民收入相对增长率 x(t ) / x(t )
假设
• 积累率u较小时 x(t ) / x(t ) 随u的增加而增加 ~积累资金扩大再生产的促进作用. • 随着u的变大 x(t ) / x(t ) 的增加变慢.
• u增加到一定程度后 x(t ) / x(t ) 反而减小 ~消费资金太少对国民收入的制约作用. (t ) u (a bu) 描述以上假设的最简模型 (a 2bux) x 0
达到最小 , 且 y(0) 0, y( x1 ) y1
欧拉方程
1 y 2 F ( y, y ) y
y2 y (1 y )
2
Fx Ftx Fxx x Fxx 0 x
Fy Fxy Fyy y Fyy y 0
d ( F y Fy ) 0 dx
t1 t2
欧拉方程
d d Fx Fx 0, Fu Fu 0 dt dt
泛函的条件极值
J (u(t )) F (t , x(t ), u(t ))dt
t1
t2
求u(t)U (容许集合) 使J(u(t))在条件 x(t ) f (t , x(t ), u(t ))
产计划x(t)(累积产量)为二次函数. • 实际条件x(t)0 导致对已知参数的要求: Q k2T 2 / 4k1
若参数不满足该要求怎样处理? • 对函数施加的闭约束, 如对生产率的限制 A x(t ) B 可能导致古典变分法的失败.
13.3
背景和问题
国民收入的增长
• 国民经济收入的来源: 扩大再生产的积累 资金, 满足人民生活需要的消费资金 . • 如何安排积累资金和消费资金的比例, 使国民经济收入得到最快的增长. • 从最优控制的角度讨论十分简化的模型.
Q k2T 2 / 4k1 , 怎么办? 若
?
模型 解释
生产费用 f ( x(t )) k1 x (t )
2
贮存费用 g ( x(t )) k2 x(t )
df ~ 边际成本 dx dg k2 ~边际贮存 dx
最优生产计划 满足方程
k2 2 4k1Q k2T 2 x(t ) t t 4k1 4k1T
13.1
速 降 线 问 题
速降线与短程线
通过两个古典问题介绍变分法的基本概念, 给出主要结果. 给定竖直平面内不在一条垂直线上的两个点A, B, 求连接A, B的光滑曲线,使质 点在重力作用下沿该曲线以最 短时间从A滑到B (摩擦力不计).
.A .B
若沿直线段AB下滑, 路径虽短, 但速度增长慢; 若沿陡峭曲线下滑, 虽路径加长,但速度增长很快.
d Fx Fx 0 dt
欧拉方程
Fx Ftx Fxx x Fxx 0 x
两个任意常数由 x(t1 ) x1 , x(t2 ) x2 确定
固定端点条件下的泛函
用欧拉方程解速降线问题
求y(x) 使
J ( y ( x))
x1 0
1 y 2 dx 2 gy
速 建立坐标系xOy, A(0,0), B(x1,y1), 曲线AB ~y=y(x) O. A 降 曲线弧长 ds 1 y2 dx x 线 问 质点在曲线y(x)上的速度ds/dt y=y(x) 1 ds 2 题 能量守恒 m( ) mgy .B
2 dt
m~质点质量, g~重力加速度 质点沿曲线y(x) 从A到B的时间
F k1 x 2 (t ) k2 x(t )
k2 2k1(t ) 0 x
k2 2 4k1Q k2T 2 x(t ) t t 4k1 4k1T
x Q
考察x(t)0 (0tT) 的条件
x(0) 0
Q k2T 2 / 4k1
O T t
只有当生产任务Q 足够大 时才需要从 t=0开始生产.
o
x
.A
y =y(x) z =z(x)
f(x,y,z)=0
.B
y
曲面上连接A, B的曲线 y =y(x), z =z(x) 曲线的弧长 曲线的长度
ds 1 y2 z 2 dx
满足条件
f ( x, y( x), z( x)) 0
J ( y( x), z( x))
x1
x0
1 y2 z2 dx
求y =y(x), z =z(x) 使J(y(x) , z(x))达到最小.
泛函、泛函的变分和极值
函数、函数的微分和极值
1. 对于t在某域的任一个值, 有y的一个值与之对应, 称y是 t的函数,记作y=f(t) 2. t在t0的增量记作 t= t- t0, 微分dt= t
自变量t,函数x(t), y(t)
1 y2 y
c
y(1 y2 ) 1/ c 2
F yFy c
x c1 (t sin t ) c2 y c1 (1 cos t ) 圆滚线方程
c2=0, c1由y(x1)=y1确定.
横截条件(变动端点问题)
容许函数 x(t)的一个端点固定: x(t1)=x1,另一个端点 在给定曲线 x=(t) 上变动: x(t2)= (t2) (t2可变). 欧拉方程在变动端点的定解条件
3. 泛函J(x(t))在x0(t)的增量记 作J = J(x0(t)+ x(t))- J(x0(t)), J的线性主部称泛函的变分, 记作 J(x0(t))
泛函、泛函的变分和极值
函数、函数的微分和极值
4. 若函数y在域内t点达到极 值,则在t点的微分dy(t)=0 5. y在t的微分的另一表达式
g ( x(t )) k2 x(t )
• 贮存费用与贮存量成正比
模型与求解
T 0
求x(t) (0, 0tT)使C(x(t))最小.
x(0) 0, x(T ) Q
C ( x(t )) [k1 x 2 (t ) k2 x(t )]dt
欧拉方程
d Fx Fx 0 dt
泛函、泛函的பைடு நூலகம்分和极值
1.对于某函数集合的每一个函 数x(t), 有J的一个值与之对应, 称J是x(t)的泛函, 记作J(x(t)) 2. x(t)在x0(t)的增量记作 x(t)= x(t)-x0(t),x(t)称x(t)的变分
3. y在t0的增量记作 f= f(t0+t) - f(t0), f的线性主部是函数 的微分, 记作dy,dy = f (t0)dt
Hamilton函数
H (t ) 0 x H 0 u
(t ) H x H 0 u x f (t , x, u )
由方程组和端点条件解出最优控制u(t)和最优轨线x(t).
13.2 生产计划的制订
问题 • 生产任务是在一定时间内提供一定数量的产品.
第十三章
动态优化模型
13.1 速降线与短程线
13.2 生产计划的制订
13.3 国民收入的增长
13.4 渔船出海
13.5 赛跑的速度
13.6 多阶段最优生产计划
静态优化问题
优化目标是数值
最优策略是数值
动态优化问题
优化目标是数值 最优策略是函数
• 函数对应的数值称为泛函(函数的函数). • 连续动态过程的优化归结为求泛函的极值. • 求泛函极值的常用方法: 变分法、最优控制论. • 离散动态过程的优化 ~ 动态规划模型.