KV电网单相接地电容电流
单相接地电流分析

一、正常运行情况中性点不接地又叫做中性点绝缘。
中性点位移:中性点对地的电位偏移。
中性点位移的程度,对系统绝缘的运行条件来说是至为重要的。
电力系统正常运行时,各相导线间的电容及其所引起的电容电流较小,可以不予考虑。
各相导线对地之间的分布电容,分别用集中的等效电容C U、C V、C W表示,电源三相电压分别为、、,各相对地电压分别用、、表示。
中性点不接地系统的正常运行情况电路图中性点N对地的电位为零。
各相对地电压作用在各相的分布电容上,如正常运行时各相导线对地的电容相等并等于C,正常时各相对地电容电流的有效值也相等,且有:各相的对地电容电流、、大小相等,相位相差120°。
各相对地电容电流的相量和为零,所以大地中没有电容电流过。
各相电流、、为各相负荷电流、、与相应的对地电容电流、、的相量和,以下仅画出U相的情况。
二、单相接地故障完全接地(金属性接地):接地处的电阻近似等于零。
中性点不接地三相系统单相接地电路图以W相k点发生完全接地的情况做一分析:故障相的对地电压为零,即则有:中性点对地电压与接地相的相电压大小相等、方向相反,中性点对地的电压不再为零,上升为相电压。
非故障相U相和V相的对地电压、分别为:非故障相的对地电压升高到线电压,升高为相电压的倍,各相对地电压的相量关系如下所示:中性点不接地三相系统单相接地系统三相的线电压仍保持对称且大小不变。
对接于线电压的用电设备的工作并无影响,无须立即中断对用户供电。
由于非故障相U、V两相对地电压由正常时的相电压升高为故障后的线电压,对地的电容电流也相应增大倍,为。
三相对地电容电流之和不再等于零,大地中有容性电流流过,并通过接地点形成回路。
接地电流超前90°,为容性电流,其有效值为。
单相接地故障时流过大地的电容电流,等于正常运行时一相对地电容电流的3倍。
单相接地电容电流的实用计算中可按下式计算:式中:I C 为接地电容电流,单位A;U为系统的线电压,单位kV;L1与L2分别为电压同为U,并具有电联系的所有架空线路及的电缆线路的总长度,单位km。
煤矿高压电网单相接地电容电流计算方法

##省晋煤寺河矿二号井高压电网单相接地电容电流计算近年来,随着矿井井型的增大,井下用电设备的增多,煤矿机械化程度的提高,供电线路逐渐增加,煤矿高压电网的单相接地电容电流也在增大,给供电系统的正常运行带来一系列安全性和可靠性问题。
随着接地电容电流的增大,降低了电缆的绝缘程度,易形成绝缘击穿从而发生两相或三相短路故障,当电网的接地电容电流增大到一定值后,接地故障点电弧便难以自熄,容易引起间隙电弧过电压。
为减少煤矿安全事故发生的可能,必须对煤矿高压电网的单相接地电容电流进展准确的治理和补偿,因此准确计算煤矿供电系统对地电容电流具有重要的现实意义。
单相接地故障是影响煤矿高压电网安全供电的主要因素之一,当单相接地电容电流超过一定值时,必须对煤矿高压电网的单相接地电容电流进展准确的治理和补偿,本文在分析煤矿高压电网电容电流理论准确计算根底上,应用了综合考虑电缆系数、天气系数与高压电器设备增值系数的改良的单相接地电容电流计算方法。
最后,通过实例计算验证了该改良计算方法的正确性。
1 、电网单相接地电容电流的理论计算煤矿10kV高压电网中性点不接地系统可以由图1模拟表。
图1 10kV 中性点不接地模拟电网图中,A E •、B E •、C E •为电网各相相电势,14~C C 为各线路每相对地分布电容,0C 为电力系统中其它线路与设备的一相对地总电容,01234d I i i i i i =++++为电力系统单相接地电容电流。
当配电网发生A 相单相接地故障时,故障点的接地电容电流由式3d A I CU ω=计算,其中01234C C C C C C =++++为配电网一相对地总电容值,为电网的相电压,大小为6000/3那么电网的对地电容就越大,接地电流也越大。
煤矿配电网中性点不接地系统单相接地故障时,有如下的故障特征:流过所有非故障线路零序电流的方向一样,故障线路零序电流方向与非故障线路相反,且故障线路电流突变的幅值大于所有非故障相的幅值,其值为所有非故障相的幅值之和。
