绝缘监察装置原理详解

绝缘监察装置原理详解
绝缘监察装置原理详解

绝缘监察装置的检测原理

( a )

( b )

图1 绝缘监察装置原理电路

直流系统绝缘监察装置是根据直流电桥原理构成的(图1)。

其中,Rj为信号继电器的电阻,R+、R-分别为直流系统正、负母线对地绝缘电阻,正常情况下,R+和R-很大,只有微小的不平衡电流流过Rj。当直流系统发生接地故障时,某一极的绝缘电阻下降,电桥失出平衡,有电流流过Rj,继电器动作,若发生对称接地故障,R+=R-,电桥处于平衡状态,流过Rj的电流仍然为零。因此,这种装置不能监测对称接地故障。对于这种情况,可以通过对图1(a)所示电路进行改进来解决,原理电路如图1(b)所示两端并联了1条支路,该支路是由1个继电器的常开触电J1与电阻R串联组成。这样就可以使直流电桥每隔一段时间在图1(a)和图(b)之间变化。

在检测对称接地的故障时,人为的用万用表去测量控母对地电压,就会出现两个电压值交替出现。如整个系统绝缘良好,检测对称接地故障时,对于110V系统出现的两个电压值为55V和75V(或35V)左右的电压,此时为绝缘正常状态;如只检测第一种不平衡接地,则系统绝缘良好的状态下,只有一个中间值电压,不会跳变,为合母(或控母)电压的一半。我公司的绝缘检测单元可以检测以上两种状态(平衡性接地和非平衡性接地,一般绝缘检测只能检测到非平衡性接地故障),故系统绝缘正常时,会有两个电压在上面交替,此时绝缘

系统正在检测系统平衡性接地的可能性。

推导公式如下:

当在(a)时,根据电流相等可知:

I3=I1-I2,I3=I5-I4;

I3=(V1-V2)/Rj;(1)

I3=(V-V1)/R-V1/R;(2)

I3=V2/R- -(V-V2)/R+;(3)

根据(1)(2)(3)式计算可知:

V1=(V-I3R)/2;(3)

V2=(R+*R-*I3+VR-)/(R++R-);(4)

在根据(1)、(3)、(4)用V1-V2=I3Rj得知:

1/R-*(V-I3R-2RjI3)-1/R+(V+2RjI3+I3R)=2I3;(5)

同样的原理,当电桥处于图1(b)时,得知:

V3=(2V-I8R)/3;(6)

V4=(R+*R-*I8+VR-)/(R++R-);(7)-

再根据(6)、(7)用V3-V4=I8Rj得知:

1/R-*(2V-I8R-3I8Rj)-1/R+*(V+I8R+3I8Rj)=3I8;(8)

综合(5)和(8)就可以得到:

(V-I3R-2RjI3)*(V+I8R+3I8Rj)-(2V-I8R-3I8Rj)*(V+2RjI3+I3R)R+=

2I3(2V-I8R-3I8Rj)-3I8(V-2RjI3-I3R)

(V-2RjI3-I3R)*(V+I8R+3I8Rj)-(2V-I8R-3I8Rj)*(V+I3R+2RjI3)R-=

2I3(V+I8R+3I8Rj)-3I8(V+I3R+2RjI3)

由于式中的R、RJ已知数,而V、I3和I8是可以快速的测量出来的,这样就可以使直流系统在平衡和不平衡之间以一定的时间间隔变化,从而监察到直流系统正、负对地的绝缘情况。

直流系统在线绝缘监测装置

直流系统在线绝缘监测装置设备采购技术条件书 广东电网有限公司茂名供电局

目录 1总则 (3) 2工作范围 (3) 2.1 供货清单 (3) 2.2服务界限 (3) 2.3技术文件 (4) 3技术要求 (4) 3.1应遵循的主要现行标准 (4) 3.2使用条件要求 (5) 3.3基本设计要求 (5) 3.4 技术参数 (7) 4质量保证 (8) 5试验 (9) 5.1型式试验 (9) 5.2出厂检验 (9) 5.3第三方检测报告 (10) 6包装、运输和储存 (10) 7备品备件及专用工具 (11) 7.1备品备件 (11) 7.2专用工具 (11) 8 投标方应填写主要部件来源、规范一览表 (12)

1总则 1.1.本技术条件书适用于直流在线绝缘监测装置的功能设计、结构、性能、安装和试验等 方面的技术要求,以及技术服务等有关内容。 1.2.本技术条件书提出的是最低限度的技术要求, 并未对一切技术细节作出规定, 也未 充分引述有关标准和规范的条文, 投标方应提供符合本技术条件书和工业标准的优质产品。 1.3.如果投标方没有以书面形式对本技术条件书的条文提出异议, 则意味着投标方提供 的设备(或系统)完全符合本技术条件书的要求。如有异议, 不管是多么微小, 都应在报价书中以“对技术条件书的意见和同技术条件书的差异”为标题的专门章节中加以详细描述。 1.4.本技术条件书所使用的标准如遇与投标方所执行的标准不一致时, 按较高标准执行。 1.5.本技术条件书经招、投标双方确认后作为订货合同的技术附件,与合同正文具有同等 法律效力。 1.6.本技术条件书未尽事宜, 由招、投标双方协商确定。 2工作范围 2.1 供货清单 本技术条件书要求采购的直流在线绝缘监测装置范围包括: 1)装置主机; 2) 装置辅机; 3)选线模块; 4)超低频微电流开口CT; 5)网络线缆等辅助材料; 6)备品备件及专用工器具等。 2.2服务界限 2.2.1 从生产厂家至招标方指定交货点的运输和装卸全部由投标方完成。

