人教A版高中数学必修四课件《1.1.2弧度制(一)》

合集下载

高中数学 第一章 三角函数 1.1.2 弧度制课件 新人教A

高中数学 第一章 三角函数 1.1.2 弧度制课件 新人教A
(2)用角度制和弧度制来度量任一非零角,单位不 同,量数也不同。
角度与弧度间的换算
360 = 2rad 180 = rad
把角度换成弧度
1 = rad 0.01745rad
180
把弧度换成角度
1rad
=
180
57.30
=
5718'
例1 按照下列要求,把67°30′化成弧度。
解:∵
67o30
弧 度
0
64
3
2
2 3 5 346
பைடு நூலகம்
3 2
2
角 度
0 -30o -45o -60o -90o-120-o135-o150-o180o-270o-360o
弧 度
0
-
6
-
4
-
3
-
2
- 2
3
- 3
4
- 5
6
-
- 3
2
-2
终边相同的角的表示
(1)用角度表示 与终边相同的角可以表示为: k 360,k Z
=
135 2
o
∴ 67o30 = rad 135 = 3 rad
180 2 8
例2 把 4 rad化成度. 5
解: 4 rad = 4 180 = 144
5
5
角度制与弧度制互化时要抓住 180 =
弧度这个关键.
特殊角的弧度数
角 度
0 30 45 60 90 120135150180270 360
2k,k Z
它们构成一个集合:
S = | = k 360 , k Z
(2)用弧度表示
与终边相同的角可以表示为:

2019-2020学年人教A版必修4 1.1.2 弧度制 课件(18张)

2019-2020学年人教A版必修4 1.1.2 弧度制 课件(18张)
数学 必修4 A
(2)因为△AOB 是边长为 r 的正三角形, 所以 S△AOB= 43r2, S 扇形 OAB=12|α|r2=12×π3×r2=π6r2, 所以 S 弓形=S 扇形 OAB-S△AOB=π6r2- 43r2 =π6- 43r2.
第一章 三角函数
数学 必修4 A
谢谢观看!
数学 必修4 A
第一章 三角函数
解析:选 D 由角度制和弧度制的定义,知 A,B,C 说法 正确.用弧度制度量角时,角的大小与圆的半径无关,故 D 说 法错误.故选 D.
数学 必修4 A
第一章 三角函数
2.(2019·山东青岛二中高一期中)-265π 是( )
A.第一象限角
B.第二象限角
C.第三象限角
D.58π rad=115°
解析:选 D
5 8π
rad=58π×1π80°=112.5°.故选
D.
数学 必修4 A
第一章 三角函数
4.把 67°3Biblioteka ′化成弧度为( 3πA. 8 17π
C. 45
) B.π4 D.6178π0
解析:选 A ∵67°30′=1235°,∴67°30′=1π80 rad×1235 =38π rad,故选 A.
θθ=2kπ+π3,k∈Z
.
数学 必修4 A
第一章 三角函数
(2)令-4π<2kπ+π3<2π(k∈Z), 则有-163<k<56. 又 k∈Z,∴k=-2,-1,0. 故在(-4π,2π)内与 α 终边相同的角是-113π,-53π,π3.
数学 必修4 A
第一章 三角函数
(3)若角 β 与 α 终边相同,则 β=2kπ+π3(k∈Z), ∴β2=kπ+π6(k∈Z). 当 k 为偶数时,角β2为第一象限角; 当 k 为奇数时,角β2为第三象限角. ∴角β2是第一、三象限的角.