单相接地电容电流限制措施

单相接地电容电流限制措施(1)在Y/接线的变压器,消弧线圈的电流是流过变压器线圈的,因变压器有一个接成三角形的线圈,无论磁路的结构如何,在这个线圈中,一定会出现抵消零序电流的环流。
所以,消弧线圈的容量,不大该变压器额客容量的50%时,变压器不会受到任何不利的影响。
(2)对Y/Y/接线的三线圈变压器,因考虑三线圈变压器的容量比,为满足变压器2h过负荷30%的规定,则消弧线圈的容量,不得大三线圈变压器的任一线圈的容量,一般选择消弧线圈的容量为不大该变压器容量的,(3)对Y/Y接线的三相内铁型变压器,因考虑到受零序电压降和铁壳损失的限制,一般消弧线圈的容量,不宜大变压器额定容量的20%。
(4)Y/Y接线的单相变压器组或外铁型三相变压器,因其零序阻抗很大,不应将消弧线圈接在这种变压器的中性点上。
5消弧线圈的调整原则消弧线圈的调整应以过补偿运行为基础。
由消弧线圈容量的限制或在特殊运行方式下,允许采用欠补偿运行,但必须事先进行断线过电压的验算,使可能出现的最大中性点位移电压,不超过相电压的60p%。
在网络中同时有几台消弧线圈并联运行时,当网络发生单相接地,通过故障点的电感电流IL为各个消弧线圈的算术和,此时,网络消弧线圈应按照总和的电感电流进行整定。
在整定时,应满足以下几点要求:(1)正常情况下,改变系统的运行方式,需要调整消弧线圈的补偿电流时,只调整一个消弧线圈的抽头,就能满足所需调整的需要。
(2)要满足系统的主要部分,在分区运行时,都应处在过补偿运行状态。
(3)消弧线圈的调整,还应考虑到在系统发生单相接地时,流经故障点的残流越小越好,一般不应大5A;中性点位移电压,在正常运行时,不应超过相电压的15%,特殊情况下,一小时内不得超过相电压的30%;发生接地故障时,不得超过相电压的100%。
(4)脱谐度一般不大丁10%,脱谐度意为脱离谐振点的程度,它是Ic 与IL之差与Ic之比。
即v=L_1oo%6消弧线圈的操作(1)在系统发生单相接地故障时,禁止用刀闸断开消弧线圈,因为消弧线圈是经刀闸与变压器中性点相联接的,在系统接地情况下,拉开中性点刀闸,将会造成带负荷拉刀闸。
单项接地电容电流

单项接地电容电流的规定和限制措施一、规定要求:《煤矿安全规程》第453条规定:矿井6000V及以上高压电网,必须采取措施限制单相接地电容电流,生产矿井不超过20A,新建矿井不超过10A。
矿井高压电网中的变压器都采用中性点不接地的运行方式,此种运行方式当变电容量过大进将产生较大的单相接地电容电流。
单相接地电流过大可能引起电气火灾和电雷管超前引爆等故障。
从安全角度讲,国家规定额定安全电压最高值为42V,对煤矿井下规定额定安全电压为36V,取上限为42V,《规程》规定,接地网上任一保护接地点的接地电阻值不得超过2Ω。
而单相接地电流应限制在42V/2Ω=21A以下。
因此规程规定,对于大中型矿井,当高压电网的单相接地电容电流超过20A时,可采取变压器中性点经消弧电抗线圈接地或缩短供电网络距离等补偿措施。
二、矿井下的变压器中性点不能直接接地:因为对于中性点直接接地的连接方式,一旦发生系统中一相接地而出现除中性点外的另一个接地点,则会发生严重的短路。
此时接地故障相电流很大,容易损坏设备,危害人身安全。
对于矿井而言,大短路电流可能会产生电火花,易导致井下易爆气体爆炸。
因此井下变压器中性点不能直接接地。
而对于中性点不接地的系统,即使发生单相接地,也不会造成短路,系统仍然可以继续运行,保证可靠性。
但此时非接地相电压将升高至线电压,所以此类系统对于绝缘的要求较高。
由于高压绝缘较困难,所以通常高压输电网采用中性点直接接地,而中压系统主要是采用中性点不接地。
三、单相接地电容电流的危害1、人体触电:在绝缘电阻和分布电容一定时,电网电压越高,人体触电时的危险性就越大。
当电网电压一定时,供电线路越长而对地分布电容越大,人体触电时危险性就越大。
2、接地电压升高:供电系统中任一相绝缘损坏接地时,该相对地电压等于零,其他非故障两相对地电压升高达电网线电压(即为正常工作的√3倍,即线电压),易使绝缘薄弱处击穿造成两相接地、相间短路。
