9容器零部件2
化工设备设计基础第6章化工设备设计概述

外压容器 : 设计压力通常为低压
一、容器的结构与分类
• 4. 按壁温分类
• ⑴ 常温容器
– 指壁温高于-20℃至200℃条件下工作的容器;
• ⑵ 高温容器
– 指壁温达到材料蠕变温度下工作的容器。对碳家钢或低 合金钢容器,温度超过420℃,合金钢(如Cr-Mo钢)超 过450℃,奥氏体不锈钢超过550℃,均属高温容器;
• ⑶ 中温容器
– 指壁温在常温和高温之间的容器;
• ⑷ 低温容器
– 指壁温低于-20℃条件下工作的容器。其中低于-20℃至 -40℃者为浅冷容器,低于-40℃者为深冷容器。
一、容器的结构与分类
• 5. 按结构材料分类
– 金属容器:目前应用最多的是低碳钢和普通低合 金钢制的容器。在腐蚀严重或产品纯度要求高的 场合,使用不锈钢、不锈复合钢板或铝、银、钴 等制的容器,在深冷操作中,可用铜或铜合金。 而承压不大的塔节或容器,可用铸铁。
•无缝钢管做筒体的公称直径系列
159 219 273 325 377 426
三、压力容器的安全监察
• 1. 安全监察的必要性
– 应用广泛、特殊、事故率高、危害性大,一旦发生破坏会导致爆炸、 介质泄漏等灾难性事故,因此必须纳为特种设备进行管理。
• 2. 压力容器相关的法规和标准
– 法规性规定:具有强制性
• A.三类容器。符合下列情况之一者为三类容器: – (1)高压容器; – (2)中压容器(毒性程度为极度和高度危害介质); – (3)中压贮存容器(易燃或毒性程度为中度危害介质,且设计压力与容积之积pV ≥ 10MPa·m3); – (4)中压反应容器(易燃或毒性程度为中度危害介质,且pV ≥0.5MPa·m3); – (5)低压容器(毒性程度为极度和高度危害介质,且pV ≥0.2MPa·m3); – (6)高压、中压管壳式余热锅炉; – (7)中压搪玻璃压力容器; – (8)使用强度级别较高(抗拉强度规定值下限≥540MPa)的材料制造的压力容器; – (9)移动式压力容器,包括铁路罐车(气体、低温液体或永久气体运输车)和罐 式集装箱(介质为液化气体、低温液体等);
压力容器常用零部件资料

1 2 3 4 5 6 7 8 9 压力容器常用零部件资料20111208.xls 压力容器常用零部件资料20111208.xls 压力容器常用零部件资料20111208.xls 压力容器常用零部件资料20111208.xls 压力容器常用零部件资料20111208.xls 压力容器常用零部件资料20111208.xls 压力容器常用零部件资料20111208.xls 压力容器常用零部件资料20111208.xls 压力容器常用零部件资料20111208.xls 1 2 3 4 5 6 7 8 9 10 11 封头 补强圈 容器法兰(甲型) 容器法兰(乙型) 容器法兰(长颈) 管法兰(盖)质量 管法兰(带颈对焊) 管法兰(带颈平焊) 管法兰(板式平焊) 人孔(垂吊) 人孔(水吊)
10 压力容器常用零部件资料20111208.xls
标准及内容
GB/T25198-2010 《压力容器封头》 JB/T4736-2002 《补强圈》
JB/T4701-2000《压力容器法兰》 JB/T4702-2000《压力容器法兰》 JB/T4703-2000《压力容器法兰》 HG/T20592-2009、HG/T20615-2009《钢制管法兰》 HG/T20592-2009、HG/T20615-2009《钢制管法兰》(含大直径法兰、 欧标PN≥10法兰盖,美标PN≥150法兰盖) HG/T20592-2009、HG/T20615-2009《钢制管法兰》 HG/T20592-2009《钢制管法兰》(含PN≤10法兰盖) HG/T21521-2005《垂直吊盖带颈对焊法兰人孔》 HG/T21524-2005《水平吊盖带颈对焊法兰人孔》