高中人教a版数学必修4:第2课时 弧度制 word版含解析

高中人教a版数学必修4:第2课时 弧度制 word版含解析

第2课时 弧度制1.2.理解弧度制的定义,能够对弧度和角度进行正确的换算.1.我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,即用弧度制度量时,这样的圆心角等于1 rad.2.弧长计算公式:l =|α|·r (α是圆心角的弧度数);扇形面积公式S =12l ·r 或S =12|α|·r 2(α是弧度数且0<α<2π).3一、选择题 1.-315°化为弧度是( )A .-43πB .-5π3C .-7π4D .-76π答案:C解析:-315°×π180=-7π42.在半径为2 cm 的圆中,有一条弧长为π3cm ,它所对的圆心角为( )A.π6B.π3C.π2D.2π3 答案:A解析:设圆心角为θ,则θ=π32=π6.3.与角-π6终边相同的角是( )A.5π6B.π3C.11π6D.2π3 答案:C解析:与角-π6终边相同的角的集合为αα=-π6+2k π,k ∈Z ,当k =1时,α=-π6+2π=11π6,故选C. 4.下列叙述中正确的是( )A .1弧度是1度的圆心角所对的弧B .1弧度是长度为半径的弧C .1弧度是1度的弧与1度的角之和D .1弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 答案:D解析:由弧度的定义,知D 正确.5.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 为( ) A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π}∪{α|0≤α≤π} 答案:D解析:求出集合A 在[-4,4]附近区域内的x 的数值,k =0时,0≤x ≤π;k =1时,4<2π≤x ≤3π;在k =-1时,-2π≤x ≤-π,而-2π<-4,-π>-4,从而求出A ∩B .6.下列终边相同的一组角是( )A .k π+π2与k ·90°,(k ∈Z )B .(2k +1)π与(4k ±1)π,(k ∈Z )C .k π+π6与2k π±π6,(k ∈Z )D.k π3与k π+π3,(k ∈Z ) 答案:B解析:(2k +1)π与(4k ±1)π,k ∈Z ,都表示π的奇数倍. 二、填空题7.在半径为2的圆中,弧长为4的弧所对的圆心角的大小是________rad. 答案:2解析:根据弧度制的定义,知所求圆心角的大小为42=2 rad.8.设集合M =⎩⎨⎧⎭⎬⎫αα=k π2-π3,k ∈Z ,N ={α|-π<α<π},则M ∩N =________.答案:⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π解析:由-π<k π2-π3<π,得-43<k <83.∵k ∈Z ,∴k =-1,0,1,2,∴M ∩N =⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π.9.时钟从6时50分走到10时40分,这时分针旋转了________弧度.答案:-23π3解析:时钟共走了3小时50分钟,分针旋转了-⎝⎛⎭⎫3×2π+56·2π=-23π3三、解答题10.一条铁路在转弯处成圆弧形,圆弧的半径为2 km ,一列火车以30 km/h 的速度通过,求火车经过10 s 后转过的弧度数.解:∵圆弧半径R =2 km =2 000 m ,火车速度v =30 km/h =253m/s ,∴经过10 s 后火车转过的弧长l=253×10=2503(m),∴火车经过10 s 后转过的弧度数|α|=l R =25032 000=124.11.已知角α=2010°.(1)将α改写成θ+2k π(k ∈Z,0≤θ<2π)的形式,并指出α是第几象限角; (2)在区间[-5π,0)上找出与α终边相同的角; (3)在区间[0,5π)上找出与α终边相同的角.解:(1)2 010°=2 010×π180=67π6=5×2π+7π6.又π<7π6<3π2,角α与角7π6的终边相同,故α是第三象限角.(2)与α终边相同的角可以写为r =7π6+2k π(k ∈Z ).又-5π≤r <0,∴k =-3,-2,-1.∴与α终边相同的角为-296π,-176π,-56π.(3)令0≤r =76π+2k π<5π,∴k =0,1,∴与α终边相同的角为76π,196π.能力提升12.如下图所示,在某机械装置中,小正六边形沿着大正六边形的边顺时针方向滚动,小正六边形的边长是大正六边形边长的一半.如果小正六边形沿着大正六边形的边滚动一周后返回出发时的位置,在这个过程中,射线OA 围绕点O 旋转了θ角,其中O 为小正六边形的中心,则θ等于( )A .-4πB .-6πC .-8πD .-10π 答案:B解析:小正六边形沿着大正六边形滚动一条边并且到下一条边上时,射线OA 旋转了π3+2π3=π,则小正六边形沿着大正六边形的边滚动一周后返回出发时的位置时,共旋转了π×6=6π.又射线OA 按顺时针方向旋转,则θ=-6π,故选B.13.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =m π+π6,m ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =n π2-π3,n ∈Z , P =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π2+π6,k ∈Z ,试确定M 、N 、P 之间满足的关系.解:解法一:集合M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6,m ∈Z ; N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =n π2-π3,n ∈Z =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =2m π2-π3或x =2m +12π-π3,m ∈Z=⎩⎨⎧ x ⎪⎪⎭⎬⎫x =m π-π3或x =m π+π6,m ∈Z ; P =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k π2+π6,k ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =2m 2π+π6或x =2m -12π+π6,m ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6或x =m π-π3,m ∈Z . 所以M N =P .解法二:M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6,m ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =6m +16π,m ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =3·(2m )+16π,m ∈Z ;N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =n π2-π3,n ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =3n -26π,n ∈Z ;P =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k π2+π6,k ∈Z =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =3k +16π,k ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =3n -26π,n ∈Z =N .所以M ⊆N =P .。

