《高等数学》各章知识点总结——第1章

合集下载

高等数学(上册)重要知识点

高等数学(上册)重要知识点

一章 函数与极限1. 集合与函数 1.1 集合的概念具有某种特定性质的事物的的全体。

全体非负整数(自然数)构成的集合{0,1,2,3......}记为N 。

全体正整数构成的集合{1,2,3....}记为 。

全体整数构成的集合{....-1,0,1,2....}(记为Z). 全体实数构成的集合R. 1.2基本初等函数和初等函数 反对幂指三是基本初等函数.将基本初等函数经过有限次的四则运算和有限次的复合运算所得到的 且能用一个式子表示的函数称为初等函数. 1.3极坐标与直角坐标系的关系θρθρsin cos {==y x )0(tan {22≠=+=x x y yx θρ1.4几种特殊性质的函数 (1)有界函数F(x)在x 上有界的充分必要条件为:存在常数M>0,使得| f(x) | ≦ M,对任意x 属于X.这时称风f(x)在x 上有一个界. (2)奇偶函数F (x)=f(-x),称为偶函数. F (-x)=-f(x),称为奇函数. (3)周期函数f(x+L)=f(x)恒成立,称f(x)为周期函数.L 为f(x)的最小正周期.2.极限2.1数列极限的定义设有数列{a n },若存在常数a ,对任意给定的ε>0,总存在正整数N ,当n>N 时,恒有| a n -a |<ε成立,则数列{a n }以a 为极限。

记作:aann =∞→lim , 或 a a n→(∞→a ).此时称数列}{a n 收敛于常数a ,或简称数列收敛.反之数列}{a n 没有极限,或称它为发散.2.2数列极限的性质(1)(极限的唯一性)如果数列}{a n 收敛,那么它的极限必唯一.(2)(有界性)收敛数列必定有界.(3)(保号性)设有数列}{a n ,}{b n 分别收敛于a,b,并且b>a,那么存在正整数 N ,当n>N 时,恒有b n >a n . (4) 设有数列}{a n ,}{b n 分别收敛于a,b,并且存在正整数N,当n>N时,恒有b n ≥an,那么a b ≥(5)数列}收敛于a 的充分必要条件是它的任何一个子集数列都收敛于a. 2.3函数极限(1)设函数f(x)在的某去心邻域有定义.若存在常数A,使对任给的ε>0,总存在δ>0,当0<|x-x 0|<δ时,恒有 |f(x)-A|<ε恒成立,则称当x x →0时,f(x)以A 为极限.记作:)(limx f x x →=A或A x f →)(,当x x 0→.(2)函数极限的性质1.(唯一性)如果存在,那么极限是唯一的。