电气设备绝缘在线监测装置

电气设备绝缘在线监测 装置 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电气设备绝缘在线监测装置 摘要:在线监测系统的原理、结构及在实际中的应用。 关键词:在线监测绝缘色谱分析单元 前言 在40 年代,因电网电压等级低、容量小,电气设备发生故障所带来的损失和影响不大因此人们采用事故后维修制,即设备损坏后,停电进行维修。此后,电网容量逐渐增大,电压等级也随之提高,设备故障所产生的影响也相应增大,因此,从事故后维修制逐渐发展到预测性维修制。从50年代起,由于110KV~220KV电压等级的电网已有相当规模,设备故障所产生的影响也更大,用户对供电的可靠性要求也相应提高,于是从预测性维修制逐渐演变为维修预防制。在预测性维修制逐渐演变为维修预防制的过渡中,人们逐渐探索定期对某些设备的绝缘停电作非破坏性和破坏性试验研究,逐渐总结出了对某些设备的预防性试验试行标准,并逐渐形成了局部预防性维修体系;从60年代起,各国相继制定出了比较规范的停电预防性试验标准,从而进入了预防性维修制时代,并将这种观念一直延续至今。 进入预防性维修制时代后,人们逐渐认识和发现定期停电进行预防性试验的缺陷和不足。当一台大型电气设备的某一元件的绝缘有缺陷时,往往反映不灵敏,即使整体预防性试验合格,仍然时有故障发生。例如我局1998年站街变206开关CT在高压试验中合格,但却发生了爆炸的事故。由于现行的预防性试验电压太低,无法真实反映运行电压下的绝缘性能和整个工作情况,因此必需对现行的预防性维修制进行根本的变革,其发展方向必然是采用在线监测及诊断技术,并探索以在线监测为基础的状态检修制。

JYM绝缘监测仪用户手册

第三部分J Y M-2绝缘监测仪

第八章概述 JYM-2绝缘监测仪是PowerMaster智能高频开关电力操作电源系统的组件之一,用于 在线监测直流母线对地绝缘状况和各分支路的接地电阻和电容。分主机和从机两部 分。主机监测电力操作电源系统的母线绝缘情况,从机监测系统输出支路的绝缘情况。 每个主机内部带有一个从机。 工作原理 8.1.1 原理框图 绝缘监测仪工作原理框图如图8-1所示。 图8-1 绝缘监测仪工作原理框图 8.1.2 基本原理叙述 绝缘监测仪工作时分为常规检测和支路巡检。常规检测是在系统正常运行时实时监测 正负母线的对地电压,得到母线绝缘电阻值。在发生母线绝缘下降时发出报警信号, 点亮故障灯,并将故障标志上送监控模块,同时向各支路投入低频信号。若支路有接 地电阻,则穿套在该支路的互感器会感应出电流信号,经过放大后进入AD采样,从 而能计算出该支路的接地阻抗,再从中分离出阻性和容性电流即可得出该支路的接地 电阻值。 当支路接地电容较大时(超过2uF),会影响支路接地电阻的检测精度。JYM-2绝缘监 测仪采用了电容自动补偿技术解决这一问题。通过计算出的支路电容大小,绝缘监测 仪内部投入相应大小的一组电容,并通过校正线让低频交流信号反方向穿过该支路的 互感器,从而抵消支路原有接地电容的影响。 特点 绝缘监测仪的主要特点如下: 1.实时监测和支路巡检相结合,保证监测的实时性。 2.RS485串行口,与监控上位机通讯。 3.可监测一段或两段独立运行的直流母线,对于母线电压等级无需额外设置。

4.采用主从结构,每个从机可监测24个支路,单段母线最多可带16个从机,两段 母线最多可带32个从机,满配置时可巡检24*32=768个支路;而且从机内部自带辅助电源,可以与主机远距离工作。 5.当支路电容较大时,具有自动电容补偿功能,保证支路接地电阻检测的精度。 6.通过监控可以设置告警限,适应不同地区的气候条件; 7.可以监测正负母线绝缘等值下降情况; 8.装置内部具有自检功能,便于维护。

变压器绝缘油中气体在线监测装置技术规范书

变压器绝缘油中溶解气体在线监测装置 技术规范书 工程项目: 广西电网公司 2008年10月 目次 1总则 2使用条件 3技术参数和要求 4试验 5供货范围 6供方在投标时应提供的资料 7技术资料及图纸交付进度 8包装、运输和保管要求 9技术服务和设计联络

1 总则 1.1本规范书适用于变压器绝缘油中溶解气体在线监测装置,它提出设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2需方在本规范书中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,未对一切技术细则作出规定,也未充分引述有关标准和规范的条文,供方应提供一套满足本规范书和现行有关标准要求的高质量产品及其相应服务。 1.3如果供方没有以书面形式对本规范书的条款提出异议,则意味着供方提供的设备(或系统)完全满足本规范书的要求。如有异议,不管是多么微小,都应在投标书中以“对规范书的意见和和规范书的差异”为标题的专门章节加以详细描述。本规范书的条款,除了用“宜”字表述的条款外,对低于本规范书技术要求的差异一律不接受。 1.4本设备技术规范书经需供双方确认后作为订货合同的技术附件,和合同正文具有同等的法律效力。 1.5供方须执行现行国家标准和行业标准。应遵循的主要现行标准如下。下列标准所包含的条文,通过在本技术规范中引用而构成为本技术规范的条文。本技术规范出版时,所示版本均为有效。所有标准都会被修订,供需双方应探讨使用下列标准最新版本的可能性。有矛盾时,按现行的技术要求较高的标准执行。 DL/T 596-1996 电力设备预防性试验规程 DL/T 572-1995 电力变压器运行规程 DL/T722-2000 变压器油中溶解气体分析和判断导则 DL/573-1995 电力变压器检修导则 GB7957-1998 电力用油检验方法 GB/T17623-1998 绝缘油中溶解气体组份含量的气相色谱测定法 IEC60599-1999 运行中矿物油浸电气设备溶解气体和游离气体分析的解释导则 GB190-1990 危险货物包装标志 GB5099-1994 钢质无缝钢瓶 DL/T5136-2001 火力发电厂、变电所二次接线设计技术规程 GB/T17626.1 电磁兼容试验和测量技术抗扰度试验总论 GB/T17626.2 电磁兼容试验和测量技术静电放电抗扰度试验 GB /T17626.3 电磁兼容试验和测量技术射频电磁场抗扰度试验 GB/T17626.4 电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验 GB/T17626.5 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验 GB/T17626.6 电磁兼容试验和测量技术射频场感应的传导抗扰度

