第三章扭转轴(1-4节)
第三章 扭转

三、切应变 剪切胡克定律 1、切应变 l
a
´
c
´
b
d t
为扭转角 r0 l
r0 即
l
纵轴 T——
T
2r02t
纯剪切单元体的相对两侧面 发生微小的相对错动,
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
横轴
r0
l
47
2、剪切虎克定律
做薄壁圆筒的扭转试验可得
在弹性范围内切应力 与切应变成正比关系。
切应力与扭矩同向的顺流
51
切应变的变化规律:
Me
pq
Me
pq p
q
d
a
d
c
a' O b
R
p
b′ q
dx
_ 扭转角(rad)
x
d _ dx微段两截面的
相对扭转角
边缘上a点的错动距离:
aa' Rd dx
边缘上a点的切应变:
R d
dx
发生在垂直于半径的平面内。
52
p
q
d
ae
d
c
a ' e′O b
③ 结论:①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相对转动。
②各纵向线均倾斜了同一微小角度 ,仍为直线。
③所有矩形网格均歪斜成同样大小的平行四边形。
40
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
41
2、切应力分布规律假设
Me2
Me1
n
Me3
从动轮
主动轮
从动轮
求: 作用在该轮上的外力偶矩Me。
材料力学第四版课件 第三章 扭转

例1:图示空心圆轴外径D=100mm,内径 图示空心圆轴外径D=100mm,内径 d=80mm, M1=6kN·m, M2=4kN·m, 材料的切变 =6kN· 模量 G=80GPa. (1) 试画轴的扭矩图; 试画轴的扭矩图; (2) 求轴的最大切应力,并指出其位置. 求轴的最大切应力,并指出其位置.
平面假设:圆轴扭转后各横截面仍保持为平面, 平面假设:圆轴扭转后各横截面仍保持为平面, 各横截面如同刚性平面仅绕轴线作相对转动。 各横截面如同刚性平面仅绕轴线作相对转动。
横截面上无σ 1)横截面上无σ 2)横截面上只有τ
F O1 a d dφ d1 dx O2
dd1 ρdφ γ ρ ≈ tanγ ρ = = ad dx
4
πd
3 0
(
)
16T ∴d0 ≥ 3 = 76.3mm 4 π (1−α )[τ ]
取 d0 = 76.3mm、 、 (3)比较空心轴与实心轴的重量 比较空心轴与实心轴的重量 积之比: 二者重量之比等于横截面 积之比:
π (d − di ) 4 = 0.395 β= 2 4 πd
2 0 2
可见空心轴比实心轴的重量轻 可见空心轴比实心轴的重量轻
任一点处的切应变 切应变与到 距圆心为 ρ 任一点处的切应变与到 成正比。 圆心的距离ρ成正比。
2. 物理方面
dφ γρ = ρ dx
dφ τ ρ = Gρ dx
3. 静力学方面
dφ 2 T = ∫ ρτ ρ dA = G ∫ ρ dA dx A A
Ip = ∫ ρ dA 称为极惯性矩
2 A
ρ
dA
MB
1
MC
MA
2 2
A
3
MD
材料力学-第三章扭转

3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件
0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析
圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16
强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3
4
3
d 0.886 d
2
Mn
a
2
Mn 0.208 0.886 d
b
6.913
扭转—扭转轴的应力及强度计算(建筑力学)

MPa 51.4MPa
4
WP
2.92 10
扭转
(2) 求空心轴的内径
因为要求实心轴和空心轴的扭转强度相同,故两轴的最
大切应力相等,即
'max max 51.4MPa
max
Tmax
Tmax
WP
D23 1 4 16
6
16Tmax
16
变形的能力。单位GPa,其数值可由试验测得。
切应变的其单位是 弧度(rad)
扭转
二、圆轴扭转时横截面上的应力
从几何关系、物理关系和静力学关系这三个方面来分析圆
轴受扭时横截面上的应力。
1. 几何变形方面
取一圆轴进行扭转试验
试验现象表明,圆轴表面上各点的变形与薄壁圆筒扭转
时的变形一样。
扭转
由观察到的现象,对圆轴内部的变形可做如下假设:扭转
截面(危险截面) 边缘点处。因此,强度条件也可写成 maxFra bibliotekTmax
[ ]
W
圆轴强度条件可以解决圆轴扭转时的三类强度问题,即
进行扭转强度校核、圆轴截面尺寸设计及确定许用荷载。
扭转
例9-6 一实心圆轴,承受的最大扭矩Tmax=1.5kN•m,轴
的直径d1=53mm。求:(1)该轴横截面上的最大切应力。
扭转
第四节 圆轴扭转的强度计算
一、圆轴的扭转破坏试验与极限应力
圆轴的扭转试件可分别用Q35钢、铸铁等材料做成,扭
转破坏试验是在扭转试验机上进行。试件在两端外力偶Me
作用下,发生扭转变形,直至破坏。
Q35钢
铸铁
材料力学第3章扭转

τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx
令
dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy
故
τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理
第三章扭转

T=Fs×r
材料力学
0
Fs=2 r
0
扭转/圆轴扭转时的应力
一.圆轴扭转时的应力分布规律
T
T
材料力学
扭转/圆轴扭转时的应力
1. 单元格的变化
A
B
C
A B
C
D
D
现象一: 方格的左右两边发生相对错动
横截面上存在切应力
方格的左右两边距离没有发生改变 现象二:
材料力学
横截面上没有正应力
2. 半径的变化
材料力学
扭转/纯剪切
§3.3 纯剪切
材料力学
相关概念
纯剪切:单元体各个面上只承受切应力而没有正应力。
单元体:是指围绕受力物体内一点截取一边长为无限小 的正立方体,以表示几何上的一点。
材料力学
扭转/纯剪切
一.薄壁圆筒扭转时的切应力
纯剪切的变形规律通过薄壁圆筒的纯扭转进 行研究。 受扭前,在薄壁圆筒的表面上用圆周线和 纵向线画成方格。
扭转/圆轴扭转时的变形
两横截面间相对扭转角的计算:
=TL/GIP
T:扭矩;
L:两横截面间的距离; G:切变模量; IP:极惯性矩。
材料力学
扭转/圆轴扭转时的变形
=TL/GIP
GIP越大,则越小。 GIP称为抗扭刚度。
材料力学
扭转/圆轴扭转时的变形
`=/L
`:单位长度扭转角(rad/m)。
思路:
最大扭矩
最大切应力
max
校核强度
相等
强度相同,则两轴的最大切应力 求出实心轴直径
材料力学
两轴面积比即为重量比
扭转/圆轴扭转时的应力
计算Wt:
3 Wt=D
第三章 扭 转

第三章 扭 转 1 扭转的力学模型①构件特征——构件为圆截面直杆。
②受力特征——外力偶矩的作用面与杆件轴线相垂直。
③变形特征——杆件各横截面绕杆轴作相对转动。
2圆轴扭转时,横截面上的内力偶矩——扭矩 ①传动轴的速度、传递的功率与外力偶矩之间的关系为{}{}{}minr n KW P M mN e 9950=∙ ②扭矩——构件受扭时,横截面上的内力偶矩,以T 表示。
③扭矩的正负号规定——用右手螺旋法则,扭矩矢量的方向指向截面的为负,背离截面的为正。
④扭矩图——表示圆杆各截面上的扭矩沿杆轴线方向变化规律的图线。
3圆轴扭转时,横截面上的应力、强度条件 (1)横截面上的切应力①分布规律——一点的切应力的大小与该点到圆心的距离成正比,其方向与该点的半径相垂直。
②计算公式 ρτP I T =PP max W TR I T ==τ (2)极惯性矩与扭转截面系数, ①实心圆截面 432D I P π= , 316D W P π=②空心圆截面 ()()444413232αππ-=-=D dDI P ,()44116απ-=D WP式中, Dd =α (3)圆轴扭转的强度条件 []ττ≤=Pmax W T(4)强度计算的三类问题①强度校核 []ττ≤=Pmax W T②截面设计 []τTW P ≥,由P W 计算D⑧许可荷载计算 []P e W M τ≤,由T 计算e M 4.圆轴扭转时的变形,刚度条件 (1)圆轴扭转时的变形小变形时,圆轴的二任意横截面之间仅产生相对的角位移,称为相对扭转角。
① 相对扭转角 ()rad GI TLP=ϕ ②单位长度扭转角 ()m rad GI Tdx d P'==ϕϕ 计算相对扭转角ϕ的公式,应在长度L 范围内,T ,G 和P I 均为常数,若其中任意参数T 或G 或P I 不为常数,则应分段计算ϕ,然后叠加。
2)圆轴扭转时的刚度条件 []()()m GI max T max 'P '0180ϕπϕ≤⨯=5.矩形截面杆扭转的主要结果 (1)横截面上的最大切应力横截面上的最大切应力发生在矩形截面的长边中点处;即 3b Tmax βτ=式中,β为与比值h 有关的系数,可查文献1中表3—1获得。
结构力学第三章-扭转.