高数部分知识点总结

高数部分知识点总结

高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。

(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。

所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。

高数大一知识点总结前四章

高数大一知识点总结前四章

高数大一知识点总结前四章在大一的学习生活中,高等数学是一个非常重要的课程。

对于初学者来说,高数可能是一个挑战,因为它包含了许多新的概念和方法。

然而,只要我们掌握了一些基本的知识点,就能够更好地理解和应用高数。

下面,我将总结前四章的知识点,希望能够对大家的学习有所帮助。

第一章:数列与极限1. 数列的概念和表示方式:数列是按照一定规律排列的一组数,通常用通项公式表示。

2. 数列的分类:常数数列、等差数列、等比数列等。

常数数列的通项公式是恒等于一个常数;等差数列的通项公式是数列的第一个项加上公差与项数的乘积;等比数列的通项公式是数列的第一个项乘以公比的n-1次方。

3. 数列极限:当数列的项数逐渐增加时,数列可能会无限接近于某个数或取得无穷大的值。

这个无限接近的数被称为数列的极限。

第二章:函数与连续1. 函数的概念与性质:函数是一种描述两个变量之间关系的数学工具。

函数有定义域和值域两个重要的概念。

同时,函数有奇偶性、周期性等性质。

2. 基本初等函数:常见的基本初等函数包括常数函数、幂函数、指数函数、对数函数和三角函数等。

3. 函数的图像与性质:通过研究函数的图像,我们可以了解函数的性质,如单调性、极值点、零点、拐点等。

4. 连续性与间断点:函数在某一点处的极限等于函数在该点处的取值时,我们称该函数在该点处连续。

函数的间断点有可去间断、跳跃间断和无穷间断三种情况。

第三章:导数与微分1. 导数的概念与计算:导数描述了函数在某一点附近的变化率。

导数的计算可以使用极限的方法,也可以使用导数的基本性质进行计算。

2. 导数的性质与应用:导数有用于判断函数的增减性、求解极值和绘制函数图像的重要作用。

导数可以用于线性逼近、速度、密度和最优化等实际问题的求解。

3. 高阶导数与微分:高阶导数是导数的导数,它描述了函数在某一点处的曲率和变化率。

微分是函数值的增量与自变量的增量之间的关系。

第四章:不定积分1. 不定积分的概念与性质:不定积分是求解原函数的过程,常用的记号是∫f(x)dx。

(完整版)高等数学笔记

(完整版)高等数学笔记

(完整版)高等数学笔记第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1。

函数的定义: y=f(x ), x ∈D定义域: D(f ), 值域: Z(f )。

2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3。

隐函数: F(x,y )= 04。

反函数: y=f (x) → x=φ(y )=f —1(y )y=f -1(x)定理:如果函数: y=f (x), D (f )=X , Z (f )=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f —1(x), D (f —1)=Y, Z (f —1)=X 且也是严格单调增加(或减少)的。

㈡ 函数的几何特性1。

函数的单调性: y=f (x ),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x )在D 内单调增加( );若f (x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f (x 2),则称f (x)在D 内严格单调增加( );若f(x 1)>f (x 2),则称f(x)在D 内严格单调减少( ).2。

函数的奇偶性:D(f )关于原点对称 偶函数:f(—x )=f (x) 奇函数:f (-x )=-f (x ) 3.函数的周期性:周期函数:f(x+T)=f(x ), x ∈(-∞,+∞) 周期:T-—最小的正数4。