章教案容器零部件化工机械与设备

第一章教案——容器零部件化工机械与设备一、教学目标:1. 知识与技能:(1)掌握容器的基本概念和分类;(2)了解容器零部件的常见类型及作用;(3)熟悉化工机械与设备的基本构成及功能。
2. 过程与方法:(1)通过观察和分析,识别不同类型的容器及其零部件;(2)学会运用化工机械与设备的知识,解决实际问题。
3. 情感态度与价值观:(1)培养学生的团队合作精神,提高动手操作能力;(2)培养学生对化工机械与设备行业的兴趣和责任感。
二、教学内容:1. 容器的概念与分类(1)介绍容器的基本概念;(2)讲解容器的分类及特点。
2. 容器零部件(1)介绍容器零部件的常见类型;(2)讲解各种零部件的作用及其在容器中的重要性。
3. 化工机械与设备(1)介绍化工机械与设备的基本构成;(2)讲解化工机械与设备的功能及应用。
三、教学重点与难点:1. 教学重点:(1)容器的基本概念与分类;(2)容器零部件的常见类型及作用;(3)化工机械与设备的基本构成及功能。
2. 教学难点:(1)容器零部件在实际应用中的识别与选择;(2)化工机械与设备在化工生产中的应用。
四、教学方法与手段:1. 教学方法:(1)采用讲授法,讲解基本概念和原理;(2)采用案例分析法,分析实际问题;(3)采用小组讨论法,培养团队合作精神。
2. 教学手段:(1)使用多媒体课件,展示图片和视频;(2)利用模型和实物,进行直观教学;(3)布置实践作业,巩固理论知识。
五、教学安排:1. 课时:2课时(90分钟)2. 教学过程:(1)第一课时:讲解容器的基本概念与分类,容器零部件的常见类型及作用;(2)第二课时:讲解化工机械与设备的基本构成及功能,分析实际应用案例。
3. 作业布置:(2)查找相关资料,了解化工机械与设备在化工生产中的应用。
第二章教案——容器零部件化工机械与设备六、教学目标:1. 知识与技能:(1)掌握容器密封件的类型及作用;(2)了解容器支撑部件的分类与功能;(3)熟悉搅拌设备的工作原理与应用。
压力容器零部件设计2法兰设计

管法兰的密封面型式
平面型,凹凸型,榫槽型(同容器法兰) ,梯形槽和全平面型:
1
确定法兰类型和密封面型式、管子材料和尺寸;
2
再由工作温度,确定材料或由材料定公称压力;
5
参照各尺寸绘法兰图。
4
由型式和工作温度,确定匹配的垫片种类、材料和紧固件材料、尺寸;
3
再由公称压力,确定法兰各部分尺寸;
管法兰连接的设计步骤
3
由于操作压力不高,由表12-1(垫圈选用表)可采用平面型密封面,垫片材料选用石棉橡胶板,查JB4704-92定出尺寸。标注为:垫片1200-0.6 JB4704-92
选择标准法兰举例
法兰的各部分尺寸可从JB4701-92中查得,并可绘出法兰图。
联接螺栓为M20,共52个,材料由表12-5(法兰、螺栓、螺母、材料匹配表)查得为35 ,螺母材料为Q235-A。
包括:选择螺栓材料、确定螺栓尺寸和个数,螺栓载荷计算。
计算螺栓载荷:达到预紧密封比压和工作密封比压。
材料:根据螺栓载荷、工作温度等。一般螺栓材料比螺母材料的硬度高30HB以上。
直径和个数:连接螺栓DN≥ M12,先由标准定个数,一般为4的倍数,然后由螺栓载荷、材料的许用应力计算螺栓根径,再由此定DN。最后校核螺栓中心距。
垫圈的选择
垫圈的结构形式、材料和尺寸,标准化。 选择依据:介质的腐蚀性、操作温度和压力, 考虑价格低廉、制造容易和更换方便。 高温高压:金属垫圈 中温中压:金属与非金属组合式或非金属 中、低压:多用非金属 高真空或深冷:金属垫圈
