反激电源设计与仿真

合集下载

单端反激式开关电源设计与仿真_英文_高素玲

单端反激式开关电源设计与仿真_英文_高素玲

loop,so the design and analysis of voltage control method are relatively simple. Because the amplitude of sawtooth
waveform is relatively larger,so its anti-interference ability is relatively stronger.
2 Design of current-mode flyback switching power supply
Single flyback switching power supply composed by UC3842 chip block diagram is shown in Fig. 2[3].
clock pulse to set the latch,the output pulse drive power MOSFET. The current pulse in the power supply circuit gradually increases,when the amplitude of current in the
Key words: switching power supply; UC3842; single flyback; simulation CLC number: O189. 1 Document code: A Article ID: 1001 - 7011( 2014) 04 - 0556 - 05
Comparing with the voltage-controlled,current mode PWM switching power supply have better voltage regula-

单端反激DC_DC电路仿真

单端反激DC_DC电路仿真

单端反激DC/DC电路仿真一、设计要求▪利用simpowersystems建立单端反激电路的仿真模型。

输入直流电压源,电压28V,电压纹波小于10%,输出电压5V,电压纹波小于2%,输出额定功率30W。

电路开关频率10KHz,整流二极管通态压降0.8V,计算功率管的工作占空比,并选择开关管(选择MOSFET)及二极管。

▪ 1.满负载的仿真。

DC/DC变换器输出功率30w,R=0.68欧姆,C=4700uf,仿真时间0.2s。

观察并记录MOSFET的工作波形(电压,电流波形),输出整流二极管的工作波形(电压,电流波形),输出波形。

▪ 2.小负载的仿真。

DC/DC变换器输出功率0.5w,R=50欧姆, C=4700uf仿真时间0.2s。

观察并记录MOSFET的工作波形(电压,电流波形),输出整流二极管的工作波形(电压,电流波形),输出波形。

▪仿真分析,选择合适的功率管,整流二极管(电压,电流参数),设计合适的占空比(由合适输入输出电压决定)。

二、实验电路与仿真1.满负载的仿真。

R=0.68欧姆,C=4700uF。

MOSFET的工作波形(电压,电流波形),输出整流二极管的电压工作波形输出整流二极管的电流工作波形输出波形由图,磁化电流为连续2、小负载的仿真。

R=50欧姆, C=4700uF。

MOSFET的工作波形(电压,电流波形)输出整流二极管的电压工作波形输出整流二极管的电流工作波形输出波形由图知,磁化电流为不连续三、实验结果分析当开关管S 导通时,输入电压Uin 加到变压器的原边绕组N1上,由于变压器对应端的极性,副边绕组N2 为下正上负,二极管D 截至,副边绕组N2没有电流通过。