函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1。

常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5。

三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6。

反三角函数:y=arcsin x, y=arccon x y=arctan x , y=arccot x ㈣ 复合函数和初等函数1。

《高等数学》各章知识点总结——第1章

《高等数学》各章知识点总结——第1章

《高等数学》各章知识点总结——第1章1.集合的概念:集合是由确定的、互不相同的对象组成的一个整体。

集合中的对象称为元素,用大写字母A、B等表示集合,用小写字母a、b等表示元素。

集合中的元素无序,不重复。

2.集合的运算:(1)并集:表示由属于任一集合的元素组成的新集合,记作A∪B。

(2)交集:表示同时属于所有集合的元素组成的新集合,记作A∩B。

(3)差集:表示属于一个集合但不属于另一个集合的元素组成的新集合,记作A-B。

(4)互斥:两个集合的交集为空集,即A∩B=∅。

(5)补集:表示全集中不属于一些集合的所有元素的集合,记作A'。

3.集合之间的关系:(1)包含关系:若集合A的所有元素都属于集合B,则称集合A包含于集合B,记作A⊆B。

(2)相等关系:若集合A和集合B的元素完全相同,则称集合A等于集合B,记作A=B。

(3)真包含关系:若集合A包含于集合B,并且集合A不等于集合B,则称集合A真包含于集合B,记作A⊂B。

4.映射的概念:(1)映射:设有两个非空集合A和B,如果存在一种对应关系,使得A 中的每个元素对应B中的唯一元素,则称这种对应关系为映射。

(2)函数:映射的另一种称呼,表示自变量和因变量之间的关系。

通常用f(x)表示函数,其中x为自变量,f(x)为相应的因变量。

5.映射的性质:(1)定义域和值域:映射的定义域是指所有自变量的集合,值域是指所有因变量的集合。

(2)单射:每个自变量只对应唯一的因变量。

(3)满射:每个因变量都有对应的自变量。

(4)一一对应:既是单射又是满射的映射。

(5)复合映射:将两个映射结合起来形成一个新的映射,称为复合映射。

总结:本章主要阐述了集合的基本概念、集合的运算、集合之间的关系和映射的概念及其性质。

理解这些基本概念对于后续学习高等数学的内容具有重要的指导意义,也为我们建立起了抽象数学思维的基础。

在学习中,我们需要牢记集合的运算规则和映射的性质,灵活运用,为数学的进一步学习打下坚实的基础。

高数大一最全知识点

高数大一最全知识点

高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。

掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。

下面将为大家整理总结大一高数中最全的知识点。

第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。

2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。

3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。

第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。

2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。

3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。

第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。

2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。

3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。

第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。

2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。

3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。

第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。

2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。

3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。

第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。

2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。

高数第一章 知识点总结

高数第一章 知识点总结

式中有多个参数,需进一步从所给极限中挖掘信息,获得额外关系式。特别地,
① 分段函数在分段点的极限: lim f (x) = A ⇔ lim f (x) = A = lim f (x) ;
x → x0
x → x0−
x → x0+
② 设 lim f (x) = A ≠ 0 ,则 lim g(x) = ∞ ⇔ lim f (x) = ∞ ,且两者是同阶无穷大; g(x)

f
(
x)
在点
x0
有定义,但
lim
x→ x0
f
(x) 不存在;

f
(
x)
在点
x0
有定义,
lim
x→ x0
f (x) 存在,但 lim x → x0
f (x) ≠
f (x0 ) ;
4. 间断点的类型:
① 第一类间断点,左右极限都存在(包括:可去和跳跃间断点);
② 第二类间断点,左右极限至少一个不存在(包括:无穷、震荡和其他间断点);
aϕ(x) −1 ~ ϕ(x) ln a , (1+ ϕ(x))α −1 ~ αϕ(x)
此外
ϕ(x) − sinϕ(x) ~ ϕ3(x) , tanϕ(x) −ϕ(x) ~ ϕ3(x) , tanϕ(x) − sinϕ(x) ~ ϕ3(x) ,
6
3
2
arcsinϕ(x) −ϕ(x) ~ ϕ3(x) ,ϕ(x) − arctanϕ(x) ~ ϕ3(x)
往年考题: (12-13) 已知 lim a cos x + bx = 5 ,试确定待定常数 a 和 b 的值。
x→π sin x
6. 函数的连续性(间断点)

《高等数学》各章知识点总结——第1章(五篇)

《高等数学》各章知识点总结——第1章(五篇)

