(完整版)五年级奥数.计算综合.整数裂项与分数裂和(A级).学生版

合集下载

五年级下册数学试题-计算综合.裂项(B级)(解析版)全国通用

五年级下册数学试题-计算综合.裂项(B级)(解析版)全国通用

(1) 能熟练运算常规裂和型题目; (2) 复杂整数裂项运算; (3) 分子隐蔽的裂和型运算。

(4) 通项归纳一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

1、 对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- 2、 对于分母上为3个或4个自然数乘积形式的分数,我们有: 1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+3、 对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)(()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭考试要求知识结构裂项()()()()()21122k n n k n k n n k n k n k =-+++++()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++()()()()()11222hh n n k n k kn n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦()()()()()()()()11233223h hn n k n k n k kn n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭二、裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

小学奥数裂项公式汇总资料

小学奥数裂项公式汇总资料

裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。

(完整版)整数裂项.docx

(完整版)整数裂项.docx

整数裂项整数裂 基本公式(1) 1 2 2 3 3 4 ... (n1) n1 1) n ( n1) (n3(2) 1 2 3 2 3 4 34 5 ... (n2) (n 1) n1 ( n 2)( n 1)n(n 1)4【例 1 】 1 2 2 3 3 4 L49 50=_________【考点】整数裂 【 度】 3 星【 型】 算【解析】是整数的裂 。

裂 思想是:瞻前 后,相互抵消。

S = 12 23 34 L 49 501×2×3= 1×2×32×3×3= 2×3×( 4- 1)= 2×3×4- 1×2×3 3×4×3= 3×4×( 5- 2)= 3×4×5- 2× 3× 4⋯⋯49×50×3= 49×50×( 51- 48) =49 ×50×51- 48×49×50 3S = 1×2×3+ 2×3×3+ 3×4×3+ ⋯+ 49×50×3= 49×50×51 S = 49×50×51÷3= 41650【答案】 41650【巩固】 1 2 2 3 3 44 5 5 6 6 77 8 8 9 9 10 ________【考点】整数裂【 度】 3 星【 型】 算【解析】本 数 少,可以直接将每一 乘 都 算出来再 算它 的和,但是 于 数 多的情况 然不能 行 算. 于 数 多的情况,可以 行如下 形:n n 1 n 2n 1 n n 111n 1 n n 1 , n n 13n n 1 n 233所以原式1 12 31 2 3 4 1 1 2 3L1 9 10 11 18 9 1033 333 110 11 33093另解:由于 n n 1 n 2 n ,所以原式12 1 22 2 L92 91222 L921 2L 91 9 10 19 1 9 1033062 1采用此种方法也可以得到1 2 2 3 Lnn11 n2 一 .n n3【答案】 330【例 2 】 1 44 77 10 L49 52 =_________【考点】整数裂【 度】 3 星【 型】 算【解析】S = 1 4 4 7 7 10 L 49 521×4×9= 1×4×7+ 1×4×24×7×9= 4×7×( 10- 1)= 4×7×10- 1×4×77×10×9= 7×10×( 13-4)= 7×10×13- 4×7×10⋯⋯⋯⋯.49×52×9= 49×52×( 55- 46)= 49×52×55- 46×49×529S= 49×52×55+ 1×4×2S=( 49×52×55+ 1×4×2)÷9=15572【答案】 15572【例 3 】 1 2 3 2 3 4 3 4 5 L 9 10 11【考点】整数裂【度】 3 星【型】算【解析】 n n1n21n1n2n311 n n1n2 ,所以,n n44原式11 2 3 41 2 3 4 511 2 3 4L19 10 11 1218 9 10 11 444441910111229704从中可以看出,1232343 4 5L n n11n 2 n 3 n 2n n 14【答案】 2970【例 4 】算:1 3 5357L171921.【考点】整数裂【度】 3 星【型】算【解析】可以行整数裂.357 3 5 7 9 1 3 5 7 ,8579 5 7 9 11 3 5 7 9 ,817192117 19 21 23 15 17 19 21 ,8所以原式135********L1719212315171921 88135171921231357171921231358819503也可适用公式.原式 3 2 3 3 2 5 2 5 5 2 L19 2 19 19 2 3222 3 5222 5 L19222193353L 193 4 3 5 L 19133353L 193 4 1 3 5 L 19 3而 133353L 193132333L 203234363L20312022128110211219900,441 3 5 L 19 102100 ,所以原式19900 4 100 3 19503.【答案】19503【巩固】算:1 2 3 4 3 4 5 6 5 6 7 8 L 97 98 99 100【考点】整数裂【度】 3 星【型】算【解析】一般的整数裂各之都是的,本中各之是断开的,此可以将中缺少的上,再行算.原式 A ,再 B2345456767 89L96979899 ,A B 1 234 2 3453456L97989910019798991001011901009880 ,5在知道 A 与 B 的和了,如果能再求出 A 与 B 的差,那么 A 、 B 的就都可以求出来了.A B12342345345645 6 7567 8L9798 99 1004(123345567... 979899)42(221)4(421)6(621)L98(9821)4(2 34363L983 )4(246L98)48149250 241100494801020042所以, A1901009880480102002974510040 .【答案】 974510040【例 5 】2004 2003 20032002 2002200120012000L 2 1【考点】整数裂【度】 3 星【型】算【解析】原式2003220012L32122135L20012003212003100222008008其中也可以直接根据公式 1 357L2n 1 n2得出1 35L200120032 1002【答案】2008008【例 6 】 1 1!22!33!L20082008!【考点】整数裂【度】 4 星【型】算【解析】察 22!221(31)213!2! ,3 3!3321(41)32 14!3! ,⋯⋯20082008!20082008 2007L 2 1,(20091)20082007L212009!2008!可,原式1!(2!1!)(3!2!)L(2009!2008!)2009!【答案】 2009!【例 7 】计算:123456L991002345L98 99【考点】整数裂项【难度】 5 星【题型】计算【解析】设原式 =BAA B 122334L98999910011230122 3 412 3 L99 100 101 98 99 100 3【答案】199 100 1013333003B A 1 2 3 2 L 99 2 50 100 5000 B 333300 50003383A 333300 5000328333833283。