非故障两相对地电容电流也随之增大为正常时的√3倍,接地点的接地电流是非故障两相对地电容电流的矢量和,即为正常时对地电容电流的3倍。
10KV的电网中性点不接地单相接地时的电容电流

10KV的电网中性点不接地单相接地时的电容电流下面是一些摘录资料:在GB50070-94《矿山电力设计规范》第2。
0。
10条中规定,“矿井6-10KV电网,当单相接地电容电流小于等于10A时,宜采用电源中性点不接地方式;大于10A时,必须采取限制措施”。
这条规定是依据国内外有关科研成果和国内外现行规程、标准以及人身触电安全要求等三方面作出的。
现分述如下:1、试验研究和运行经验数据①《电缆网络单相接地电弧电流不自熄下限试验研究》技术鉴定书指出,“电弧引弧试验的数据近200个。
这些数据客观地、真实地描述了在给定工况条件下,电缆接地电弧电流的熄灭情况”。
部级鉴定委员会同意由西北电力中试所和北京煤炭设计研究院完成的试验研究报告,并肯定该报告可供修改规程、规范时参考。
该报告的结论是,电弧接地不自熄电流下限值:全塑电缆25A;油浸纸绝缘电缆15A;交联电缆10A。
以安全计应取其中最小值10A。
②华中、湖北电力试验研究所1992年试验研究的成果表明,3-10KV架空配电线路,当电容电流在16A及以上时,不能自熄电弧;当电容电流小于10A,几乎全能自熄。
③湖北省6-10KV配电网运行经验与上述试验研究结果一致。
④开滦矿务局赵各庄煤矿从60年代以来,单相接地电容电流达18A左右,井下高压电缆发生着火事故次数显著增多。
⑤原中国统配煤矿总公司6KV电网安全调研组于1988年对引起矿井电缆“放炮”事故做了统计分析。
结论是,电容电流在20A左右的矿井电缆“放炮”事故仍很严重。
⑥(GB50070-94)《矿山电力设计规范》专题组编写的《关于矿井高压电网单相接地电流限值问题的分析讨论》报告中指出,某矿实测6KV电网电容电流为16A,曾发生多重接地故障。
⑦中国矿业大学《矿井6KV电网单相接地电流及限制方案的制定》一文指出,实验研究和仿真计算结果表明,当单相接地电弧电流小于10A时,电弧可自熄。
⑧前苏联《煤矿供电效率的提高》专著中指出,当接地电容电流大于10A时,中性点应采用消弧线圈补偿方式。
主变压器35kV中性点接地方式分析

主变压器35kV中性点接地⽅式分析三相交流电⼒系统中中性点与⼤地之间的电⽓连接⽅式,称为电⽹中性点接地⽅式。
中性点接地⽅式对电⽹的安全可靠性、经济性有很⼤影响;同时直接影响系统设备绝缘⽔平的选择、过电压⽔平及继电保护⽅式、通讯⼲扰等。
⼀般来说,电⽹中性点接地⽅式也就是变电站中变压器的各级电压中性点接地⽅式。
以电缆为主的配电⽹,当发⽣单相接地故障时,其接地残流较⼤,运⾏于过补偿的条件也经常不能满⾜。
我国ll0kV及以上电⽹⼀般采⽤⼤电流接地⽅式,即中性点有效接地⽅式 (在实际运⾏中,为降低单相接地电流,可使部分变压器采⽤不接地⽅式),包括中性点直接接地和中性点经低阻接地。
这样中性点电位固定为地电位,发⽣单相接地故障时,⾮故障相电压升⾼不会超过1.4倍运⾏相电压;暂态过电压⽔平也较低;故障电流很⼤,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短。
因此,⼤电流接地系统可使整个系统设备绝缘⽔平降低,从⽽⼤幅降低造价。
6~35kV配电⽹⼀般采⽤⼩电流接地⽅式,即中性点⾮有效接地⽅式。
包括中性点不接地、⾼阻接地、经消弧线圈接地⽅式等。
在⼩电流接地系统中发⽣单相接地故障时,由于中性点⾮有效接地,故障点不会产⽣⼤的短路电流,因此允许系统短时间带故障运⾏。
这对于减少⽤户停电时间,提⾼供电可靠性是⾮常有意义的。
⼀、分析35kV侧中性点接地⽅式。
根据DL/T620—1997 交流电⽓装置的过电压保护和绝缘配合》规程中3.1.2条规定:⾦属杆塔的架空线路构成的系统和所35kV、66kV系统当单相接地故障电容电流超过10A⼜需在接地故障条件下运⾏时,应采⽤消弧线圈接地⽅式。