高压电机绝缘监测装置及其应用分析

高压电机绝缘监测装置及其应用分析 高压电机涉及诸多行业,在很多领域都有较普遍的应用。它是能源生产和使用中起到关键作用的装置,如果发生事故,将造成不可估量的损失。由于高压电机本身存在很多问题,诸如电机的定子绕组绝老化、绝缘的电气强度较低等,这样就会使电机的绝缘性能发生变化,导致故障或者事故。因此,需要发明一种高压电机绝缘监测装置,通过该装置,监测和分析高压电机的绝缘性能变化,使电机能保持正常工作状态,发生故障时可及时修理维护,减少不必要的经济损失。 标签:高压电机;绝缘性;监测;应用 1 前言 高压电机在很多行业领域得到了普遍的应用,其中包括电力、石油化工、煤炭、冶金等行业。它会受老化因子的影响而发生故障,随时监测并分析高压电机的绝缘状态是必要的也是比较重要的工作,对电机进行老化或者绝缘性能的鉴定,可以反映电机的工作状态。对于电机的绝缘性能状态,一方面我们要采取行之有效的措施防止高压电机的老化和绝缘性能的下降,另一方面,我们需要采集高压电机老化和绝缘性能的数据。文章先分析电机绝缘下降的原因,再对现在的绝缘监测技术手段进行简要的描述,然后提出一个高压电机绝缘监测装置的方案,最后简要说明其应用。 2 高压电机绝缘监测装置的提出 2.1 高压电机绝缘老化原因 高压电机的绝缘老化主要有四个原因,第一个原因是由于工作电压引起的电力设备绝缘的老化,如果工作电压过大或是在过电压情况下,绝缘材料会受到部分损坏,如此反复,损害过大,可能会导致击穿;第二个原因是由于工作环境或是散热不好而导致的绝缘老化,在高温作用时,绝缘性能会明显下降,电机材料弹性丧失,在热胀冷缩的作用下,绝缘材料发生破裂;第三个原因是由于高压电机的工作环境可能存在酸、氮氧化合物、水等化学物质,在这些物质的作用下,失去绝缘材料的绝缘性能或者是加速老化,比如酸性物质,可能使老化加快;第四个原因是由于机械力造成的老化,比如振动、撞击、重力等都可能会使绝缘材料老化,这是属于物理原因,比如高压电机在工作时会产生很剧烈的振动,绝缘材料在振动的作用下,温度升高,弹性度下降,老化加速,绝缘性能自然也会随之下降。 2.2 高压电机绝缘性能监测现有技术 高压电机工作环境比较恶劣,噪声大而且嘈杂,温度高,给监测技术带来很大的不便。现有的高压电机绝缘眼监测技术有很多种,本文只简单的说明几种。其中是通过专用的设备进行检测,这必须要由专人来负责进行测试,而且这种设

绝缘在线监测系统

电力设备在线监测与故障诊断课程设计 题目:电气设备绝缘在线监测系 统 专业:电气工程及其自动化 班级:09电气2班 学生姓名:王同春 学号:0967130219 指导教师:张飞

目录 摘要 (3) 引言 (3) 1 在线监测技术的发展现状 (3) 1.1 带电测试阶段 (3) 1.2 在线监测及智能诊断 (4) 2 在线监测技术的基本原理 (4) 2.1 在线监测系统的组成 (4) 3 硬件设计 (6) 4 电流传感器 (6) 5 前置处理电路 (7) 6 数字波形采集装置 (7) 7 现场通信控制电路 (8) 8 结语 (8) 参考文献: (8)

摘要: 绝缘在线监测与诊断技术近年来受到电力行业运营、科技部门的高度重视,应对其进行深入研究并开发应用。在线监测系统主要是对被测物理量(信号)进行监测、调理、变换、传输、处理、显示、记录、等多个环节组成的完整系统。随着传感器技术、信号采集技术、数字分析技术与计算机技术的发展和应用,使在线监测技术将向着更加准确、及时、全面的方向发展,使电气设备的工作更加安全可靠。 关键词: 电力系统;高压电气设备; 绝缘在线监测系统; 引言 在电网中,高压电气设备具有不可替代的作用,若其绝缘部分劣化或存在缺陷,就可能对电网设备的正常运行造成影响,进而引发安全事故。而以往的设备检修和测试工作都是在电网设备运营过程中,通过定期停电的方式来完成的。但这种检修方式也存在很多问题:①检修时必须停电,影响电网正常运营。一旦碰到突发状况,设备不能停电而造成漏试,可能埋下安全隐患。②由于测试程序繁琐、时间集中,且任务紧迫,工人的工作量较大,极易受人为因素影响。③检修周期长,某些故障就极易在这个周期内快速发展,酿成大事故。④测试电压达不到10KV,设备实际运营时的电压要比这个数值要大,同时因为测试期间停电,设备运营过程中关于磁场、温度、电场以及周围环境等情况无法真实的反映出来,因而测试结果不一定与实际运营情况相符。高压电气设备随着电网容量的持续增大而急剧增加,以往的预防性测试及事故维修已无法保证电网的安全运营。而且,因为高压电气设备的绝缘劣化是经过长时间累积的,在某些条件下,预防性测试已失去其应有的作用。所以,实现高压电气设备绝缘实时、在线的动态监测,可通过局部推测整体,通过现象预测本质,由当前情况预测未来发展,无需卸设备逐一测试,符合现代化设备的生产、使用及维修的要求。 1 在线监测技术的发展现状 在线监测技术的发展方面,高压电气设备的绝缘大致经过了两个阶段。 1.1 带电测试阶段 自十九世纪七十年代开始进入带电测试阶段。当时只是本着确保正常通电的的条件下直接测量电网设备中的部分绝缘参数。这一阶段研发了很多专用的带电测试仪器,监测技术实现了由以往的模拟测试向数字化测试模式转变。但设备构造简单,缺乏灵敏度,仍有部分参数无法测试。到了八十年代,随着计算机信息