当S 截止时,副边绕组N2极性上正下负,二极管D 导通,此时S 导通期间储存在变压器中的能量便通过二极管D 向负载释放。

在工作过程中,变压器起了储能电感的作用。

当满负载时,磁化电流连续。

当S 截止时间较小时,在截止时间结束时,副边电流将大于0,在这种状态下,下一周期开始S 重新导通,原边绕组电流则不会从0开始。

反激式开关电源电路设计

反激式开关电源电路设计

反激式开关电源电路设计一、反激式开关电源的基本原理1.输入滤波电路:用于对输入电压进行滤波,消除噪声和干扰。

2.整流电路:将输入交流电压转换为直流电压。

3.开关变压器:通过变压器实现电压的升降。

4.开关管:通过快速开关控制电源的输出。

5.输出滤波电路:对输出电压进行滤波,减小纹波。

二、反激式开关电源的设计步骤1.确定需求:首先需要确定设计要求,包括输出电压和电流、负载稳定性要求、效率要求等。

2.选择开关管和变压器:根据需求选择合适的开关管和变压器,考虑其最大工作电流和功率损耗。

3.转换频率的选择:根据应用的具体要求,选择合适的转换频率。

较高的频率可以减小变压器的尺寸,但也会增加开关管的功耗。

4.控制电路设计:设计开关管的控制电路,包括驱动电路和保护电路,确保开关管的正常工作和保护电路的可靠性。

5.输出滤波电路设计:设计输出滤波电路,用于滤除输出电压中的高频噪声和纹波,提高稳定性和负载能力。

6.开关电路设计:设计开关电路,确保开关管的快速开关和可靠性。

7.其他辅助电路设计:如过温保护电路、过流保护电路等。

8.电路板布局和布线:根据电路设计和要求进行电路板布局和布线,提高电路的可靠性和稳定性。

9.电路仿真和调试:使用仿真软件对设计的电路进行仿真分析,并进行实际的电路调试,确保电路的可靠性和稳定性。

三、反激式开关电源设计的注意事项1.高效率设计:选择合适的元件和电路设计,减小功率损耗,提高电源的整体效率。

2.稳定性设计:考虑负载稳定性的要求,选择合适的控制策略和滤波电路,提高电源的稳定性和负载能力。

3.保护设计:考虑过温、过流、短路等保护功能的设计,保护电源和负载器件的安全。

4.电磁兼容设计:反激式开关电源中产生的高频噪声易对其他电子设备产生干扰,需要采取适当的电磁屏蔽和滤波措施。

5.安全性设计:合理设置安全保护电路和安全措施,确保电源在故障情况下能够及时切断电源,保护用户的安全。

通过以上步骤和注意事项,可以设计出一台高效、稳定、安全的反激式开关电源,满足不同应用领域的需求。

一种反激式开关电源的设计与仿真

一种反激式开关电源的设计与仿真

第38卷第4期计算机仿真2021年4月文章编号:1006 -9348(2021 )04 -0083-06一种反激式开关电源的设计与仿真王强\王槐生U,田宏伟1(1.苏州大学应用技术学院,江苏苏州215325;2.苏州大学电子信息学院,江苏苏州215006)摘要:为实现小功率开关电源的小型化、高效化和低成本,提出了一种基于电流型PW M芯片UC3842控制下双路输出的反激式开关电源。

研究了电源的拓扑结构和工作原理,详细分析了EM1滤波器和整流滤波电路、功率变换电路、PW M控制电 路、反馈检测电路的关键参数和设计过程。

利用Sabei•软件的仿真工具箱搭建了电路闭环仿真模型,模拟反激式电路的环路控制,实现两路直流输出5V/1A和15V/1A,效率髙达90%。

仿真结果证明了设计的正确性和可行性。

关键词.•开关电源;反激式;电路设计;建模与仿真中图分类号:TP391.9 文献标识码:BDesign and Simulation of a Flyback Switching Power SupplyWANG Qiang1,WANG Huai - sheng12 ,TIAN H ong-w ei1(1. Applied Technology College,Soochow University,Suzhou Jiangsu 215325 ,China;2.School of Electronic and Information Engineering,Soochow University,Suzhou Jiangsu 215006,China)A B S T R A C T:For the r e a l ization of small switching power supply miniaturization,high efficiency,and low cost,a f l y­back switching power supply controlled dual output was designed based on the current - mode P W M chip U C3842.The topological structure and working principle of the power supply were studied.The key parameters and the design process of EMI f i l t e r s and r e c t i f i e r f i l t e r circuit,power conversion circuit,PWM control circuit,feedback detection c i r­c u i t were analyzed in ing the simulation toolbox of Saber software t o build the closed - loop simulation mod­e l simulating the loop control of the flyback c i r c u i t and achieving the two - channel DC output of 5V/1A and 15 V/1A,the efficiency can reach 90%.The simulation resu l t s prove the correctness and f e a s i b i l i t y of the design.K E Y W O R D S:Switching power supply; Flyback; Circuit design; Modeling and simulationi引言近年来,随着电子电路仿真技术应用领域的不断扩展,对仿真技术也提出新的要求,如何提高仿真的可靠性和准确性,提高建模和仿真的效率对于电子电路设计具有重要意义[|]。