压力容器法兰:连接筒体与封头、筒体与筒体、法兰与管板。
01
密封原理分为:
自紧密封(高压):依靠容器内介质的压力压紧密封元件,使密封面获得很大的压紧力,在密封口产生较大的密封比压,达到密封目的。
2压力容器的主要零部件

6-12 锥形压紧面
梯形槽压紧面
槽底不起密封作用,是 槽的内外锥面与垫片接触 成梯形,形成密封的,与 椭圆或八角形截面的金属 垫圈配合。
6-13 梯形槽压紧面
因素3. 垫片性能
垫片密封面的塑性变形能力 ——实现初始密封;
垫片材料及结构的回弹能力 ——提高工作状态下的残余密封比压。
耐腐蚀能力。 力学性能,尤其抗高温蠕变能力。 工作温度下的变质硬化或软化性。
(a)尚未预紧工况
图6-3 密封机理图
(b)预紧工况(无内压) 拧紧螺栓,螺栓力通过法兰压
紧面作用到垫片上。垫片产生弹性 或屈服变形,填满凹凸不平处,堵 塞泄漏通道,形成初始密封条件。
引入概念1“预紧比压y”
形成初始密封条件时垫片单位面积 上所需的最小压紧力,称为“垫片 比压力” ,单位为MPa。在预紧工 况下,如垫片单位面积上所受的压 紧力小于比压力y,介质即发生泄漏。
在跨距中点:载荷——介质压力,弯矩。
1
pc Rm 2Se
M1
R
2 m
Se
膜应力 弯曲应力
(b)预紧工况 图6-3 密封机理图
y值仅与垫片材料、 结构与厚度有关。
(c)操作工况
密封比压下降
导致 通入介质 压力上升
垫片弹性压缩变形部分产生回弹,使压 紧面上的密封比压力仍能维持一定值以 保持密封性能。
引入概念2 “操作密封比压”
为保证在操作状态时法兰的密封性 能而必须施加在垫片上的压应力, 称为操作密封比压。 操作密封比压往往用介质计算压力 的m倍表示, m称为“垫片系数”。
6-10 凹凸型压紧面
榫槽型压紧面
一榫一槽密封面组成,优点 是对中性好,密封预紧压力 小,垫片不易挤出,不受介 质冲刷,用于易燃易爆密封 要求高处。缺点是更换较困 难,榫易损坏。
TSG 21-2016-- 培训复习题(含答案)

TSG 21-2016《固定式压力容器安全技术监察规程》培训复习题一、术语1. 压力容器(GB/T 26929-2011《压力容器术语》的2.2.1)压力作用下盛装流体介质的密闭容器。
注:“密闭”在这里是指以容器对外连接管口为界限的范围内能够形成一个独立的承压空间。
2. 受压元件(GB/T 26929-2011《压力容器术语》的2.2.9)承受压力载荷(包括内压或外压)的容器零部件。
注:指保存、密闭压力介质的容器壳体元件和其他密封元件,开孔补强圈,外压加强圈等。
3. 异种材质接头(GB/T 19866- 2005/ISO 15607:2003《焊接工艺规程及评定的一般原则》的3.14)母材的力学性能和(或)化学成分有明显差异的焊接接头。
4.压力容器的改造是指改变主要受压元件的结构或者改变压力容器运行参数、盛装介质、用途等;压力容器的重大修理是指主要受压元件的更换、矫形、挖补,以及焊制压力容器筒体的纵向接头、筒节与筒节(封头)连接的环向接头、封头的拼接接头,以及球壳板间的焊接接头的补焊或者对非金属压力容器粘接缝的修补;二、判断题(将判断结果填入括号中。
正确的填“○”,错误的填“×”)1.TSG 21-2016《固定式压力容器安全技术监察规程》(以下简称“TSG 21-2016”)划定管辖的压力容器条件之一为:容积大于或者等于0.025m3并且内直径(非圆形截面指截面内边界最大几何尺寸)大于或者等于150mm。