直流绝缘监察装置检验规程

直流绝缘监察装置检验规程

1 范围 本规程规定了直流绝缘监察装置的检验方法、检验要求以及注意事项等内容,适用于电力有限公司所属的变电站、电厂直流绝缘监察装置的现场检验。 2 规范性引用文件 下列文档中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文档,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文档的最新版本。凡是不注日期的引用文档,其最新版本适用于本标准。 GB/T 19826-2005 《电力工程直流电源设备通用技术条件及安全要求》DL/T 856-2004 《电力用直流电源监控装置》 DL/T 724-2000 《电力系统用蓄电池直流电源装置运行与维护技术规程》DL/T 5044-2004 《电力工程直流系统设计技术规范》 国家电网生技[2004]634号《直流电源系统技术标准》 国家电网生技[2004]641号《预防直流电源事故措施》 国家电网生技[2005]172号《直流电源系统运行规范》 国家电网生技[2005]173号《直流电源系统检修规范》 国家电网生技[2005]174号《直流电源系统技术监督规定》 国家电网生技[2005]400号《国家电网公司十八项电网重大反事故措施(试行)》国家电网生技[2006]57号《直流电源系统评价标准(试行)》 办基建[2008]20号《关于印发协调统一基建类和生产类标准差异条款(变 电部分)的通知 3 检验周期 直流绝缘监察装置检验分为新安装检验、部检、全检。其中新装置投运一年内进行一次全检;部检周期为3年、全检周期为6年。 4 检验项目 序号检验项目新安装检验全检部检 1 铭牌参数√√√ 2 外观及接线检查√√√ 3 绝缘检查√ 4 装置上电检查√√√ 4.1 装置通电自检√√√ 4.2 软件版本和程序校验码核查√√√ 4.3 时钟整定及对时功能检查√√√ 4.4 定值整定及其失电保护功能检查√√ 5 装置逆变电源检验√√ 6 绝缘监察(测)及接地选线装置的 检查 √√√ 6.1 绝缘监察功能检查√√6.2 电压监察以及报警功能检查√√

直流系统绝缘检测原理介绍

直流系统绝缘检测原理介绍 时间:2013-2-25 11:56:56来源:深圳市信瑞达电力设备有限公司https://www.360docs.net/doc/7516306318.html,打印本文直流系统绝缘检测原理介绍 直肯定会有很多人想知道直流系统绝缘检测原理介绍的一些内容? 下面小编就满足下大家的好奇心: 发电厂和变电站的直流电源作为主要电气设备的保安电源及控制信号电源,是一个十分庞大的多分支供电网络。在一般情况下,一点接地并不影响直流系统的运行,但如果不能迅速找到接地故障点并予以修复,又发生另一点接地故障,就可能引起重大故障的发生。 现有检测直流系统绝缘的方法主要有电桥平衡原理和低频探测原理。根据电桥平衡原理实现的绝缘监测装置被广泛使用,但它不能检测直流系统正、负极绝缘同等下降时的情况;绝缘监测装置即使报警,也不能直接得到系统对地的绝缘电阻大小。用低频探测原理检测接地故障是近几年采用的一种新方法,但它所能检测的接地电阻受直流系统对地分布电容的制约,而且低频交流信号容易受外界的干扰,另外注入的低频交流信号增大直流系统的电压纹波系数。可见,电桥平衡原理和低频探测原理均存在若干难以克服的缺陷。本文提出一种新的检测方法,即主回路用不平衡电桥检测总的绝缘电阻,而支路用直流互感器来检测到底是哪一路出现了绝缘降低。同时用单片机来实现这种检测方法。 主回路的绝缘电阻的测量 传统的平衡电桥检测原理如下图-1,通过检测电压Uj和Um,再加上给定的电阻R来算出R+、R-,但当正负绝缘都出现降低的情况下,检测的结果将与实际情况不符合。 图-1 为了能检测正负都绝缘降低的情况,下文设计一种不平衡电桥测量法。并用MCS 80C196KC单片机来实现,如图-2所示。首先我们先说明一下电子继电器AQW214的用法,当AQW214的1、2脚导通时,7、8脚也导通;而且导通的内阻很小。同理,3,4脚导通时,5、6脚也导通。而且,AQW214的耐压值可以达到400V,即当7、8,或5、6不导通时,它们两端可以承受400V的电压。所以我们可以通过控制P10的电平,来控制1、2脚的导通而达到控制JK1的导通与关断。同理,通过控制P11的电平来控制JK2的导通与关断。第一步,JK1、JK2都断开,我们通过80C196单片机的A/D口的AC4通道采集C4两端的电压,从而测得Um。第二步,JK1断开、JK2闭合,通过A/D口的AC5通道采集C2两端的电压,从而测算得Uj,记此时测得的电压Uj为Uj1。第三步,JK1闭合、JK2断开,记此时测得的电压Uj为Uj2。很明显的Uj1与R+,R-有关系,Uj2也与