基于MULTISIM的反激式开关电源的仿真

基于MULTISIM的反激式开关电源的仿真

图$
两绕组变压器的磁阻模型转化为电路模型 事实 成 ’, 模型, 上, ’, 模型对于 多于 ( 个绕组的 变压器是无效 的。 因此, 根据变 压器的实际模 型,可建立对应 的磁阻模型如图 ( 所示。
"
仿真结果分析
由于电路较复杂, 建模完毕后, 首先对电路进行分块仿真, 本
!( ! 变 压 器 磁芯模型


殳国华
,( -.(
/’0 102’0*
要: 开关电源的仿真技术可以提高设计的整体性能, 缩短开发周期, 降低成本, 仿真技术的研究非常有必要。该文以 3#4 稳压、 56 稳 流开关电源作为研究对象, 将 78,9:/:7; 仿真工具与模型建立理论相结合, 对该电源的各个部分进行了仿真研究, 优化了电源 的基本参数。并且对变压器建模进行了深入的研究, 从物理模型与磁芯模型两方面详细介绍了变压器建模的过程, 进而完成了 整个开关电压闭环系统的仿真研究, 最后对开关电源进行了稳定性分析, 确定了其稳定工作的条件。
关键词: 开关电源; 仿真; 变压器模型 78,9:/:7; &’()*+,)< 6= >’. =(?0@*>(2) 2A =B(>C’ D2B.E =0DD@F B(@@ (?DE2G. >’. =F=>.? H = D.EA2E?*)C.% =’2E>.) >’. I.G.@2D?.)> CFC@. *)I C0> >’. C2=>% (> (= ).C.==*EF >2 =>0IF >’. =(?0@*>(2) >.C’)2@2JFK 9’. D*D.E A2C0=()J 2) =B(>C’ D2B.E =0DD@F B(>’ G2@>*J. *)I C0EE.)> =>*L(@(>F% C2?L()()J >’. =(?0@*>(2) >22@ 2A 70@>(=(? *)I >’. >’.2EF 2A .=>*L@(=’()J ?2I.@=% ?*M.= * I..D =>0IF 2) .G.EF D*E> 2A >’. D2B.E =0DD@F *)I ’*= 2D>(?(N.I >’. I.=(J)K 9’E20J’ >’. >’.2EF 2A .=>*L@(=’()J >E*)=A2E?.E ?2I.@% >E*)=A2E?.E D’F=(C*@ ?2I.@ *)I ?*J).>(C C2E. ?2I.@ *E. ()>E2I0C.I () I.>*(@ *)I >’. B’2@. C@2=.O@22D =(?0@*>(2) =F=>.? (= C2?D@.>.IK P()*@@F% >’. D*D.E *)*@FN.= >’. =>*L(@(>F 2A >’. =F=>.?% I.>.E?()()J >’. C(EC0?=>*)C. A2E >’. =B(>C’ D2B.E =0DD@FK -./01*2(< =B(>C’ D2B.E =0DD@F Q 中图分类号 R 9S5;TK ; 789:/:7 =(?0@*>(2) >E*)=A2E?.E ?2I.@ Q 文献标识码 R 6 Q 文章编号 R T###O5UU3 ! "#T# + #"O##"3O#$ 使用的磁性器件模型必须忠实地再现或预测电路的行为,磁性器 件的模型必须随着每个新电路的仿真而改变。 变压器的建模主要分为两个部分,即磁阻模型与磁芯模型。 磁阻模型是根据变压器的物理模型转化得到的,用磁阻的形式反 映变压器的物理结构; 磁芯模型是变压器磁芯的建模, 它如实地反 映变压器磁芯的工作状态。

saber仿真35W反激开关电源设计

saber仿真35W反激开关电源设计

今天开始,为大家介绍一个开关电源仿真的实例。

由于开关电源具有很强的非线性,并且经常是双环乃至多环反馈,因此无论用哪种仿真工具,对其进行仿真分析都是一件很困难的事情,相信用Saber进行开关电源分析的网友,也有过类似的经验。