建设容量49.5MW,35kV侧单相接地电容电流约为24A,且风电场35kV集电线路采⽤架空线为主电缆为辅的混合输电⽅案,因此5kV侧中性点采⽤经消弧线圈接地⽅式。
当35kV侧中性点通过消弧线圈接地,线路发⽣单相接地故障时,不会瞬时跳闸,⼀般允许2h持续运⾏,以便寻找和处理事故。
单相接地电容电流 2

一、单相接地电容电流:在配电网中,一根母线经变压后连接多根子线,每根子线都有大地之间有个电容电流,在未发生接地时,电容电流彼此抵消;当发生单相接地时,未接地的子线电容电流经接地点流向母线,就产生了电容电流。
当电容电流过大,一般超过10A 时就会发生电弧,当接地点的电阻恢复慢于电压恢复时,就会产生连续电弧,往往造成过电压等问题。
二、电气制动:采用通电产生磁场制动统称电气制动,如电磁制动、反接制动、能耗制动等。
简单的说,电机既可以当发电机用,又可以当电动机用。
假设你现在有台电动机,正在转。
这时,撤掉电源,改为接个电阻。
这时,转动着的电机就变成了发电机,发出的电经过电阻变成热量。
动能-电能-热量以这种方法使电机尽快慢下来。
如果不这样,电机是靠摩擦力慢慢慢下来的。
动能-摩擦产热。
三、零序过流保护零序、正序、负序是进行电路分析时人为的将要分析的量分解成三个分量。
一般同一个回路的导线全部穿过同一个电流互感器(也叫零序互感器)时,互感器的次级没有输出,也就是该回路零序电流为零。
当线路出现漏电时(漏电发生在互感器以下),穿过互感器的电流矢量和不再为零,互感器次级就会有输出电流,利用这个原理可以进行漏电保护。
四、零序过电压保护:正常情况下,UA+UB+UC的向量和为0,当系统发生单相接地后,UA+UB+UC的向量和不再为0,这个不为0的值变是零序电压,通过检测该电压能够反映系统是否发生单相接地故障,这就是零序过电压保护。
五、高压PT上的继电保护有哪些一般是过电压保护、低电压保护、母线接地保护、母线PT短线报警等。
至于是动作于跳闸还是报警就看你们自己的需求了PT柜:电压互感器柜,一般是直接装设到母线上,以检测母线电压和实现保护功能。
内部主要安装电压互感器PT、隔离刀、熔断器和避雷器等。
其作用:1、电压测量,提供测量表计的电压回路2、可提供操作和控制电源3、每段母线过电压保护器的装设4、继电保护的需要,如母线绝缘、过压、欠压、备自投条件等等。
变电站设计常用电气计算-电容电流计算

2.5 m/回 平均每回架空长度
Ic= 120.52 A
准确计算法 U= C= 10.5 kV 0.37 uF 额定线电压 每相对地电容(uF) 角频率 每段线路回路数 线路单相接地电容电流
w 314.16 L= x= 总电容电流 12 回
2.5 m/回 平均每回线路长度
Ic= 63.418 A
第 1 页,共 3 页
〔1〕 6kV电缆线路
2.5 m/回 平均每回电缆长度
Ic= 44.746 A
2.5 m/回 平均每回电缆长度
Ic= 74.576 A 架空线路 L= x= Ic= 〔2〕 10kV架空线路 L= x= Ic= 总电容电流 二 〔1〕 6kV架空线路
2.5 m/回 平均每回架空长度 12 回 0.45 A 12 回 0.75 A 每段架空回路数 6kV架空线路单相接地电容电流 每段架空回路数 6kV架空线路单相接地电容电流 全站总电容电流第 3 页,共 3 页
电容电流计算 全所电容电流计算 一 1 常规算法 电缆线路 U= S= L= x= 〔2〕 10kV电缆线路 U= S= L= x= 2 6.3 kV 300 mm2 12 回 10.5 kV 300 mm2 12 回 额定线电压 电缆截面mm2 每段电缆回路数 6kV电缆线路单相接地电容电流 额定线电压 电缆截面mm2 每段电缆回路数 10kV电缆线路单相接地电容电流
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西朔州山阴金海洋台东山煤业有限公司
35kv变电站10KV母线单相接地电容电流测试报告中性点不接地系统的优点是单相接地电流较小,单相电流不形成短路回路,电力系统安全运行规章规定可继续运行1~2小时。