变压器绝缘在线监测

前言 在40 年代,因电网电压等级低、容量小,电气设备发生故障所带来的损失和影响不大因此人们采用事故后维修制,即设备损坏后,停电进行维修。此后,电网容量逐渐增大,电压等级也随之提高,设备故障所产生的影响也相应增大,因此,从事故后维修制逐渐发展到预测性维修制。从50年代起,由于110KV~220KV 电压等级的电网已有相当规模,设备故障所产生的影响也更大,用户对供电的可靠性要求也相应提高,于是从预测性维修制逐渐演变为维修预防制。在预测性维修制逐渐演变为维修预防制的过渡中,人们逐渐探索定期对某些设备的绝缘停电作非破坏性和破坏性试验研究,逐渐总结出了对某些设备的预防性试验试行标准,并逐渐形成了局部预防性维修体系;从60年代起,各国相继制定出了比较规范的停电预防性试验标准,从而进入了预防性维修制时代,并将这种观念一直延续至今。 进入预防性维修制时代后,人们逐渐认识和发现定期停电进行预防性试验的缺陷和不足。当一台大型电气设备的某一元件的绝缘有缺陷时,往往反映不灵敏,即使整体预防性试验合格,仍然时有故障发生。例如我局1998年站街变206开关CT在高压试验中合格,但却发生了爆炸的事故。由于现行的预防性试验电压太低,无法真实反映运行电压下的绝缘性能和整个工作情况,因此必需对现行的预防性维修制进行根本的变革,其发展方向必然是采用在线监测及诊断技术,并探索以在线监测为基础的状态检修制。 因我局目前在观水变电站采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的变压器油中六种溶解气体在线监测诊断装置。所以我们以下主要介绍我局这一套油中气体在线监测装置的使用情况。 在线监测诊断装置在实际中的应用 我局目前在观水变电站一号主变上采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的DZJ-Ⅲ型电气设备绝缘在线监测装置。已于2000年3月15日进入试运行状态。 监测的原理及方法: 电力变压器不仅属于电力系统中最重要的和最昂贵的设备之列,而且也是导致电力系统事故最多的设备之一,因此,国内外不仅要定期作以预防性试验为基础的预防性维护,而且相继都在研究以在线监测为基础的预知性维护策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷。变压器在发生突发性事故之前,绝缘的劣化及潜伏性故障在运行电压下将产生光、电、声、热、化学变化等一系列效应及信息。对于大型电力变压器,目前几乎是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料(纸和纸板等)在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备异常的特征量。 从预防性维修制形成以来,电力运行部门通过对运行中的变压器定期分析其溶解于油中的气体组分、含量及产气速率,总结出了能够及早发现变压器内部存在潜伏性故障、判断其是否会危及安全运行的方法即油色谱分析法。油色谱分析法是将变压器油取回实验室中用色谱仪进行分析,不仅不受现场复杂电磁场的干扰,而且可以发现油设备中一些用介损和局部放电法所不能发现的局部性过热等缺陷。但常规的油色谱分析法存在一系列不足之处:不仅脱气中可能存在较大的人为误差,而且检测曲线的人工修正法也会加大误差,从取油样到实验室分析,作业程序复杂,花费的时间和费用较高,在技术经济上不能适应电力系统发展的需要;检测周期长,不能及时发现潜伏性故障和有效的跟踪发展趋势;因受其设备费用和技术力量的

电气设备绝缘在线监测装置

电气设备绝缘在线监测装置 摘要:在线监测系统的原理、结构及在实际中的应用。 关键词:在线监测绝缘色谱分析单元 前言 在40 年代,因电网电压等级低、容量小,电气设备发生故障所带来的损失和影响不大因此人们采用事故后维修制,即设备损坏后,停电进行维修。此后,电网容量逐渐增大,电压等级也随之提高,设备故障所产生的影响也相应增大,因此,从事故后维修制逐渐发展到预测性维修制。从50年代起,由于110KV~220KV电压等级的电网已有相当规模,设备故障所产生的影响也更大,用户对供电的可靠性要求也相应提高,于是从预测性维修制逐渐演变为维修预防制。在预测性维修制逐渐演变为维修预防制的过渡中,人们逐渐探索定期对某些设备的绝缘停电作非破坏性和破坏性试验研究,逐渐总结出了对某些设备的预防性试验试行标准,并逐渐形成了局部预防性维修体系;从60年代起,各国相继制定出了比较规范的停电预防性试验标准,从而进入了预防性维修制时代,并将这种观念一直延续至今。 进入预防性维修制时代后,人们逐渐认识和发现定期停电进行预防性试验的缺陷和不足。当一台大型电气设备的某一元件的绝缘有缺陷时,往往反映不灵敏,即使整体预防性试验合格,仍然时有故障发生。例如我局1998年站街变206开关CT在高压试验中合格,但却发生了爆炸的事故。由于现行的预防性试验电压太低,无法真实反映运行电压下的绝缘性能和整个工作情况,因此必需对现行的预防性维修制进行根本的变革,其发展方向必然是采用在线监测及诊断技术,并探索以在线监测为基础的状态检修制。

因我局目前在观水变电站采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的变压器油中六种溶解气体在线监测诊断装置。所以我们以下主要介绍我局这一套油中气体在线监测装置的使用情况。 在线监测诊断装置在实际中的应用 我局目前在观水变电站一号主变上采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的DZJ-Ⅲ型电气设备绝缘在线监测装置。已于2000年3月15日进入试运行状态。 监测的原理及方法:电力变压器不仅属于电力系统中最重要的和最昂贵的设备之列,而且也是导致电力系统事故最多的设备之一,因此,国内外不仅要定期作以预防性试验为基础的预防性维护,而且相继都在研究以在线监测为基础的预知性维护策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷。变压器在发生突发性事故之前,绝缘的劣化及潜伏性故障在运行电压下将产生光、电、声、热、化学变化等一系列效应及信息。对于大型电力变压器,目前几乎是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料(纸和纸板等)在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备异常的特征量。 从预防性维修制形成以来,电力运行部门通过对运行中的变压器定期分析其溶解于油中的气体组分、含量及产气速率,总结出了能够及早发现变压器内部存在潜伏性故障、判断其是否会危及安全运行的方法即油色谱分析法。油色谱分析法是将变压器油取回实验室中用色谱仪进行分析,不仅不受现场复杂电磁场的干扰,而且可以发现油设备中一些用介损和局部

直流型绝缘监测仪

直流型绝缘监测仪 一,背景: 磁调制式传感器由于其诸多的优点在直流系统绝缘检测装置中得到广泛的运用,目前在生产现场实际投入使用的基本都是采用闭环式的磁调制直流漏电流检测方法的在线巡检装置,但用户非常担心,如果发生故障的话,更换起来非常麻烦。低成本,监测准确,可靠性高的直流型绝缘检测仪是我们开该产品的目标。 二,优势: 1,成本尽可能的低, 2,采用高导磁环形线圈和基本电路分离措施,解决直流互感器损坏后更换困难的难题. 3,采用CAN通信接口与上位机通信允许一条直流母线上多个主机存在。 4,采用平衡和不平衡方式相结合的测量方法,测量全面。通过投入检测电阻,可检测直流系统正、负母线绝缘同等下降,做到无检测死区,且能检测出多条支路同时接地情况。 5,尽可能的减少母线电压对地的波动;正常情况下,采用1个小时进行一次不平衡电阻的投切。 6,直接采样直流漏电流,无需给直流系统注入交流信号,对直流系统的安全运行没有影响;所检测的支路不受系统对地分布电容影响三,存在问题及初步解决的方法 1,互感器的问题,如果采用线圈和基本电路分离措施的话,线圈