这个仿真实例中使用了TI的UC3844做为控制器,实现一个反激电路。

验证电路源于TI公司的UC3844 数据手册(data sheet) 第七页所提供的反激变换器设计电路,如下图所示:在SaberSketch根据对该原理图进行适当修改,具体修改情况如下:1.输出由双路±12V/0.3A 的负载改为24V/0.6A负载.2.输出滤波电容C12/C13 由2200u 改为141u. C11 由4700u 改为3000u3.去掉负载绕组供电的复杂滤波网络, 改为RC充电模式, 其中R=10, C=C2=100u.4.将输出部分的滤波器由π 型改为电容直接滤波.5.去掉MOSFET (UFN833)的缓冲电路( SNUBBER).6.对部分Saber中没有模型的器件进行替换:a. POWER MOSFET UFN833->mtp4n80eb. Current Sense R10=0.33->R10=0.55c. Output Rectifier USD945->mbr2545ct UFS1002->ues704d. T1采用xfrl3 template 使用电感量控制变比, L1=1m, L2=10.7u, L3=216.7u, L4=66.9u.在完成以上修改后,在各种负载条件下,对该电路进行仿真分析。

测试条件:Vacin = 117V,Vout = 5V/4A (Rload =1.25)Vout = 24V/0.6A (Rload=40)分析结果如下:如上图图所示,额定负载情况下,Vout = 5.0019V/23.933V。

如上图所示,额定负载情况下输出频率为: FOSC= 39.383KHz , 占空比D=0.26761, 输入直流电压Vdc=144.31V。

负电压反激开关电源设计

负电压反激开关电源设计全文共四篇示例,供读者参考第一篇示例:负电压反激开关电源设计是一种常用的电源设计方案,适用于需要负电压输出的电子设备,比如一些特定的传感器、仪器仪表、通信设备等。

本文将介绍负电压反激开关电源设计的基本原理、设计步骤和注意事项,希望可以帮助读者更好地理解和应用这种电源设计方案。

一、基本原理负电压反激开关电源设计的基本原理是通过控制开关管的导通和截止,实现输入电压到输出电压的变换。

其基本结构如下图所示:在这个结构中,输入电压经过整流滤波得到直流电压Vin,接着经过MOSFET和变压器T的控制,变换成高频交流电压,再通过二次整流滤波得到输出电压Vout。

由于变压器的极性反转,所以输出电压是负的。

二、设计步骤1. 确定输出电压和输出电流要求:首先需要确定设备所需的输出电压和输出电流,这将决定整个电源设计的参数。

2. 选择开关管和变压器:根据输出电压和输出电流的要求,选择合适的开关管和变压器,确保其工作在正常范围内。

3. 设计控制电路:设计开关管的驱动电路和控制电路,保证其能够正常地进行导通和截止,实现电压变换。

4. 设计反馈电路:设计反馈电路控制输出电压稳定在设定值,主要包括误差放大器和脉宽调制器。

5. 进行仿真和调试:利用仿真软件对整个电路进行仿真验证,确保电路的性能符合要求。

然后进行实际调试,逐步优化电路性能。

6. 进行稳定性测试:完成电路设计后,需要进行稳定性测试,确保电路在各种工况下能够稳定输出负电压。

三、注意事项1. 电路的布局应合理:开关电源中存在较大的高频噪声,需要注意电路的布局,尽量减少信号线的长度,降低电磁干扰。

2. 开关管的选择要注意:选择合适的开关管,能够承受电压和电流的要求,并且具有低导通电阻和快速开关速度。

3. 变压器的设计要合理:变压器是整个反激电源的重要部分,需要考虑到绕组的匝数、线径等参数,确保在工作频率下具有合适的电感和耦合度。

4. 输出滤波电路的设计要充分考虑:对于负电压输出,需要特别注意输出滤波电路的设计,保证输出电压的纹波和噪声较小。

基于Saber的反激式开关电源仿真

基于Saber的反激式开关电源仿真摘要通过使用Saber软件,搭建电路级模型,仿真研究反激式开关电源。

分析反激式开关电源原理,并与试验样机做对比,体现仿真对设计的指导性作用。

关键词aber;反激式开关电源;仿真开关电源被誉为高效节能电源,它代表着稳压电源的发展方向。

目前,随着各种新科技不断涌现,新工艺被普遍采用,新产品层出不穷,开关电源正向小体积、高功率密度、高效率的方向发展,开关电源的保护电路日趋完善,开关电源的电磁兼容性设计及取得突破性进展,专用计算机软件的问世为开关电源的优化设计提供了便利条件。