小学 奥数裂项法(含答案)

小学 奥数裂项法(含答案)

奥数裂项法同学们知道:在计算分数加减法时,两个分母不同的分数相加减,要先通分化成同分母分数后再计算。

(一)阅读思考例如,这里分母3、4是相邻的两个自然数,公分母正好是它们的乘积,把这个例题推广到一般情况,就有一个很有用的等式:即或下面利用这个等式,巧妙地计算一些分数求和的问题。

【典型例题】例1. 计算:分析与解答:上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了。

像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法。

例2. 计算:公式的变式当分别取1,2,3,……,100时,就有例3. 设符号()、< >代表不同的自然数,问算式中这两个符号所代表的数的数的积是多少?分析与解:减法是加法的逆运算,就变成,与前面提到的等式相联系,便可找到一组解,即另外一种方法设都是自然数,且,当时,利用上面的变加为减的想法,得算式。

这里是个单位分数,所以一定大于零,假定,则,代入上式得,即。

又因为是自然数,所以一定能整除,即是的约数,有个就有个,这一来我们便得到一个比更广泛的等式,即当,,是的约数时,一定有,即上面指出当,,是的约数时,一定有,这里,36共有1,2,3,4,6,9,12,18,36九个约数。

当时,,当时,,当时,,当时,,当时,,当时,,当时,,当时,,当时,,故()和< >所代表的两数和分别为49,32,27,25。

【模拟试题】二.尝试体验:1. 计算:2. 计算:3. 已知是互不相等的自然数,当时,求。

【试题答案】1. 计算:2. 计算:3. 已知是互不相等的自然数,当时,求。

的值为:75,81,96,121,147,200,361。

因为18的约数有1,2,3,6,9,18,共6个,所以有还有别的解法。

裂项法(二)前一节我们已经讲过,利用等式,采用“裂项法”能很快求出这类问题的结果来,把这一等式略加推广便得到另一等式:,现利用这一等式来解一些分数的计算问题。

(完整版)五年级奥数.计算综合.整数裂项与分数裂和(A级).学生版.docx

(完整版)五年级奥数.计算综合.整数裂项与分数裂和(A级).学生版.docx

整数裂项与分数裂和考试要求(1)能熟练运算常规裂和型题目;(2)复杂整数裂项运算;(3)分子隐蔽的裂和型运算。

知识结构一、复杂整数裂项型运算复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。

其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加 1 的乘积。

整数裂项口诀:等差数列数,依次取几个。

所有积之和,裂项来求作。

后延减前伸,差数除以N。

N 取什么值,两数相乘积。

公差要乘以,因个加上一。

需要注意的是:按照公差向前伸展时,当伸展数小于0 时,可以取负数,当然是积为负数,减负要加正。

对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。

此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。

二、“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a bab1 1(2) a 2b2 a 2b2a ba b a b a b b a a b a b a b b a裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