2018-2019学年人教A版必修四第1章第2课时弧度制(一)课件(27张)

2018-2019学年人教A版必修四第1章第2课时弧度制(一)课件(27张)

【思路分析】涉及角度与弧度的互化关系和终边相同的角
的概念,其基本公式180°=π弧度在解题中起关键作用.
570 19 【规范解答】(1)∵-570° =-180π=- 6 π, 5π ∴α1= 6 +(-2)·2π,∴α1 在第二象限. π 同理,α2=6+2·2π,∴α2 在第一象限.
3 3 (2)∵5π=5· 180° =108° ,设 θ=108° + k· 360° (k∈Z),则由 23 3 -720° ≤θ<0° ,得-720° ≤108° + k· 360° <0° ,∴-10≤k<-10. 又 k∈Z,k=-2 或 k=-1. 当 k=-2 时,θ=-612° ;当 k=-1 时,θ=-252° . ∴在- 720° ~ 0° 之间与 β1 有相同终边的角是- 612° 和- 252° . 同理,β2=-780° =-60° +(-2)· 360° ,在-720° ~0° 之间 与 β2 有相同终边的角是-420° 和-60° .
3.角度与弧度的换算 π (1)将角度化为弧度:360° =2π rad;180° =π rad;1° =180 rad≈0.017 453 rad. (2)将弧度化为角度: 2π rad=360° ;π rad=180° ;1 rad≈57.3° =57° 18′.
4.特殊角的弧度数
度 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360° 弧 度 0 π 6 π 4 π 3 π 2 2π 3 3π 4 5π 6 π 3π 2 2π
当 α 用弧度制表示时,与 α 终边相同的角 β
的集合为 {β|β = 2kπ + α , k∈Z} ,特别注意: 2kπ , α 都是弧度 制的表示.