Saber是美国Analogy公司开发,现由Synopsys公司经营的系统仿真软件,被誉为全球最先进的系统仿真软件,也是唯一的多技术,多领域的系统仿真产品,现已成为混合信号、混合设计技术和验证工具的业界标准,可用于电子、机电一体化、机械、光电、光学、控制等不同类型系统构成的混合系统仿真,与其他由电路仿真软件相比,其具有更丰富的元件库和更精致的仿真描述能力,仿真真实性更好。

1反激式开关电源基本原理反激式开关电源其拓扑结构如图1。

其电磁能量储存与转换关系如下如图2(a)当开关管导通,原边绕组的电流Ip将线形增加,磁芯内的磁感应强度将增大到工作峰值,这时可以把变压器看成一个电感,逐步储能的过程。

如图2(b)当开关管关断,初级电流降到零。

副边整流二极管导通,感生电流将出现在复边。

从而完成能量的传递。

按功率恒定原则,副边绕组安匝值与原边安匝值相等。

2基于UC3842的反激式开关电源电路设计由Buck-Boost推演并加隔离变压器后而得反激变换器原理线路。

多数设计中采用了稳定性很好的双环路反馈(输出直流电压隔离取样反馈外回路和初级线圈充磁峰值电流取样反馈内回路)控制系统,就可以通过开关电源的PWM(脉冲宽度调制器)迅速调整脉冲占空比,从而在每一个周期内对前一个周期的输出电压和初级线圈充磁峰值电流进行有效调节,达到稳定输出电压的目的。

反激开关电源课程设计

反激开关电源课程设计一、课程目标知识目标:1. 让学生理解反激开关电源的基本原理,掌握其电路组成和工作流程。

2. 让学生掌握反激开关电源的关键参数计算,包括变压器的匝比、功率、效率等。

3. 让学生了解反激开关电源的优缺点,以及其在实际应用中的注意事项。

技能目标:1. 培养学生运用所学知识进行反激开关电源电路设计的能力。

2. 培养学生运用相关软件(如PSPICE、MATLAB等)对反激开关电源进行仿真分析的能力。

3. 培养学生通过实验验证反激开关电源性能,并能对电路进行调试和优化。

情感态度价值观目标:1. 培养学生对电子技术学科的兴趣和热情,增强其学习动力。

2. 培养学生具备团队协作精神,能在小组讨论中发挥自己的优势,共同完成课程任务。

3. 培养学生严谨的科学态度和良好的工程素养,使其在设计和实践中注重细节,追求高质量。

课程性质:本课程为电子技术学科的专业课程,旨在让学生掌握反激开关电源的设计和应用。

学生特点:学生具备一定的电子技术基础知识,具有较强的学习能力和动手能力。

教学要求:结合课程性质和学生特点,本课程要求教师采用理论教学、案例分析、实验操作等多种教学方法,引导学生主动参与,提高其设计能力和实践能力。

通过分解课程目标为具体的学习成果,便于教学设计和评估。

二、教学内容1. 反激开关电源原理及电路组成- 介绍反激开关电源的工作原理- 分析反激开关电源的电路组成,包括开关元件、变压器、整流滤波等部分2. 反激开关电源关键参数计算- 讲解变压器匝比的计算方法- 介绍功率、效率等关键参数的计算公式3. 反激开关电源设计方法- 分析反激开关电源的设计步骤- 引导学生运用教材中提供的公式、图表等进行电路设计4. 反激开关电源的优缺点及注意事项- 讲解反激开关电源的优点、缺点- 强调在实际应用中需注意的问题,如电磁干扰、热管理等5. 反激开关电源仿真与实验- 介绍相关软件(如PSPICE、MATLAB等)的使用方法,进行仿真分析- 安排实验课程,让学生动手搭建反激开关电源电路,验证性能并进行调试优化6. 教学进度安排- 将教学内容分为8个学时,其中理论教学4学时,案例分析2学时,实验操作2学时- 教学内容与教材章节相对应,确保科学性和系统性教学内容根据课程目标制定,旨在使学生掌握反激开关电源的理论知识和实践技能。