《高等数学》各章知识点总结——第1章(五篇)第一篇:《高等数学》各章知识点总结——第1章第1章函数与极限总结1、极限的概念(1)数列极限的定义给定数列{xn},若存在常数a,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得对于n >N 时的一切n,恒有|xn-a |<ε 则称a 是数列{xn}的极限,或者称数列{xn}收敛于a ,记为n→∞limxn=a或xn→a(n→∞).(2)函数极限的定义设函数f(x)在点x0的某一去心邻域内(或当x>M>0)有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,(或存在X)使得当x满足不等式0<|x-x0|<δ 时,(或当x>X时)恒有|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x0(或x→∞)时的极限,记为x→x0limf(x)=A或f(x)→A(当x→x0).(或limf(x)=A)x→∞类似的有:如果存在常数A,对∀ε>0,∃δ>0,当x:x0-δ<x<x0(x0<x<x0-δ)时,恒有f(x)-A<ε,则称A为f(x)当x→x0时的左极限(或右极限)记作x→x0-limf(x)=A(或lim+f(x)=A)x→x0x→x0x→x0x→x0显然有limf(x)=A⇔lim-f(x)=lim+f(x)=A) 如果存在常数A,对∀ε>0,∃X>0,当x<-X(或x>X)时,恒有f(x)-A<ε,则称A为f(x)当x→-∞(或当x→+∞)时的极限记作limf(x)=A(或limf(x)=A)x→-∞x→+∞显然有limf(x)=A⇔limf(x)=limf(x)=A)x→∞x→-∞x→+∞2、极限的性质(1)唯一性若limxn=a,limxn=b,则a=bn→∞n→∞若limf(x)=Alimf(x)=B,则A=Bx→∞(x→x0)x→∞(x→x0)(2)有界性(i)若limxn=a,则∃M>0使得对∀n∈Nn→∞+,恒有xn≤M(ii)若limf(x)=A,则∃M>0当x:0<x-x0<δ时,有f(x)≤Mx→x0(iii)若limf(x)=A,则∃M>0,X>0当x>X时,有f(x)≤Mx→∞(3)局部保号性(i)若limxn=a且a>0(或a<0)则∃N∈N+,当n>N时,恒有xn>0(或xn<0)n→∞)=A,且A>0(或A<0),则∃δ>0当x:0<x-x0<δ时,有(ii)若limf(xx→x0f(x)>0(或f(x)<0)3、极限存在的准则(i)夹逼准则给定数列{xn},{yn},{zn}若①∃n0∈N,当n>n0时有yn≤xn≤zn ②limyn=limzn=a,n→∞n→∞+则limxn=an→∞ 给定函数f(x),g(x),h(x), 若①当x∈U(x0,r)(或x>X)时,有g(x)≤f(x)≤h(x)②limg(x)=limh(x)=A,x→∞(x→x0)x→∞(x→x0)0则limf(x)=A x→∞(x→x0)(ii)单调有界准则给定数列{xn},若①对∀n∈N+有xn≤xn+1(或xn≥xn+1)②∃M(m)使对∀n∈N+有xn≤M(或xn≥m)则limxn存在n→∞若f(x)在点x0的左侧邻域(或右侧邻域)单调有界,则lim-f(x)(或lim+f(x))x→x0x→x0存在4、极限的运算法则(1)若limf(x)=A,limg(x)=Bx→∞(x→x0)x→∞(x→x0)则(i)lim[f(x)±g(x)]=A±Bx→∞(x→x0)(ii)lim[f(x)⋅g(x)]=A⋅Bx→∞(x→x0)(iii)limx→∞(x→x0)f(x)A=⋅(B≠0)g(x)B0(2)设(i)u=g(x)且limg(x)=u0(ii)当x∈U(x0,δ)时g(x)≠u0x→x0(iii)limf(u)=Au→u0则limf[g(x)]=limf(u)=Ax→x0u→u05、两个重要极限(1)limsinx=1x→0xsinu(x)=1u(x)→0u(x)limlimsinx11=0,limxsin=1,limxsin=0x→∞x→∞x→0xxxxu(x)⎛1⎫1⎫⎛lim1+(2)lim 1+⎪=e ⎪u(x)→∞x→∞u(x)⎭x⎭⎝⎝=e;lim(1+x)=ex→01xv(x)→0lim(1+v(x))1v(x)=e;6、无穷小量与无穷大量的概念(1)若limα(x)=0,即对∀ε>0,∃δ>0,当x:0<x-x0<δ(或x→∞(x→x0)x>X)时有α(x)<ε,则称当x→x0(或x→∞),α(x)无穷小量(2)或X>0),若limf(x)=∞即对∀M>0,∃δ>0(当x:0<x-x0<δx→∞(x→x0)(或x>X)时有f(x)>M则称当x→x0(或x→∞),f(x)无穷大量7、无穷小量与有极限的量及无穷大量的关系,无穷小量的运算法则(1)limf(x)=A⇔f(x)=A+α(x),其中limx→∞(x→x0)x→∞(x→x0)α(x)=0(f(x)≠0)⇒lim(2)limf(x)=0x→∞(x→x0)x→∞(x→x0)1=∞f(x)(3)limg(x)=∞⇒limx→∞(x→x0)x→∞(x→x01=0 g(x))(4)limf(x)=∞且∃M>0,当x:0<x-x0<δ(或x>X)时有g(x)≤M,x→∞(x→x0)则lim[f(x)+g(x)]=∞x→∞(x→x0)(5)limf(x)=0且∃M>0,当x:0<x-x0<δ(或x>X)时有g(x)≤M,x→∞(x→x0)则lim[f(x)⋅g(x)]=0x→∞(x→x0)nn(6)limfk(x)=0(k=1,2,Λ,n)则limx→∞(x→x0)x→∞(x→x0)k=1∑fk(x)=0,limx→∞(x→x0)k=1∏fk(x)= 0,8、无穷小量的比较x→∞(x→x0)limf(x)=0,limg(x)=0,limα(x)=0x→∞(x→x0)x→∞(x→x0)若(1)lim小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 函数与极限总结1、极限的概念(1)数列极限的定义给定数列{x n },若存在常数a ,对于任意给定的正数不论它多么小总存在正整数N使得对于n >N 时的一切n 恒有|x na |<则称a 是数列{x n }的极限或者称数列{x n }收敛于a 记为 a x n n =∞→lim 或xn a (n )(2)函数极限的定义设函数f (x )在点x 0的某一去心邻域内(或当0x M >>)有定义,如果存在常数A 对于任意给定的正数 (不论它多么小) 总存在正数(或存在X ) 使得当x 满足不等式0<|x x 0|时(或当x