(×)1.3:0.03m32.按TSG 21-2016的规定,非受压元件与受压元件的连接焊缝不在压力容器的本体范围内。
(×)1.6.13.压力容器的仪表,包括直接连接在压力容器上的压力、温度、液位等测量仪表。
(○)TSG 21-2016的1.6.24. 压力容器的安全附件,包括直接连接在压力容器上的安全阀、爆破片装置、易熔塞、紧急切断装置、安全联锁装置。
(○)TSG 21-2016的1.6.25. 超高压容器也可以划为第Ⅱ类压力容器。
压力容器基本结构及制造过程 (2)

压力容器通常是由板、壳组合而成的焊接结构。
受压元件中,圆柱形筒体、球罐(或球形封头)、椭圆形封头、碟形封头、球冠形封头、锥形封头和膨胀节所对应的壳分别是圆柱壳、球壳、椭球壳、球冠+环壳、球冠、锥壳和环形板+环壳。
而平盖(或平封头)、环形板、法兰、管板等受压元件分别对应于圆平板、环形板(外半径与内半径之差大于10倍的板厚)、环(外半径与内半径之差小于10倍的板厚)以及弹性基础圆平板。
上述7种壳和4种板可以组合成各种压力容器结构形式,再加上密封元件、支座、安全附件等就构成了一台完整的压力容器。
图1-1为一台卧式压力容器的总体结构图,下面结合该图对压力容器的基本组成作简单介绍。
筒体筒体的作用是提供工艺所需的承压空间,是压力容器最主要的受压元件之一,其内直径和容积往往需由工艺计算确定。
圆柱形筒体(即圆筒)和球形筒体是工程中最常用的筒体结构。
筒体直径较小(一般小于1000mm)时,圆筒可用无缝钢管制作,此时筒体上没有纵焊缝;直径较大时,可用钢板在卷板机上卷成圆筒或用钢板在水压机上压制成两个半圆筒,再用焊缝将两者焊接在一起,形成整圆筒。
由于该焊缝的方向和圆筒的纵向(即轴向)平行,因此称为纵向焊缝,简称纵焊缝。
若容器的直径不是很大,一般只有一条纵焊缝;随着容器直径的增大,由于钢板幅面尺寸的限制,可能有两条或两条以上的纵焊缝。
另外,长度较短的容器可直接在一个圆筒的两端连接封头,构成一个封闭的压力空间,也就制成了一台压力容器外壳。
但当容器较长时,由于钢板幅面尺寸的限制,就需要先用钢板卷焊成若干段筒体(某一段筒体称为一个筒节),再由两个或两个以上筒节组焊成所需长度的筒体。
筒节与筒节之间、筒体与端部封头之间的连接焊缝,由于其方向与筒体轴向垂直,因此称为环向焊缝,简称环焊缝。
圆筒按其结构可分为单层式和组合式两大类。
1、单层式筒体筒体的器壁在厚度方向是由一整体材料所构成,也就是器壁只有一层(为防止内部介质腐蚀,衬上的防腐层不包括在内)。
GB150-2011《压力容器》宣贯

≤低压< ≤中压< ≤高压< ≤超高压 0.1 1.6 10 100MPa -----------。----------。------------ 。------------*---------------------*---------------------。--------------*---------- 0.1 -0.02 0.1 35MPa 100MPa
六. GB150《压力容器》
• (一) 标准的结构
• • • • 第1部分:通用要求 第2部分:材料 第3部分:设计 第4部分:制造、检验和验收
17
六. GB150《压力容器》
• 这种编排方式在组合使用(包括GB150以外的)时对 设计人员提出了更高的要求。如:
• GB150.1的1.3.2钢制容器不得超过按GB150.2中列入材料的允许 使用温度范围;