单端反激式开关电源的设计及仿真研究-电源在线网

单端反激式开关电源的设计及仿真研究来源:电源在线网Single-ended Flyback Switching Power Supply Design and Simulation马暖,苟艳娜,李晓青兰州交通大学自动化与电气工程学院(甘肃兰州730070)Ma nuan, Gou yanna, Li xiaoqing, School of Automation & Electrical Engineering, Lanzhou Jiaotong University(Lanzhou, 730070, China)摘要:电源是各类电子设备的重要组成部分。

设计了以SG1844控制器为核心的单端反激式开关电源的电路,给出了系统的变压器、电压环以及电流环的主要参数设计方法,建立了模型并运用ORCAD/PSPICE对开关电源的整体电路进行仿真实验,结果表明该设计的可行性。

关键词:开关电源双环控制高频变压器PSPICE仿真Abstract:V arious types of electronic equipment, power supply is an important part. SG1844 controller is designed with the core of single-ended flyback switching power supply circuit, given the system transformer, the voltage loop and current loop of the main parameters of the design method, a model and the use of ORCAD/PSPICE for the overall switching power supply circuit simulation results show the feasibility of the design.Keywords: Switching power supply, Dual-loop control, High frequency transformer, PSPICE Simulation[中图分类号]TN86 [文献标识码] A 文章编号:1561-0349(2011)09-1 引言由于开关电源既节能又带来巨大的经济效益,引起社会各界的重视而得到迅速推广。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RCD电路电阻、二极管的计算
• 电阻R: 在变压器下半周期由截至变为导通时,C上的能量经R来释放,直到C上的电 压将到下次MOS管关断之前的反电动势Vrest,在放电的过程中,漏感电动 势ΔVpp是不变的,通过放电常数R、C和变压器关断时间的关系,可以求得 R的值,可以按周期T的63%计算: R×C=0.63T×( Vrest+ ΔVpp )/ ΔVpp 注释:T=1/f f:为变压器的工作频率。 R=0.63 ( Vrest+ ΔVpp )/ (ΔVpp ×f ×C) 其功耗为:P= Le×Isc2×f/2 由于D和C上都有能量消耗,而且放电时间可能要短,所以该电阻的实际功耗 可按计算值的一半考虑。 P(实际)=P(计算值)/2 • 关于D的取值 • 耐压值要超过叠加值的10%。 • 电流要大于输入电流平均值的10%
MOS管(开关管)的选择
MOS管的耐压选择: Vdss=2*Vdcmax DS极间耐压要是两倍 的直流输入最大电压 MOS管的耐电流选择: Idrms=Iout*[1.2(Po/Vdcmin)/1-Dmax] Idrms:MOS所通过的电流有效值 Iout:输出电流 Po:输出功率 Vdcmin:最小输入直流电压值 Dmax:最大占空比 MOS的导通损耗计算 Psw=Idrms^2*Rds 有效电流值的平方乘上MOS内阻
安规电容之--Y电容
• 交流电源输入分为3个端子:火线(L)/零线(N)/地线 (G)。在火线和地线之间以及在零线和地线之间并接的 电容, 这两个Y电容连接的位置比较关键,必须需要符合相 关安全标准, 以防引起电子设备漏电或机壳带电,容易危及 人身安全及生命。它们都属于安全电容,从而要求电容值 不能偏大,而耐压必须较高。 • Y电容主要用于抑制共模干扰 • Y电容的存在使得开关电源有一项漏电流的电性指标。
整流桥(桥堆)的计算