高中数学必修4公开课教案1.1.2 弧度制

高中数学必修4公开课教案1.1.2  弧度制

1.1.2 弧度制 整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的3601,记作1°. 通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点. 三维目标1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣. 重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算. 教学难点:弧度的概念及其与角度的关系. 课时安排 1课时教学过程导入新课思路1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器——日晷,或者利用普遍使用的钟表.实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法——弧度制.要使学生真正了解弧度制,首先要弄清1弧度的含义,并能进行弧度与角度换算的关键.在引入弧度制后,可以引导学生建立弧与圆心角的联系——弧的度数等于圆心角的度数.随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应的,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角与弧的度数有正数、0、负数.圆心角和弧的正负实际上表示了“角的不同方向”,就像三角函数值的正负可以用三角函数线(有向线段)的方向来表示一样.每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反之亦然.推进新课 新知探究 提出问题问题①:在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?问题②:我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同单位制呢?图1活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,提出这是认识弧度制的关键,为更好地理解角度弧度的关系奠定基础.讨论后教师提问学生,并对回答好的学生及时表扬,对回答不准确的学生提示引导考虑问题的关键.教师板书弧度制的定义:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度为单位来度量角的制度叫做弧度制;在弧度制下,1弧度记作1 rad.如图1中,的长等于半径r,AB 所对的圆心角∠AOB 就是1弧度的角,即rl =1. 讨论结果: ①1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关. ②能,用弧度制. 提出问题问题①:作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连结圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系?问题②:如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算?活动:教师引导学生学会总结和归纳角度制和弧度制的关系,提问学生归纳的情况,让学生找出区别和联系.教师给予补充和提示,对表现好的学生进行表扬,对回答不准确的学生提示和鼓励.引入弧度之后,应与角度进行对比,使学生明确:第一,弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;第二,1弧度是等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的3601;第三,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值.教师要强调为了让学生习惯使用弧度制,本教科书在后续的内容中尽量采用弧度制.讨论结果:①完全重合,因为都是1弧度的角. ②α=r 1;将角度化为弧度:360°=2π rad,1°=180πrad≈0.017 45 rad,将弧度化为角度:2π rad=360°,1 rad=(π180)°≈57.30°=57°18′.弧度制与角度制的换算公式:设一个角的弧度数为αrad=(πa180)°,n°=n180π(rad). 提出问题问题①:引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示?的长OB 旋转的方向 ∠AOB 的弧度数∠AOB 的度数πr逆时针方向 2πr 逆时针方向R 1 2r -2 -π 0 180°360°一些特殊角填表,然后概括出一般情况.教师让学生互动起来,讨论并总结出规律,提问学生的总结情况,让学生板书,教师对做正确的学生给予表扬,对没有总结完全的学生进行简单的提示.