重难点(1)复整数裂的特点及灵活运用(2)分子蔽的裂和型运算。

例题精讲一、整数裂【例 1】算:1 3 2 4 3 5 4 6 L 99 101【巩固】算: 3 5 5 7 7 9 L 97 99 99 101【例 2】算1016 22 16 22 28 L 70 76 82 76 8288【巩固】 3 3 3 4 4 4 L 79 7979【例 4】计算:1 1 1 2 2 2 3 3 3 L 99 99 99 100 100 100【例 5】1 1 2 1 2 3 1 2 3 4 L 1 2 3 L100【巩固】 3 3 6 3 6 9 L 3 6 L300二、分数裂和【例 6】填空:51,71,91 62123204 111, 131, 151 3054265675791113151719【巩固】计算: 1122030425672906【例7】 5 6 6 7 78 8 9 9 1056677889910【巩固】36579111357612203042【例 8】计算:132579101119 3457820212435【巩固】12379111725 3571220283042【例 9】111112010263827 2330314151119120123124【巩固】3549637791105 1 316122030425688【例10】122222321821921922021223181919201212221222321222324212 2 2262【巩固】1323132333132333431323263 13课堂检测1、1 4 4 7 7 10 L 4952 =_________57911131517192、计算: 11220304256729063 、1179817512 22 22 32 20042 20052 20052 200624、22 3L20052005 20061 20045、 11 11L 11111223299 2家庭作业1、 1 1 2 2 3 3 L 50 502、 2 4 6 4 6 8 L 96 98 1003、 1 2 3 7911 21 313 5 7 12 20 28 40 564 、(11) (22) (33) L(88) (99 ) 2349105、 1 2 1 2 3 1 2 3 4 L 1 2 3 L 502 23 2 34 2 3 L 50教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:。

小学奥数--分数裂项-精选练习例题-含答案解析(附知识点拨及考点)

小学奥数--分数裂项-精选练习例题-含答案解析(附知识点拨及考点)

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

,本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- 、(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

$知识点拨教学目标分数裂项计算二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

小学数学奥赛1-2-2-1 分数裂项.学生版

小学数学奥赛1-2-2-1 分数裂项.学生版

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:知识点拨教学目标分数裂项计算(1)11a b a ba b a b a b b a+=+=+⨯⨯⨯(2)2222a b a b a ba b a b a b b a+=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

小学奥数教程:分数裂项计算 全国通用(含答案)

小学奥数教程:分数裂项计算 全国通用(含答案)

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:知识点拨教学目标分数裂项计算(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) 能熟练运算常规裂和型题目;
(2) 复杂整数裂项运算;
(3) 分子隐蔽的裂和型运算。

一、 复杂整数裂项型运算
复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。

其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。

整数裂项口诀:等差数列数,依次取几个。

所有积之和,裂项来求作。

后延减前伸,差数除以N 。

N 取什么值,两数相乘积。

公差要乘以,因个加上一。

需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。

对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。

此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。

二、 “裂和”型运算
常见的裂和型运算主要有以下两种形式:
(1)11a b a b a b a b a b b a
+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:
裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

考试要求
知识结构
整数裂项与分数裂和
(1) 复杂整数裂项的特点及灵活运用
(2) 分子隐蔽的裂和型运算。

一、
整数裂项
【例 1】 计算:1324354699101⨯+⨯+⨯+⨯++⨯L
【巩固】计算:355779979999101⨯+⨯+⨯++⨯+⨯L
【例 2】 计算101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯L
【例 3】 计算1×1+2×2+3×3+……+99×99+100×100
例题精讲
重难点
【巩固】333444797979⨯⨯+⨯⨯++⨯⨯L
【例 4】 计算:111222333999999100100100⨯⨯+⨯⨯+⨯⨯++⨯⨯+⨯⨯L
【例 5】 ()()()()1121231234123100+++++++++++++++L L
【巩固】()()()33636936300++++++++++L L
二、
分数裂和
【例 6】 填空: ()+=2165, ()+=31127, ()+=4
1209
()+=513011,()+=614213, ()+=715615
【巩固】计算:90
197217561542133011209127651+-+-+-+-
【例 7】 5667788991056677889910
+++++-+-+⨯⨯⨯⨯⨯
【巩固】 36579111357612203042
++++++
【例 8】计算:132579101119 3457820212435 ++++++++=
【巩固】12379111725 3571220283042 +++++++
【例 9】111112010263827 2330314151119120123124 +++++++++
【巩固】
354963779110531
1 6122030425688⎡⎤
⎛⎫
-+-+--÷ ⎪
⎢⎥
⎝⎭
⎣⎦
【例 10】
22222222 122318191920 122318191920 ++++ ++⋯⋯++
⨯⨯⨯⨯
【巩固】3332223333222233322233223226
21262143214321321321212111+⋯+++⋯++-⋯+++++++-+++++++-
1、 14477104952⨯+⨯+⨯++⨯L =_________
2、 计算:57911131517191612203042567290
-+-+-+-+
3、 11798175451220153012
++++++ 课堂检测
4、 22222222
1223200420052005200612232004200520052006
++++++++⨯⨯⨯⨯L
5、 2221111112131991⎛⎫⎛⎫⎛⎫+
⨯+⨯⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭
L
1、 1122335050⨯+⨯+⨯++⨯L
2、 2464689698100⨯⨯+⨯⨯++⨯⨯L
家庭作业
3、12379112131 3571220284056 +++++++
4、
12389 (1)(2)(3)(8)(9)
234910 -⨯-⨯-⨯⨯-⨯-
L
5、12123123412350 2232342350 ++++++++++⨯⨯⨯⨯
++++++
L
L
L
学生对本次课的评价
○特别满意○满意○一般
家长意见及建议
家长签字:教学反馈。

相关文档
最新文档