整流桥的耐压选择 整流桥的耐电流选择 5为输入电流有效值的倍数,经验值。 所选整流桥的正向管压降 所选整流桥的功率损耗计算
BUCK电容容值的计算
• 红线圈起的电阻为I C的高压启动电阻,电阻阻值的选择由IC特性决 定。 • 蓝线圈起的部分为RCD箝位电路(也称为关断缓冲电路)。此部分电路 主要用于限制MOS关断时高频变压器漏感的能量引起的尖峰电压和次 级线圈反射电压的叠加,叠加的电压产生在MOS管由饱和转向关断的 过程中,漏感中的能量通过D向C充电,C上的电压可能冲到反电动势 与漏感电压的叠加值,即:Vrest+ Δ Vpp。
次级侧部分
吸收
分压
吸收回路
不知道莫工分析的RC吸收结果怎么样,请上传系统。 • 吸收的本质 ,什么是吸收? • 在拓扑电路的原型上是没有吸收回路的,实际电 路中都有吸收,由此可以看出吸收是工程上的需 要,不是拓扑需要。 • 吸收一般都是和电感有关,这个电感不是指拓扑 中的感性元件,而是指诸如变压器漏感、布线杂 散电感。 • 吸收是针对电压尖峰而言,电压尖峰从何而来? 电压尖峰的本质是什么? • 电压尖峰的本质是一个对结电容的dv/dt充放电过 程,而dv/dt是由电感电流的瞬变(di/dt)引起的, 所以,降低di/dt或者dv/dt的任何措施都可以降低 电压尖峰,这就是吸收。
隔离开关电源框架结构图
EMI 整流滤波 变压器 次级整流滤波 输出
开关器件 采样反馈
PWM 控制IC
隔离器件
高压区域
低压区域
电源电路原理图
初级侧部分
第一个安规元件—保险管
• 作用: 安全防护。在电源出现异常时,为了保护核心器件不 受到损坏。 • 技术参数: 额定电压V、额定电流I、熔断时间I^2RT。 • 分类: 快断、慢断、常规
EMI电路
• X电容,共模电感(也叫共模扼流圈 ),Y电容
• 根据IEC 60384-14,安规电容器分为X电容及Y电 容: • 1. X电容是指跨与L-N之间的电容器, • 2. Y电容是指跨与L-G/N-G之间的电容器.
安规电容之--X电容
• X电容多选用耐纹波电流比较大的聚脂薄膜类电容。这种 类型的电容,体积较大,但其允许瞬间充放电的电流也很大, 而其内阻相应较小。 • X电容容值选取是uF级,此时必须在X电容的两端并联一 个安全电阻,用于防止电源线拔插时,由于该电容的充放电 过程而致电源线插头长时间带电。 安全标准规定,当正在 工作之中的机器电源线被拔掉时,在1秒钟内,电源线插头两 端带电的电压(或对地电位)必须小于原来额定工作电压的 37%。 • 作为安全电容之一的X电容,也要求必须取得安全检测机构 的认证。X电容一般都标有安全认证标志和耐压AC250V 或AC275V字样,但其真正的直流耐压高达2000V以上,使 用的时候不要随意使用标称耐压AC250V或者DC400V之 类的的普通电容来代用。
选取压敏电阻的方法
• 压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持 续电流,在用作过压保护时必须考虑到这一点。压敏电阻的选用,一 般选择标称压敏电压V1mA和通流容量两个参数。
• • • • • • •
a 为电路电压波动系数,一般取值1.2. Vrms 为交流输入电压有效值。 b 为压敏电阻误差,一般取值0.85. C 为元件的老化系数,一般取值0.9. √2 为交流状态下要考虑峰峰值。 V1mA 为压敏电阻电压实际取值近似值 通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规 定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超 过± 10%时的最大脉冲电流值。
反激开关电源设计与仿真
开关电源的拓扑结构分类
• 10W以内常用RCC(自激振荡)拓扑方式 • 10W-100W以内常用反激式拓扑(75W以 上电源有PF值要求) • 100W-300W 正激、双管反激、准谐振 • 300W-500W 准谐振、双管正激、半桥等 • 500W-2000W 双管正激、半桥、全桥 • 2000W以上 全桥
压敏电阻的作用