检查完毕后,教师做个总结.由上表可知,如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数的绝对值是a1这里,应当注意从数学思想的高度引导学生认识“换算”问题,即角度制、弧度制都是角的度量制,那么它们一定可以换算.推而广之,同一个数学对象用不同方式表示时,它们之间一定有内在联系,认识这种联系性也是数学研究的重要内容之一.教师给学生指出,角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.值得注意的是:今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k·360°+3π或者2kπ+60°一类的写法.在弧度制中,与角α终边相同的角,连同角α在内,可以写成β=α+2kπ(k ∈Z )的形式.如图2为角的集合与实数集R 之间的一一对应关系.图2讨论结果:①与角α终边相同的角,连同角α在内,可以写成β=α+2kπ(k ∈Z )的形式.弧度制下关于扇形的公式为l=αR,S=21αR 2,S=21lR. ②的长 OB 旋转的方向 ∠AOB 的弧度数∠AOB 的度数πr 逆时针方向 Π 180° 2πr 逆时针方向 2π 360° R 逆时针方向 1 57.3° 2r 顺时针方向 -2 -114.6° πr 顺时针方向 -π -180° 0 未旋转 0 0° πr 逆时针方向 Π 180° 2πr逆时针方向2π360°应用示例例1 下列诸命题中,真命题是( ) A.一弧度是一度的圆心角所对的弧 B.一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D.一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位活动:本例目的是让学生在教师的指导下理解弧度制与角度制的联系与区别,以达到熟练掌握定义.从实际教学上看,弧度制不难理解,学生结合角度制很容易记住.根据弧度制的定义:我们把长度等于半径长的弧和所对的圆心角叫做一弧度的角.对照各项,可知D 为真命题. 答案:D点评:本题考查弧度制下角的度量单位:1弧度的概念. 变式训练下列四个命题中,不正确的一个是( ) A.半圆所对的圆心角是π rad B.周角的大小是2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度 答案:D例 2 将下列用弧度制表示的角化为2kπ+α(k ∈Z ,α∈[0,2π))的形式,并指出它们所在的象限:①-415π;②332π;③-20;④-32. 活动:本题的目的是让学生理解什么是终边相同的角,教师给予指导并讨论归纳出一般规律.即终边在x 轴、y 轴上的角的集合分别是:{β|β=kπ,k ∈Z },{β|β2π=kπ,k ∈Z }.第一、二、三、四象限角的集合分别为: {β|2kπ<β<2kπ+2π,k ∈Z }, {β|2kπ+2π<β<2kπ+π,k ∈Z }, {β|2kπ+π<β<2kπ+23π,k ∈Z },{β|2kπ+23π<β<2kπ+2π,k ∈Z }.解:①415π-=-4π+4π,是第一象限角. ②432π=10π+32π,是第二象限角.③-20=-3×6.28-1.16,是第四象限角. ④-23≈-3.464,是第二象限角.点评:在这类题中对于含有π的弧度数表示的角,我们先将它化为2kπ+α(k ∈Z ,α∈[0,2π))的形式,再根据α角终边所在的位置进行判断,对于不含有π的弧度数表示的角,取π=3.14,化为k×6.28+α,k ∈Z ,|α|∈[0,6.28)的形式,通过α与2π,π,23π比较大小,估计出角所在的象限.变式训练(1)把-1 480°写成2kπ+α(k ∈Z ,α∈[0,2π))的形式; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β.解:(1)∵-1 480°=-974π=-10π+916π,0≤916π<2π, ∴-1 480°=2(-5)π+916π.(2)∵β与α终边相同,∴β=2kπ+916π,k ∈Z .又∵β∈[-4π,0),∴β1=92π-,β2=920π-.例3 已知0<θ<2π,且θ与7θ相同,求θ.活动:本例目的是让学生在教师的指导下会用弧度制求终边相同的角,并通过独立完成课后练习真正领悟弧度制的要领,最终达到熟练掌握.从实际教学来看,用弧度制解决角的问题要很容易却难掌握,很有可能记错或者混淆或者化简错误,学生需多做些这方面的题来练基本功.可先让学生多做相应的随堂练习,在黑板上当场演练,教师给予批改指导,对易出错的地方特别强调.对学生出现的种种失误,教师不要着急,在学生的练习操作中一一纠正,这对以后学习大有好处.解:由已知,得7θ=2kπ+θ,k ∈Z ,即6θ=2kπ.∴θ=3k π. 又∵0<θ<2π,∴0<3kπ<2π. ∵k ∈Z ,当k=1、2、3、4、5时,θ=3π、32π、π、34π、35π.