的特性暂时还没有明确的指标,且目前只是使用了2个打烊回来线圈的试验,大批量使用是否存在风险还无法评估,目前也还没有这种用法的先例。还需要小批量进行各种试验。 2,母线对地电压波动,需要尽可能减少母线对地的电压波动;a),如果发现有绝缘降低情况,发出告警信息,如果没有发现绝缘降低的支路,则每隔一个小时投切测量电阻开关。该切换电阻选择也需要考虑,合理的电阻选择也能够减少母线对地电压波动,查看了大连科海的绝缘仪,其切换电阻选择为120k;b)采用综合判据法:在系统绝缘良好,或者正负绝缘同时下降的时候,估测系统的绝缘情况,在故障时才投切电阻准确了解系统的绝缘情况,从而避免了频繁投切电阻对系统的扰动。 3,采用平衡和不平衡方式相结合的测量方法,测量全面。通过投入检测电阻,可检测直流系统正、负母线绝缘同等下降,做到无检测死区,且能检测出多条支路同时接地情况。 4,需要考虑在有硅链情况下的,绝缘电阻的监测情况,目前还没有清晰的头绪。 1) 检测正、负极母线电压 当|U+| < Us |U-| > Us; 为正极对地绝缘下降 当|U+| > Us |U-| < Us; 为负极对地绝缘下降 当|U+|〈Us

分析绝缘监视装置的原理

1.分析绝缘监视装置的原理?怎样选出接地线路? 2.电动机缺相运行的原因? 3.异步电动机过电流的原因?后果有什么? 4.复合电压启动过流保护与低电压启动过流保护有什么区别?5.发电机升压并网注意事项? 6.发变组由热备用状态转为运行状态操作票。 7.6KV厂用电切换操作票。 8.厂用电全部失去事故原因? 9.厂用电全部失去事故处理? 10.发电机三相电流不平衡现象及处理? 11.发电机强励动作现象及处理? 12.发电机过负荷现象及处理? 13.发电机定子接地现象及处理? 14.发电机进相运行注意事项? 15.发电机1YH保险熔断现象及处理? 1、定冷泵启动前的检查 2、定冷水系统冷油器的切换 3、定冷水系统正常运行中的维护 4、定冷水系统滤网的切换 5、排汽疏水泵的投运 6、排汽疏水泵的解列 7、凝泵启动前的检查 8、排汽疏水泵启动前的检查 9、低加的正常维护项目 10、低加的解列 11、低加的投运 12、定冷水箱水位低的原因及处理 13、凝泵的解列 14、凝泵的投运 15、凝水箱水位低的原因及处理 16、6KV厂用电切换操作票 17、6KV单相接地的现象和处理 18、发电机1YH保险熔断的现象和处理 19、发电机紧停规定 20、发电机升压并网的注意事项 21、发变组启动前的检查内容 22、主变冷却装置投入的布置及规定 23、发变组由热备转为运行的操作票 24、绝缘电阻的测量原理 25、为什么要装设断路器闪烙保护 26、发电机运行中失去励磁有何影响 27、运行电压高对设备有何影响 28、电压变化对电动机的影响 29、变压器线圈绝缘电阻测量注意事项,如何判断绝缘合格?

发电机绝缘监测装置原理及应用

西安交通大学网络教育学院 毕业论文 论文题目发电机绝缘监测装置的原理及应用 班级 学号 姓名 联系方式_ 指导教师 提交日期

随着电子信息技术的飞速发展,从20世纪80年代初开始,各种各样的在线监测装置在汽轮发电机上得到了推广和应用。以往,我国发电设备长期以来实施“计划维修”,缺乏针对性,容易造成设备的“过度维修”。现在,先进的工业国家都转至状态维修也就是“需修时修”。 设备状态监测和诊断是实施状态维修、预知维修的重要基础,而状态维修必须扎根于状态监测仪器的实用性、可靠性及对测试结果的解读能力上。发电机容量的大小、已运行时间的长短、不同冷却方式、在线监测装置的可靠性等都会影响到在线监测装置的配置。因此,如何合理应用和配置在线监测装置是一项比较复杂的策略性选择,尤其在广泛推广使用时更要慎之。 本文针对国内外300MW及以上机组汽轮发电机绝缘在线监测使用情况的应用研究,做出综合分析,对发电机绝缘在线监测设备的选择和配置提出建议。 关键词发电机;绝缘监测;局部放电

摘要 (1) 1 前言 (3) 2 国内外研究动态 (4) 2.1发电机局部放电监测方法国内外研究现状 (4) 2.2 发电机局部放电监测方法现状 (4) 2.3 国内外主流发电机绝缘在线监测主要测量方法及原理 (4) 3 国内某600MW机组发电机绝缘在线检测装置参数 (11) 3.1 FJR―ⅡA型发电机绝缘过热监测装置工作条件 (11) 3.2 FJR―ⅡA型发电机绝缘过热监测装置主要技术指标 (11) 3.3 FJR―ⅡA型发电机绝缘过热监测装置性能及特点 (11) 3.4 FJR―ⅡA型发电机绝缘过热监测装置外型尺寸和重量 (12) 3.5 FJR―ⅡA型发电机绝缘过热监测装置工作原理 (12) 4 结论 (15) 4.1发电机在线监测装置测量原理总结 (15) 4.2发电机绝缘在线监测装置的改进建议 (16) 4.3发电机绝缘在线监测装置的应用选择 (16) 4.4发电机绝缘在线监测装置的管理建议 (17) 参考文献 (18) 致谢 (19)