X >时) 恒有 |f (x )A |那么常数A 就叫做函数f (x )当0x x →(或x →∞)时的极限 记为A x f x x =→)(lim 0或f (x )A (当x x 0)( 或lim ()x f x A →∞=)类似的有:如果存在常数A对0,0,εδ∀>∃>当00:x x x x δ-<<(00x x x δ<<-)时,恒有()f x A ε-<,则称A 为()f x 当0x x →时的左极限(或右极限)记作00lim ()(lim ())x x x x f x A f x A -+→→==或显然有000lim ()lim ()lim ())x xx x x x f x A f x f x A -+→→→=⇔==如果存在常数A 对0,0,X ε∀>∃>当()x X x X <->或时,恒有()f x A ε-<,则称A 为()f x 当x →-∞(或当x →+∞)时的极限记作lim ()(lim ())x x f x A f x A →-∞→+∞==或显然有lim ()lim ()lim ())x x x f x A f x f x A →∞→-∞→+∞=⇔== 2、极限的性质 (1)唯一性若a x n n =∞→lim ,lim n n x b →∞=,则a b =若0()lim ()x x x f x A →∞→=0()lim ()x x x f x B →∞→=,则A B =(2)有界性(i )若a x n n =∞→lim ,则0M ∃>使得对,n N +∀∈恒有n x M ≤(ii )若0lim ()x xf x A →=,则0M ∃>当0:0x x x δ<-<时,有()f x M ≤(iii )若lim ()x f x A →∞=,则0,0M X ∃>>当x X >时,有()f x M ≤(3)局部保号性 (i )若ax n n =∞→lim 且0(0)a a ><或则N N +∃∈,当n N >时,恒有0(0)n n x x ><或(ii )若0lim ()x xf x A →=,且0(0)A A ><或,则0δ∃>当0:0x x x δ<-<时,有 ()0(()0)f x f x ><或 3、极限存在的准则(i )夹逼准则 给定数列{},{},{}n n n x y z若①0,n N +∃∈当0n n >时有n n n y x z ≤≤ ②lim lim n n n n y z a →∞→∞==,则lim n n x a →∞=给定函数(),(),()f x g x h x ,若①当00(,)x U x r ∈(或x X >)时,有()()()g x f x h x ≤≤ ②00()()lim ()lim ()x x x x x x g x h x A →∞→∞→→==,则0()lim ()x x x f x A →∞→= (ii )单调有界准则给定数列{}n x ,若①对n N +∀∈有11()n n n n x x x x ++≤≥或②()M m ∃使对n N +∀∈有()n n x M x m ≤≥或则lim n n x →∞存在若()f x 在点0x 的左侧邻域(或右侧邻域)单调有界,则0lim ()x x f x -→(或0lim ()x x f x +→)存在4、极限的运算法则(1)若0()lim ()x x x f x A →∞→=,0()lim ()x x x g x B →∞→=则(i)0()lim [()()]x x x f x g x A B →∞→±=± (ii)0()lim [()()]x x x f x g x A B →∞→⋅=⋅(iii)0()()lim()x x x f x Ag x B→∞→=⋅(0B ≠) (2)设(i )00()lim ()x xu g x g x u →==且(ii )当00(,)x U x δ∈时0()g x u ≠(iii )0lim ()u uf u A →=则0lim [()]lim ()x x u uf g x f u A →→==5、两个重要极限(1)0sin lim1x xx→=()0sin ()lim1()u x u x u x →=sin lim0x x x ∞→=,1lim sin 1x x x →∞=,01lim sin 0x x x→=(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭)()(1lim 1;()x u u x e u x →∞⎛⎫+= ⎪⎝⎭1lim(1)xx x e→+=()()01()lim 1();v x x v v x e →+=6、无穷小量与无穷大量的概念(1)若0()lim ()0x x x x α→∞→=,即对0,0,εδ∀>∃>当0:0x x x δ<-<(或x X >)时有()x αε<,则称当0()()x x x x α→→∞或,无穷小量(2)若0()lim ()x x x f x →∞→=∞即对0,0(0),M X δ∀>∃>>或当0:0x x x δ<-<(或x X >)时有()f x M >则称当0()()x x x f x →→∞或,无穷大量7、无穷小量与有极限的量及无穷大量的关系,无穷小量的运算法则 (1)00()()lim ()()(),lim ()0x x x x x x f x A f x A x x αα→∞→∞→→=⇔=+=其中(2)00()()1lim ()0()0lim ()x x x x x x f x f x f x →∞→∞→→=≠⇒=∞() (3)00()()1lim ()lim0()x x x x x x g x g x →∞→∞→→=∞⇒= (4)0()lim ()0,x x x f x M →∞→=∞∃>且当0:0x x x δ<-<(或x X >)时有()g x M ≤,则0()lim [()()]x x x f x g x →∞→+=∞(5)0()lim ()00,x x x f x M →∞→=∃>且当0:0x x x δ<-<(或x X >)时有()g x M ≤,则0()lim [()()]0x x x f x g x →∞→⋅=(6)0()lim ()0(1,2,,)k x x x f x k n →∞→==则01()lim()0,nkx k x x fx →∞=→=∑01()lim()0,nkx k x x fx →∞=→=∏8、无穷小量的比较000()()()lim ()0,lim ()0,lim ()0→∞→∞→∞→→→===x x x x x x x x x f x g x x α若(1)0()()lim0,()x x x f x C g x →∞→=≠,则称当0()x x x →→∞或时,()f x 与()g x 是同阶无穷小。