点评:本题是在一定的约束条件下,求与角α终边相同的角,一般地,首先将这样的角表示为2kπ+α(k ∈Z ,α∈[0,2π))的形式,然后在约束条件下确定k 的值,进而求适合条件的角. 例4 已知一个扇形的周长为a,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值. 活动:这是一道应用题,并且考查了函数思想,教师提示学生回顾一下用函数法求最值的思路与步骤,教师提问学生对已学知识的掌握和巩固,并对回答好的学生进行表扬,对回答不全面的学生给予一定的提示和鼓励.教师补充,函数法求最值所包括的五个基本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值. 解:设扇形的弧长为l,半径为r,圆心角为α,面积为S.由已知,2r+l=a,即l=a-2r.∴S=21l·r=21(a-2r)·r=-r 2+2a r=-(r-4a)2+162a .∵r>0,l=a-2r>0,∴0<r<2a. ∴当r=4a时,S max =162a .此时,l=a-2·4a =2a ,∴α=r1=2. 故当扇形的圆心角为2 rad 时,扇形的面积取最大值162a .点评:这是一个最大值问题,可用函数法求解,即将扇形的面积S 表示成某个变量的函数,然后求这个函数的最大值及相应的圆心角. 变式训练已知一个扇形的周长为98π+4,圆心角为80°,求这个扇形的面积. 解:设扇形的半径为r,面积为S,由已知知道,扇形的圆心角为80×180π=94π, ∴扇形的弧长为94πr,由已知,94πr+2r=98π+4,∴r=2.∴S=21·94πr 2=98π.故扇形的面积为98π.点评:求扇形的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.相反,也可由扇形的面积结合其他条件,求扇形的圆心角、半径、弧长.解题时要注意公式的灵活变形及方程思想的运用. 知能训练课本本节练习. 解答:1.(1)8π;(2)67m -;(3)320m .点评:能进行角度与弧度的换算.2.(1)15°;(2)-240°;(3)54°.点评:能进行弧度与角度的换算. 3.(1){α|α=kπ,k ∈Z };(2){α|α=2π+kπ,k ∈Z }. 点评:用弧度制表示终边分别在x 轴和y 轴上的角的集合. 4.(1)cos0.75°>cos0.75;(2)tan1.2°<tan1.2.点评:体会同数值不同单位的角对应的三角函数值可能不同,并进一步认识两种单位制.注意在用计算器求三角函数值之前,要先对计算器中角的模式进行设置.如求cos0.75°之前,要将角模式设置为DEG(角度制);求cos0.75之前,要将角模式设置为RAD(弧度制). 5.3πm.点评:通过分别运用角度制和弧度制下的弧长公式,体会引入弧度制的必要性.6.弧度数为1.2.点评:进一步认识弧度数的绝对值公式.课堂小结由学生总结弧度制的定义,角度与弧度的换算公式与方法.教师强调角度制与弧度制是度量角的两种不同的单位制,它们是互相联系的,辩证统一的;角度与弧度的换算,关键要理解并牢记180°=π rad这一关系式,由此可以很方便地进行角度与弧度的换算;三个注意的问题,同学们要切记;特殊角的弧度数,同学们要熟记.重要的一点是,同学们自己找到了角的集合与实数集R的一一对应关系,对弧度制下的弧长公式、扇形面积公式有了深刻的理解,要把这两个公式记下来,并在解决实际问题中灵活运用,表扬学生能总结出引入弧度制的好处,这种不断总结,不断归纳,梳理知识,编织知识的网络,特别是同学们善于联想、积极探索的学习品质,会使我们终生受用,这样持之以恒地坚持下去,你会发现数学王国的许多宝藏,以服务于社会,造福于人类.作业①课本习题1.1 A组6、8、10.②课后探究训练:课本习题1.1 B组题.设计感想本节课的设计思想是:在学生的探究活动中通过类比引入弧度制这个概念并突破这个难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么以后有些题怎么做就怎么难受.通过探究让学生明确知识依附于问题而存在,方法为解决问题的需要而产生.将弧度制的概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更宽的广度.本节设计的特点是由特殊到一般、由易到难,这符合学生的认知规律;让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启迪.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续总结归纳用弧度来计量角的好处并为后续三角函数的学习奠定基础.根据本节特点可考虑分层推进、照顾全体.对优等生,重在引导他们变式思维的训练,培养他们求同思维、求异思维的能力,以及思维的灵活性、深刻性与创造性.鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.。