电动汽车绝缘电阻在线监测方法

电动汽车绝缘电阻在线监测方法 一、前言 电动汽车是一个复杂的机电一体化产品,其中的许多部件包括动力电池、电机、充电机、能量回收装置、辅助电池充电装置等都会涉及高压电器绝缘问题。这些部件的工作条件比较恶劣,振动、酸碱气体的腐蚀、温度及湿度的变化,都有可能造成动力电缆及其他绝缘材料迅速老化甚至绝缘破损,使设备绝缘强度大大降低,危及人身安全。 目前发电厂、变电站等场所直流高压系统的绝缘监测技术有多种方式,但都存在一些缺点,如继电器检测方式灵敏度低,平衡电桥法在正负极绝缘同时降低时不能准确及时报警,注入交流信号法不仅会使直流系统纹波增大,影响供电质量,而且系统的分布电容会直接影响测量结果,分辨率低。与电力系统直流绝缘监测不同的是,电动汽车直流系统电压等级涵盖90~500V的宽范围,而且运行过程中电压频繁变化。文中提出的利用端电压监测系统绝缘状况的方法可以较好地解决上述问题,具有较高的精度,完全适合在电动汽车上应用。 二、绝缘电阻测量 原理电动汽车的绝缘状况以直流正负母线对地的绝缘电阻来衡量。电动汽车的国际标准[1]规定:绝缘电阻值除以电动汽车直流系统标称电压U,结果应大于100Ω/V,才符合安全要求。标准中推荐的牵引蓄电池绝缘电阻测量方法适用于静态测试,而不满足实时监测的要求。

文中通过测量电动汽车直流母线与电底盘之间的电压,计算得到系统的绝缘电阻值。假设电动汽车的直流系统电压(即电池总电压)为U,待测的正、负母线与电底盘之间的绝缘电阻分别为RP、RN,正、负母线与电底盘之间的电压分别为UP、UN,则待测直流系统的等效模型如图1中的虚线框内所示。 图1为电动汽车绝缘电阻测量原理,图中RC1、RC2为测量用的已知阻值的标准电阻。工作原理如下:当开关S1、S2全部断开时,测量正、负母线与电底盘之间的电压分别为UP0、UN0,由电路定律[2]可以得到 UP0/RP=UN0/RN(1) 当开关S1闭合、S2断开时,则在正母线与电底盘之间加入标准偏置电阻RC1,测量正、负母线与电底盘之间的电压分别为UPP、UNP,同样可以得到 同样,绝缘电阻在以下2种情况也可以得到:

电缆绝缘在线监测及故障定位 系统

电缆绝缘在线监测及故障定位系统 上海蓝瑞电气有限公司 CIM-II电缆绝缘监测及故障定位系统 目录 一、概述...................................................................... .. (1) 二、装置介 绍 ..................................................................... . (1) 1、工作原 理 ..................................................................... ............... 1 2、功能介 绍 ..................................................................... ............... 2 3、优势介 绍 ..................................................................... ............... 3 4、技术指 标 ..................................................................... ............... 4 5、配置介 绍 ..................................................................... (4) 系统简介

一、概述 电线电缆是最常用的电力设备,同时也是出现绝缘故障概率最高的设备,由于电缆绝缘损坏直接导致线路相间短路、单相接地等重大事故,严重影响供电可靠性。当电缆发生故障时,人工寻找故障点比较困难。因此,对电缆绝缘状态进行在线监测及故障定位意义重大。 CIM-II电缆绝缘监测及故障定位系统是上海蓝瑞电气有限公司依托上海交通大学联合研制的,该系统由电缆绝缘在线监测装置和电缆故障智能测试仪组成。电缆绝缘在线监测装置以改进的介损因数法+直流分量法为主,对电缆的绝缘情况给出预警,以便及时更换电缆,当电缆线路发生故障时,装置可在线辨识故障支路。确定故障支路后,再通过电缆故障测试仪离线方式下精确定位故障点。二、装置介绍 1、工作原理 1.1电缆绝缘在线监测装置(图1) 根据国内外大量研究表明,电缆的绝缘老化过程是一个渐变的过程,通过绘制电缆介质因数的历 史变化曲线,可以看出电缆绝缘老化趋势。 其基本方法是直接测量电缆护套接地电流和电缆对地电压,通过数字信号频谱分析方法分别计算 出电缆的容性阻抗和阻性阻抗的大小,以改进的介损因数法+直流分量法分析绝缘状况,对于绝缘老 化超限报警,绝缘故障线路选择。因正常时容性电流远大于阻性电流,所以测量精度要求高,为保证 监测的准确性,装置采用了以相对偏差和阻抗变化斜率为比较对象的方法,可有效屏蔽测量误差。

(完整版)变压器绝缘在线监测系统

变压器局部放电及铁心故障在线监测系统

一、研制目的和意义 1.研制目的 本项目在现有局部放电在线监测技术的基础上,开发一套变压器局部放电及铁心故障在线监测系统,实现对变压器绝缘及铁心接地状况的有效监测和故障诊断,以确保变压器的安全稳定运行。 2.研制意义 电力变压器是电力系统中的最为重要的电气设备之一,它的运行状况直接关系到电力系统安全经济运行,变压器发生故障将导致大面积停电,致使国民经济遭到重大损失。 由于变压器内部的局部放电是造成变压器绝缘老化和破坏的主要原因,测量变压器的局部放电可有效监测变压器的绝缘状况。 电力变压器正常运行时,铁芯必须一点可靠接地。当铁芯或其他金属构件有两点或多点接地时,接地点就会形成闭合回路,造成环流,引起局部过热,导致油分解,绝缘性能下降,严重时,会使铁芯硅钢片烧坏,造成主变重大事故,严重威胁变压器的安全运行。因此在线监测铁芯接地情况,对于变压器的安全运行具有十分重要的意义。 二、研究目标 开发一套变压器局部放电及铁心故障在线监测系统,实现对变压器内部绝缘局部放电和铁芯多点接地故障的监测与诊断。监测系统给出局放视在放电量、放电频度、放电故障类型放电点位置及铁心接地状况,监测系统灵敏度为200pC,当时视在放电量为500pC时报警;