(2)0()()lim1()x x x f x g x →∞→=,则称当0()x x x →→∞或时,()f x 与()g x 是等价无穷小,记作()()f x g x (0()x x x →→∞或)。

(3)0()()lim0()x x x f x g x →∞→=,则称当0()x x x →→∞或时,()f x 是()g x 是高阶无穷小,记作()(())f x o g x =(0()x x x →→∞或)。

(4)0M ∃>00(,)x U x δ∀∈(或x X >),有()()f x Mg x ≤,则记()(())f x O g x =(0()x x x →→∞或)(5)0()()lim0(0)[()]kx x x f x C k x α→∞→=≠>,则称当0()x x x →→∞或时,()f x 是()x α是k 阶无穷小, 9、常用的等价无穷小当0x →时,有(1)sin ~~arcsin ~tan ~arctan ~ln(1)~1,+-x x x x x x x e(2)211cos ~.2x x -(3)1~ln (01),x a x a a -<≠(4)(1)1~+-x x αα10、函数连续的概念(1)函数连续的定义设()y f x =在点0x 及其邻域()U x 内有定义,若 (i )0000lim lim[()()]0x x y f x x f x ∆→∆→∆=+∆-=或(ii )00lim ()()x xf x f x →=或(iii )0,0,εδ∀>∃>当0:x x x δ-<时,有0()().f x f x ε-< 则称函数()y f x =在点0x 处连续设()y f x =在点00(,]x x δ-内有定义,若00lim ()()x x f x f x -→=,则称函数()y f x =在点0x 处左连续,设()y f x =在点00[,)x x δ+内有定义,若00lim ()()x x f x f x +→=,则称函数()y f x =在点0x 处右连续若函数()y f x =在(,)a b 内每点都连续,则称函数()y f x =在(,)a b 内连续 若函数()y f x =在(,)a b 内每点都连续,且lim ()()x a f x f a +→=,lim ()()x b f x f b -→=,则称函数()y f x =在[,]a b 上连续,记作()[,]f x C a b ∈(2)函数的间断点设()y f x =在点0x 的某去心邻域()oU x 内有定义 若函数()y f x =:(i )在点0x 处没有定义 (ii )虽然在0x 有定义但0lim x x →f (x )不存在(3)虽然在0x 有定义且0lim x x →f (x )存在但0lim x x →f (x )f (0x )则函数f (x )在点0x 为不连续 而点0x 称为函数f (x )的不连续点或间断点。

相关文档
最新文档