(三)压力管道,是指利用一定的压力,用于输送气体或者液体的管状设备,其范围规定为最高工作压力大 于或者等于0.1MPa(表压)的气体、液化气体、蒸汽介质或者可燃、易爆、有毒、有腐蚀性、最高工作温 度高于或者等于标准沸点的液体介质,且公称直径大于25mm的管道。 (四)电梯,是指动力驱动,利用沿刚性导轨运行的箱体或者沿固定线路运行的梯级(踏步),进行升降或 者平行运送人、货物的机电设备,包括载人(货)电梯、自动扶梯、自动人行道等。 (五)起重机械,是指用于垂直升降或者垂直升降并水平移动重物的机电设备,其范围规定为额定起重量大 于或者等于0.5t的升降机;额定起重量大于或者等于1t,且提升高度大于或者等于2m的起重机和承重形式固 定的电动葫芦等。 (六)客运索道,是指动力驱动,利用柔性绳索牵引箱体等运载工具运送人员的机电设备,包括客运架空索 道、客运缆车、客运拖牵索道等。 (七)大型游乐设施,是指用于经营目的,承载乘客游乐的设施,其范围规定为设计最大运行线速度大于或 者等于2m/s,或者运行高度距地面高于或者等于2m的载人大型游乐设施。 (八)场(厂)内专用机动车辆,是指除道路交通、农用车辆以外仅在工厂厂区、旅游景区、游乐场所等特 定区域使用的专用机动车辆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
第9章 容器零部件
垫板 盖板 支柱
底板
垫板 盖板 支柱
底板
垫板 盖板 支柱
底板
垫板 盖板 支柱
底板
A型
AN型
B型
BN型
20
第9章 容器零部件
(4)裙式支座 应用:高大的立式容器,特别 是塔设备。
形式:圆筒形裙座和圆锥形裙座。
裙座结构
21
第12章 容器零部件(续)
1—塔体; 2—保温支承圈; 3—无保温时排气孔; 4—裙座筒体; 5—人孔 ; 6—螺栓座; 7—基础环; 8—有保温时排气孔; 9—引出管通道; 10—排液孔
标准:JB/T4713《腿式支座》。 A型(角钢支柱)B型(钢管支柱)
18
第9章 容器零部件
选用: 1)根据容器公称直径DN和 总质量选取相应的支座号和 支座数量 2)计算支座承受实际载荷, 使其不大于支座允许载荷。
除容器总质量外,实际载荷 还应综合考虑风载荷、地震 载荷和偏心载荷。
图12-23 腿式支座
裙座的结构
22
第9章 容器零部件
裙座结构
23
第9章 容器零部件
9.3 容器的开孔补强 ——开孔破坏原有的应力分布并引起应力集中,较 大的局部应力; ——作用于接管上的各种载荷所产生的应力,温度 差造成的温差应力; ——容器材质和焊接缺陷等因素的综合作用; ——接管成为容器的破坏源,必须考虑补强问题。
性能差。
30
第9章 容器零部件
补强圈补强
31
第9章 容器零部件
补强圈补强32
第9章 容器零部件
补强圈补强 33
第9章 容器零部件
补强圈
34
第9章 容器零部件
应用
中低压容器应用最多的补强结构,一般使用在 静载、常温、中低压、 材料的标准抗拉强度低于540MPa、 补强圈厚度小于或等于1.5δn、 壳体名义厚度δn不大于38mm的场合。 标准
27
第9章 容器零部件
(b)塑性失效补强设计原则 ——极限设计的方法,考虑到结构的安定性。
开孔容器的接管处达到全域塑性时的极限应力应等
于无孔壳体的屈服应力;同时,按弹性计算的最大
应力应不超过2σs。
σmax=2σs
而
σs =1.5[σ]
所以
σmax=3[σ]
28
第9章 容器零部件
(2)补强结构
补强圈补强
局部补强 厚壁接管补强
补强结构
整锻件补强
整体补强
29
第9章 容器零部件
(a)补强圈补强
结构 补强圈贴焊在壳体与接管连接处
优点 结构简单,制造方便,使用经验丰富
缺点
(a)补强圈补强
1)与壳体金属之间不能完全贴合,传热效果差,在中温
以上使用时,存在较大热膨胀差,在补强局部区域产生较
大的热应力;