• 压敏电阻是一种限压型保护器件。利用压敏电阻的非 线性特性,当过电压出现在压敏电阻的两极间,压敏 电阻可以将电压钳位到一个相对固定的电压值,从而 实现对后级电路的保护。 • 主要作用:过电压保护、防雷、抑制浪涌电流、吸收 尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器 件等。 • 主要参数有:压敏电压、通流容量、结电容、响应时 间等。 • 压敏电阻的响应时间为ns级,比空气放电管快,比 TVS管(瞬间抑制二极管)稍慢一些,一般情况下用 于电子电路的过电压保护其响应速度可以满足要求。
NTC的作用
• NTC是以氧化锰等为主要原料制造的精细半导体电子陶瓷 元件。电阻值随温度的变化呈现非线性变化,电阻值随温 度升高而降低。利用这一特性,在电路的输入端串联一个 负温度系数热敏电阻增加线路的阻抗,这样就可以有效的 抑制开机时产生的浪涌电压形成的浪涌电流。当电路进入 稳态工作时,由于线路中持续工作电流引起的NTC发热, 使得电阻器的电阻值变得很小,对线路造成的影响可以完 全忽略。
共模电感的作用
• 共模电感上,A和B就是共模电感线圈。这两个线圈绕在同 一铁芯上,匝数和相位都相同(绕制方向向反)。这样,当电 路中的正常电流流经共模电感时,电流在同相位绕制的电感 线圈中产生反向的磁场而相互抵消,此时正常信号电流主要 受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电 流流经线圈时,由于共模电流的同向性,会在线圈内产生同 向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较 强的阻尼效果,以此衰减共模电流,抑制高速信号线产生的 电磁波向外辐射发射,达到滤波的目的。
高压启动与RCD箝位电路
C的作用则是将该部分的能量吸收掉,其容量由下式决定: C=(Le×Isc2)/( Vrest+ Δ Vpp )2- Vrest2 这里的, Le:漏感,单端反激一般为40~100uH,低于40uH可不考虑,一般取50uH计算; Vrest:反电动势;2*n*Vout Δ Vpp:漏感电动势的峰值;8%*Vrest Isc:短路保护时变压器初级线圈流过的最大电流。Ipk^2
吸收回路
• • • • • 吸收的作用? 1、降低尖峰电压 2、缓冲尖峰电流 3、降低di/dt和dv/dt,即改善EMI品质 4、减低开关损耗,即实现某种程度的软开 关。 • 5、提高效率。提高效率是相对而言的,若 取值不合理不但不能提高效率,弄不好还 可能降低效率。
保险管的计算方法
• • • • •
0.6为不带功率因数校正的功率因数估值 Po输出功率 η 效率(设计的评估值) Vinmin 最小的输入电压 2为经验值,在实际应用中,保险管的取值范围是 理论值的1.5~3倍。 • 0.98 PF值
相关知识
关于功率因数
• 大部分用电设备中,其工作电压直接取自交流电网。所以电网中会 有许多家用电器、工业电子设备等等非线性负载,这些用电器在使用 过程中会使电网产生谐波电压和电流。没有采取功率因数校正技术的 AC-DC整流电路,输入电流波形呈尖脉冲状。交流网侧功率因数只 有0.5~0.7,电流的总谐波畸变(THD)很大,可超过100%。采用功 率因数校正技术,功率因数值为0.999时,THD约为3%。为了防止电 网的谐波污染,或限制电子设备向电网发射谐波电流,国际上已经制 定了许多电磁兼容标准,有IEEE519、IEC1000-3-2等。 • 功率因数的校正(PFC)主要有两种方法:无源功率因数校正和有源 功率因数校正。无源功率因数校正利用线性电感器和电容器组成滤波 器来提高功率因数、降低谐波分量。这种方法简单、经济,在小功率 中可以取得好的效果。但是,在较大功率的供电电源中,大量的能量 必须被这种滤波器储存和管理,因此需要大电感器和电容器,这样体 积和重量就比较大也不太经济,而且功率因数的提高和谐波的抑制也 不能达到理想的效果。有源功率因数校正是使用所谓的有源电流控制 功率因数的校正方法,可以迫使输入电流跟随供电的正弦电压变化。 这种功率因数校正有体积小、重量轻、功率因数可接近1等优点。
相关文档
最新文档