对于空心圆截面:
d
I p A 2 dA 2 d
2 D 2 d 2
d
O D
4 4 (D d ) 32 D4 4 (1 ) 32
d ( ) D
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
代入物理关系式
d T dx GI p
d 得: G dx
T Ip
T Ip
— 横截面上距圆心为 处任一点切应力计算公式。
4. 公式讨论:
① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
第三章
§3–1 概述
扭 转
§3–2 薄壁圆筒的扭转
§3–3 传动轴的外力偶矩 ·扭矩及扭矩图
§3–4 等直圆杆扭转时的应力 ·强度条件
§3–5 等直圆杆扭转时的变形 ·刚度条件
§3–6 等直圆杆扭转时的应变能
§3–7 非圆截面等直杆在自由扭转时的应力和变形
§ 3–1
概 述
轴:工程中以扭转为主要变形的构件。如:机器中的传动轴、
石油钻机中的钻杆等。
扭转:外力的合力为一力偶,且力偶的作用面与直杆的轴线 垂直,杆发生的变形为扭转变形。 B
A
O
A
O B
m
m
工 程 实 例
§ 3–2
薄壁圆筒的扭转
略
扭转角():任意两截面绕轴线转动而发生的角位移。
切应变():直角的改变量。
剪切胡克定律: T=m
剪切胡克定律: 当剪应力不超过材料的剪切比例极限时(τ ≤τp), 剪应力与剪应变成正比关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工 程 实 例
工 程 实 例
攻丝丝锥
工 程 实 例
对称扳手拧紧镙帽
一、扭转的概念
1.受力特征:在杆件两端垂直于杆轴线 的平面内作用一对大小相 等,方向相反的外力偶。
2.变形特征:横截面形状大小未变,只 是绕轴线发生相对转动。
轴:以扭转为主要变形的构件称为轴
Me
Me
计算简图:
二轴长度相同。
求: 实心轴的直径 d1和空心轴的外直 径D2;确定二轴的 重量之比。
计算外力偶矩
P=7.5kW, n=100r/min,最大切应力不
得超过40MPa, = 0.5。二轴长度相同。
z 纯剪切单元体
dy dz
y
τ
τx
dx
单元体四个侧面上只有切应力而无正应力,则称为 纯剪切单元体.
三、切应变
纯剪切单元体的相对两侧面 发生微小的相对错动,
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
A
D
B
C
dx δ
四、剪切胡克定律
由图所示的几何关系得到
Me
tan r
五、剪切应变能
若从薄壁圆筒中取出受纯剪切的
a
´ b
单元体,由于变形的相对性,可 设单元体左侧面不动,右侧面上
dy
的剪力由零逐渐增至
´
dydz
c
右侧面因错动沿切应力向下错动的距离 z
d t
dx
dx
因此剪力总共完成的功为
dW 1dydz ddx 0
单位体积内的剪切变形能密度
Me
Me
§3-2、外力偶矩的计算 扭矩和扭矩图
已知:P—传递的功率,(kw)
n—转速,(r/min)
求:外力偶矩Me ( N·m)
解:P M e
2 n
60
P
1000
M
e
n
30
由此求得外力偶矩:
Me
P 1000 30
n
9549
P n
(N . m)
若传递功率单位为马力(PS)时, 由于1PS=735.5N·m/s
d
I p A 2dA
D
d2 2 2 d
d
O
D
2
32
(D4
d 4)
(
d D
)
D4
32
(1
4)
0.1D4(1
4)
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量 轻,结构轻便,应用广泛。
⑤ 确定最大剪应力:
2dA
T
GI p
d
dx
dA
O
令 I p A 2dA
d
dx
T GI p
代入物理关系式
G
d
dx
得:
T
Ip
T
Ip
—横截面上距圆心为处任一点剪应力计算公式。
四、 公式讨论:
① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面 直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
(2)各纵向线均倾斜了同一微小角度 ;
x
dx
Me
(3)所有矩形网格均歪斜成同样大小的平行四边形.
3.推论