2)与壳体采用搭接连接,难以与壳体形成整体,抗疲劳
7
第9章 容器零部件
鞍座标记方法: JB/T 4712—1992 鞍座 ××-×
固定鞍座F 滑动鞍座S 公称直径mm 型号(A,BⅠ,BⅡ, BⅢ,BⅣ,BⅤ) 如公称直径为1600mm的轻型(A型)鞍座,标记为 JB/T 4712—92鞍座A1600—F JB/T 4712—92鞍座A1600—S
24
第9章 容器零部件
1、开孔补强的设计原则与补强结构 开孔补强设计
——采取适当增加壳体或接管厚度的方法将应力集 中系数减小到某一允许数值。
开孔补强设计准则 弹性失效设计准则——等面积补强法
塑性失效准则—极限分析法
25
第9章 容器零部件
(1)补强设计原则 (a)等面积补强法的设计原则
——规定局部补强的金属截面积必须等于或大于开 孔所减去的壳体截面积,其含义在于补强壳壁的平 均强度,用于开孔等截面的外加金属来补偿削弱的 壳壁强度。
标准: JB/T 4725《耳式支座》 A型(短臂) A、AN B型(长臂) B 、BN
12
第9章 容器零部件
1-垫板; 2-筋板; 3-支脚板 图12-19 耳式支座
带垫板的耳式支座
13
第9章 容器零部件
14
第9章 容器零部件
(2)支承式支座 应用:高度不大、安装位置距基础面较近且具有凸形 封头的立式容器。
16
第9章 容器零部件
带垫板的支承式支座
17
第9章 容器零部件
(3)腿式支座(支腿)
应用:多用于高度较小的中小型立式容器中。
结构与支承式支座区别:腿式支座是支承在容器圆柱 体部分,而支承式支座是支承在容器底封头上。
特点:结构简单、轻巧、安装方便,容器下面有较大 操作维修空间。但当容器上管线直接与产生脉动载荷 的机器设备刚性连接时,不宜选用腿式支座。
结构:容器封头底部焊上数根支柱,直接支承基础地面
特点:简单方便,但对容器封头会产生较大的局部应力, 故当容器较大或壳体较薄时,必须在支座和封头间加垫 板,以改善壳体局部受力情况。
标准: JB/T 4724《支承式支座》 A型(钢板支柱) B型(钢管支柱)
15
第9章 容器零部件
B型
A型
图12-21 支承式支座
第9章 容器零部件
鞍座的结构—— 由横向直立筋板、轴向直立筋板和底板焊接而成,在与设 备筒体相连处,有带加强垫板的和不带加强垫板的两种。
F型鞍式支座
S型鞍式支座
鞍座标准—— 轻型(A)和重型(B)两大类,重型又分为BⅠ~BⅤ 五种型号,见表13-1。
6
第9章 容器零部件
鞍座标准的选用 ➢根据鞍座实际承载的大小 ➢确定选用轻型( A型 )或重型( BⅠ~BⅤ型)鞍座 ➢找出对应的公称直径, ➢根据容器圆筒强度确定120°或150°包角的鞍座 ➢标准高度下鞍座的允许载荷和各部分结构尺寸可从 表12-7和JB/T4712—92中得到。
8
第9章 容器零部件
鞍式支座
9
第9章 容器零部件
鞍式支座
10
第9章 容器零部件
圈座
圈座
支腿式
11
第9章 容器零部件
2、立式容器支座 (1)耳式支座 (悬挂式支座)
结构:由筋板和支脚板组成
特点:简单、轻便,但对器壁会产生较大的局部应力。 当容器较大或器壁较薄时,应在支座与器壁间加一垫 板,垫板的材料最好与筒体材料相同。
26
第9章 容器零部件
问题:没有考虑开孔处应力集中的影响,没有计入 容器直径变化的影响,补强后对不同接管会得到不 同的应力集中系数,即安全裕量不同,因此有时显 得富裕,有时显得不足。
优点:长期实践经验,简单易行,当开孔较大时, 只要对其开孔尺寸和形状等予以一定的配套限制, 在一般压力容器使用条件下能够保证安全,因此 不少国家的容器设计规范主要采用该方法,如 ASME Ⅷ-1和GB150等。