局放定位误差20cm。 三、研究内容及关键技术 本项目是在原有变压器局部放电在线监测技术的基础上,进一步优化在线监测系统,提高监测灵敏度、抗干扰性能、局放定位精度及故障智能诊断能力。其主要研究内容: 1、变压器局部放电脉冲电流—超声波在线监测技术; 2、局放脉冲电流传感器、超声波传感器及铁心接地电流互感器的 选型与研制; 3、现场DSP信号预处理技术; 4、基于数字滤波、小波分析、混沌控制技术的软件抗干扰技术; 5、多路信号超高速、宽频带同步采样系统及光信号传输技术; 6、局部放电源点定位技术; 7、变压器局部放电视在放电量与放电频度的变化报警阈值的设 定; 8、大容量数据存储、查询、特征量变化趋势曲线、显示及报警; 9、铁芯多点接地故障判定技术; 10、基于信息融合技术的变压器故障分析及诊断。 本项目的关键技术是软件抗干扰技术。拟在现有的软件抗干扰技术基础上,进一步深入研究各类干扰特征,有效抑制干扰、提取局放脉冲电流和铁芯接地回路电流。 四、国内外研究状况

绝缘监视

绝缘监视 是指监视不接地配电网一相接地故障的自动化安全装置。在不接地电网中,发生一相故障接地时,其他两相对地电压将升高到线电压。在特殊情况下,还可能升得更高。这种情况不但增加了电击的危险性,还会带来其他危险。为此,不接地配电网应装设在一相接地故障时能发出声、光双重信号的绝缘监视装置。 低压配电网的绝缘监视常借助三只相同的电压表来实现。其接线如图a。配电网对地绝缘正常时,三只电压表指示均为相电压;当电网某相故障接地时,该相电压表指示急剧降低,另两相电压表指示显著升高。 高压配电网的绝缘监视借助电压互感器来实现,其接线如图b。这种电压互感器有两组低压线圈:一组低压线圈接成星形,供绝缘监视的电压表及其他仪表和继电保护用;另一组低压线圈接成开口三角形,开口处接信号继电器。电网对地绝缘正常时,三只电压表指示相同,三角形开口处电压为零,信号继电器不动作;当电网某相故障接地时,三只电压表给出不同指示,同时,三角形开口处出现电压,信号继电器动作,并发出信号。 ——摘自《安全科学技术百科全书》(中国劳动社会保障出版社,2003年6月出版) insulating monitoring 在中性点不接地系统中,为防止一相接地造成触电事故而采取的一种技术措施。低压系统的绝缘监视通常由三块规格相同的电压表组成。正常时,电压值均为相电压。一相接地时,接地相电压值降低,另两相显著增高。高压系统的绝缘监视通过电压互感器来实现。将电压互感器一组线圈接成星形,由三块规格相同的电压表监视电压值的变化情况,将另一组线圈接成开口三角形,其开口处接信号装置。正常时,三相电压平衡、开口处电压为零、信号装置不动作。当一相接地或两相对地绝缘明显恶化时,三相电压失去平衡,信号装置动作发出警告。

直流绝缘监察装置

秉承“以客户需求为主,以带领创新为使命”的宗旨,努力做到技术创新与产品升级,努力提升企业的核心竞争力,争取为行业技术的发展建成小康社会做出更大的贡献! 充电桩绝缘监测的发展前景是非常宽广的,在全球能源危机和环境危机严重的大背景下,在我国政府积极推进新能源汽车的应用与发展下,近年来电动汽车发展非常迅速,市场占有份额越来越大,但与新能源汽车的爆发相比,充电基础设施建设远远落后。 在如此巨大的市场面前,充电桩绝缘监测的各类产品必将竞相出现。符合2016刚刚出台的国际要求的绝缘监测装置应该是什么配备,具有什么功能,下面一款绝缘监测产品进行说明。 汽车直流充电设备专用对地绝缘监测模块GYDCG-UBC GYDCG-UBC(对地开关) GYDCG-UBCX(对地开关+泄放开关) GYDCG-UBCMV(对地开关+汽车侧电压测量) GYDCG-UBCMVC(对地开关+汽车侧电压测量+电流测量) GYDCG-UBCMVCX(对地开关+汽车侧电压测量+电流测量+泄放开关) (型号带-12表示9~18VDC供电;型号带-24表示18~36VDC供电) GYDCG-UBC系列产品是用于在线监测直流浮地系统正负极对地绝缘电阻值的装置,其基于不平衡电桥原理,避免了平衡电桥在正负极同时存在接地故障无法检测的问题,同时,本系列产品能够在直流电压大幅度变化的情况下,精确测量电阻值,并且测量周期短,采用自适应调节测量时间的方

法,避免正负极对地电容的影响。产品测量条件直流系统为150-1000V,电阻范围1KΩ~10MΩ,同时还能检测直流电压值,用户可以通过RS485通讯来实现测量值的获取。 模块工作后,闭合高压开关,每2秒检测一次电阻值。模块工作6秒后,用户可以读取稳定绝缘电阻值。模块停止工作后,高压开关断开,与大地彻底脱离,对地高电压试验不高于2500V。 模块监测周期一般为2秒,监测出绝缘电阻值后,会将02H的bit4位(工作状态查询位)置‘1’,用户可以通过查询此位,查看模块是否正在工作。模块内置泄放IGBT,可以配备外置电阻实现泄放功能(用于电动汽车充电设备),并保证泄放电流小于25A。 系统直流电压范围:150V~1000V(在此范围内,监测正负极对地阻抗) 充电桩侧电压测量范围:0V~1000V 汽车侧电压测量范围:0V~1000V 分流器电压测量范围:0mV~120mV 供电:9~18VDC/18~36VDC;(-12表示9~18VDC供电;-24表示18~36VDC供电) 3W(GYDCG-UBC,GYDCG-UBCX),5W(GYDCG-UBCMVCX) 绝缘电阻测量范围:1KΩ~10MΩ 精确度:10KΩ~500KΩ范围内测量误差<10%。 绝缘监测需要实现的功能都得以满足,同时RS485通讯便利了用户的使用,技术优势得以体现。

相关文档
最新文档