但是,长时间接地运行,极易形成俩相接地短路,弧光接地还会引起全系统过电压。
特别是矿井电网,因其大部分为电缆供电,若单相接地电流较大,加之井下环境恶劣,故障多,高压电缆经常发生单相漏电或单相接地故障,且过大的单相接地电流经常引起电缆放炮和击穿现象,影响正常生产,并给矿井和人身安全带来严重后果。
因此,正确测量、了解电网单相接地电流情况,对保证矿井安全运行极为重要。
1单相接地电流及其分量的测量方法
电网单相对地绝缘参数的常用测量方法有:附加电源测量法,交流伏安法,中性点位
移电压法,谐振测量法。
其中第一种方法所测的是测量频率下的绝缘参数,只可间接地反映工频下的绝缘参数;而后三种方法是采用电网工作电源进行测量,反映了电网的实际绝缘参数。
中性点位移电压法也称间接测量法,是目前测量小电流接地系统单相接地电容电流的常用方法。
其一般作法是在电网一相与地之间接入一个附加电容,实测流过此电容的电流与中性点位移电压,通过计算来求得电网单相接地电容电流。
但由于电容的充电效应, 在人为接地的瞬间,相当于在电网中产生了一个金属性接地故障,这显然不利于安全。
因此,有必要研究一种更加安全可靠地新方法,即单相经电阻接地的间接测量方法。
图1中性点不接地电网绝缘参数测量模型
图1为一中性点不接地电网的绝缘参数测量模型, C r 分别为各相对地电容和绝缘电 阻。
考虑到实验的安全性,采用电网单相经电阻接地的方法,电网的任何一相(如 A 相) 经附加电阻R 和电流表A 接地。
接地电阻R 选用500—1000 Q,接地电流可控制在几安培, 并通过理论计算,求出电网单相直接接地时的电流。
我们知道,电网单相接地电流是电网对地总的零序电流之和,不管是直接接地,还是 经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。
因此,测 量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。
其计算公式 是:
I E 100 I R U 02 式中,|E 为电网单相直接接地电流,I R 为电网单相经电阻接地的电流,U 02为电网单相经
(1)
电阻接地时的二次零序电压,100为电网单相直接接地时的二次零序电压(100V )
由此可见,只要测得电网电源相电压、单相经电阻接地时电阻中的电流与电网零序电 压,即可方便地求得单相接地电流。
该方法非常简单,而且安全、可靠。
考虑到测量的安全性,电网相电压与零序电压通常经过电压互感器进行测量。
实际测量 时,由于电网不一定恰好在额定电压下运行,应考虑到实际电网电压的波动情况,因此式 (1)还应进一步改写为
式中U 12 —电压互感器二次线电压
关于电网没相对地绝缘电阻r 相对地电容C 的计算方法,可根据其它数学模型进一步计
2测试数据及结果
该矿10KV 母线共有段母线,采用 双母线并列 运行方式。
母线电网经电阻接地的有关测试数据为:
|R = 5.2 A, U 02 = 92 V, U 12 = 106 V,
计算出该段母线电网单相直接接地电流为:
|E = 4.8 A
|E U 12 U 02
|R
由以上数据可得,在忽略电网电阻绝缘电阻时,电网总的单相接地电流电容为 消弧线圈投入运行后,根据上述提出的测量方法进行接地实验,得到数据如下
I R = 4.5 A, U 02 = 93 V,
U 12 = 107 V,
计算出该段母线电网单相直接接地电流为: I E = 3.9 A
则消弧线圈补偿了
残余电流为3.9A
结论:工程实际中应根据系统具体情况,选取适合的智能型自动补偿装置。
首先,要
根据系统电容电流大小来决定消弧线圈的补偿范围,即容量。
如果消弧线圈在最大补偿电 流档位运行,脱谐度仍大于5%,说明消弧线圈的容 量已不能满足要求。
其次,要确定消 弧线圈的调节步长,即分接头数。
从理论上讲,最好是连续可调的消弧线圈
.现该矿10KV
系统经过电容补偿及消弧消谐处理后,单项接地电流大小满足供电安全要求。
测试人: 年 月曰
年 月曰 4.8 审核人:。