Me
Me
(1)在横截面及包含轴线的
纵向截面上都无正应力,只有
切应力 ;
(2)切应力方向垂直半径或与
圆周相切,且沿圆周方向各点的
切应力相等。
因壁厚很小—可近似地认为沿壁
厚方向各点处切应力的数值无变化.
2.平面假设 变形前为平面的横截面 ,变
形后仍保持为平面.
3. 变形几何关系:
tg R d
dx
γ—圆截面边缘上点的切应变
距圆心为ρ的一点的切应变为
d
dx
d
dx
—— 扭转角沿长度方向变化率。
对一确定平面,
d const
dx
任一点处的切应变与其到圆心的距离成正比。
危险面 处处是危险面
例1 已知:一传动轴, n =300r/min,主动轮输入 P1=500kW,从动轮输出 P2=150kW,P3=150kW, P4 =200kW,试绘制扭矩图。
Me2 Me3
Me1
Me4
A
B
C
D
1 计算外力偶矩
Me1
9.549
P1 n
15.9 kN m
n =300r/min,P1=500kW,
五、圆轴扭转时的强度计算
强度条件:
max [ ]
对于等截面圆轴:
Tmax Wt
[ ]
([] 称为许用剪应力。)
强度计算三方面:
① 校核强度:
max
Tmax Wt
[ ]
② 设计截面尺寸:
Wt
Tmax
[ ]
Wt
实:D3 16 空:1D6(3 1 4)
1.在单元体左、右面(杆的横截面)只有切应力, y
其方向于 y 轴平行.
dy δ
由平衡方程
Fy 0
τ
可知,两侧面的内力元素 d y
大小相等,方向相反,将组成 一个力偶. z
dx
其矩为 d yd x
τx
2. 要满足平衡方程
Mz 0 Fx 0
在单元体的上、下两平面上必有
A
B
T /KNm
C
D
6.37
x
4.78 9.56
例2 :图示传动轴上,经由A轮输入功率10KW,经 由B、C、D轮输出功率分别为2、3、5KW。轴的转速 n=300r/min,求作该轴的扭矩图。如将A、D轮的位置 更换放置是否合理?
B
C
A
D
1 传递的外力偶矩
B、C、D: 2、3、5KW
MA
9549
由
T
Ip
知:当
R
d 2
,
max
max
T
d 2
Ip
T
Ip
d 2
T Wt
(令 W I p
d 2
)
max
T Wt
Wt — 抗扭截面系数(抗扭截面模量), 几何量,单位:mm3或m3。
对于实心圆截面: Wt I p R D3 16 0.2D3 对于空心圆截面:Wt I p R D3(1 4) 16 0.2D3(1 - 4)
2、扭矩图突变:在外力偶矩施加处扭矩图要发生突 变。 突变量=外力偶矩值
§3-3 纯剪切
薄壁圆筒:壁厚
1 r (r—圆筒的平均半径)
10
一、应力分析 (Analysis of stress)
1.实验前 (1)画纵向线,圆周线; (2)施加一对外力偶.
2.实验后
(1)圆筒表面的各圆周线的形状、大小和 间距均未改变,只是绕轴线作了相对转动;Me
薄壁筒扭转时横截面上的切应力均
匀分布,与半径垂直,指向与扭矩的转 向一致.
4.推导公式
A dA r T
r AdA r 2 r t T
T
T T
2 r 2 t 2A t
此式为薄壁筒扭转时横截面上切应力的 计算公式.
二、切应力互等定理
③ 计算许可载荷: Tmax Wt[ ]
[例] 功率为150kW,转速为15.4转/秒的电动机转子轴如图,
许用剪应力 []=30M Pa, 试校核其强度。
m
m
解:①求扭矩及扭矩图
A T/kNm
B
C
D3 =135 D2=75 D1=70
1.55
TBC
m
P 103
2n
2
150 103 3.14 15.4
PA n
318.3
Nm
n=300r/min
MB
9549 PB n
63.7
Nm
MC
9549 PC n
95.5 N m,
MD
9549 PD n
159.2
N m,
B
C
A
D
2、求内力 MB
MB
T3 B
MC
MD
I C
I
T1 M B 0
T1
T1 MB 63.7N m
二、 物理关系 由剪切虎克定律 G
d
dx
代入上式得:
G
G
d
dx
G
d
dx
同一圆周上各点剪应力
均相同 ,且其值与 成 正比, 与半径垂直。
三、静力关系
T A dA
A
G 2
d
dx
dA
G
d
dx
A
l
Me
l
薄壁圆筒的扭转试验发现,当外力偶 Me 在某一范围内时,
与 Me (在数值上等于 T )成正比.
T=Me