江苏省启东市高中数学 第一章 三角函数 1.1.2 弧度制讲义 新人教A版必修4

江苏省启东市高中数学 第一章 三角函数 1.1.2 弧度制讲义 新人教A版必修4

2、例题: (1)把 67 30化为弧度;
(2)把 3 化为角度;
5
(3)把下列特殊角化为弧度 数
度 00 3 0 0 4 5 0 6 0 0 9 0 0 1 2 0 0 1 3 5 0 1 5 0 0 1 8 0 0 2700 360 0
弧 度
0 6
43
2
2 3 5 3 2
0 x
5 4
练习 P10 1~6
五、作业 P10习题
4、6、7、8
r
1、角度制与弧度制:一一对应: 正角
2、求弧长: l
零角
R
负角
正实数 零
负实数
3、求扇形的面积:
1
S扇

2
lห้องสมุดไป่ตู้

r

S扇S圆 2
r2 1r2 1lr
2 2
2
1、系 :
360 2 rad 180 rad
1 rad0.017r4a5d 1rad118800 57.30 5718
346
2
1、1) ( 把 14写 80成 2k( kZ)的形0 式 ,
(2)若 4, 0,且 与1) (中 的终边相 . 同
2、(1)第三象限角的集合? 为
4是第象限角?
3 4
y
(2)终边落在如图阴分影(部包括
边界)的角的集合是 ?
【新授】
初中 角的度量
角度制
高中 弧度制
r
r
弧度制
r
l R
| | l
r
正负
R
其中:1、l是以角作为圆心角时所对弧长的,r是半径;
2、正角的弧度数是一正个数,负角的弧度数是 一个负数,零角的弧数度是0;

高中数学 1-1-2弧度制和弧度制与角度制的换算课件 新人教B版必修4


(2010·新余市高一下学期期末测试)在单位圆中,面积
为1的扇形所对圆心角的弧度数为
()
A.1
B.2
C.3
D.4
[答案] B
[解析] 设扇形的弧长为l,由题意,
得 S=12lR=12l×1=1,∴l=2,
∴扇形所对圆心角的弧度数为Rl =21=2.
[例4] 已知扇形的周长为20cm,当扇形的圆心角为多 大时,它有最大面积?
[分析] 设扇形的半径是 r,弧长是 l,则扇形面积可 表示为 S=12lr,l 与 r 之间还要满足周长为 20,即 l+2r= 20,所以 l=20-2r,这样 S 就能表示成关于 r 的二次函数, 再利用二次函数的性质求最值即可.
[解析] 设扇形的半径是 r,弧长是 l,由已知条件可 知:l+2r=20,即 l=20-2r.由 0<l<2πr,得 0<20-2r<2πr, ∴π1+01<r<10.
[点评] 用弧度表示的与角α终边相同的角的一般形式 为:β=2kπ+α(k∈Z).这些角所组成的集合为{β|β=2kπ+ α,k∈Z}.
用弧度制分别写出第一、二、三、四象限角的集合. [解析] 第一象限角的集合:
S1=α2kπ<α<π2+2kπ,k∈Z

第二象限角的集合:
S2=απ2+2kπ<α<π+2kπ,k∈Z
rad≈0.01745rad,
1rad= (18π0)°≈57.3°=57°18′.
3.在弧度制下,弧长公式为 l=θr,扇形面积公式为
S=
1 2lr .
重点:弧度的概念,角度与弧度的换算,弧长公式. 难点:弧度概念的理解及角度与弧度的换算和弧度制 下弧长与扇形面积公式. 1.关于弧度的理解,主要明确以下几点: (1)和角度制对比,弧度制是以“弧度”为单位来度量 角的单位制,而角度制是以“度”为单位来度量角的单位 制. (2)根据圆心角定义,对于任何一个圆心角α,所对弧 长与半径的比是一个仅与角α的大小有关的常数.因此,弧 长等于半径的弧所对的圆心角的大小并不随半径变化而变 化,而是一个大小确定的角,可以取为度量角的标准.

高一数学必修4课件:1-1-2弧度制


第一章
1.1 1.1.2
成才之路 ·数学 ·人教A版 · 必修4
3π 3 (2)β1= 5 =5×180° =108° ,设 θ=k· +β1(k∈Z), 360° 由-720° ≤θ<0° ,得-720° 360° ≤k· +108° , <0° ∴k=-2 或-1, ∴-720° ~0° 之间与 β1 有相同终边的角是:-612° 和- π 252° 2=- =-60° ,β , 3 设 γ=k· -60° 360° (k∈Z),则由-720° 360° ≤k· -60° , <0° 从而 k=-1 或 k=0,因此在-720° ~0° 之间与 β2 有相同终边 的另一个角为-420° .
成才之路· 数学
人教A版 ·必修4
路漫漫其修远兮 吾将上下而求索
成才之路 ·数学 ·人教A版 · 必修4
第一章
三角函数
第一章 三角函数
成才之路 ·数学 ·人教A版 · 必修4
第一章
1.1 任意角和弧度制
第一章 三角函数
成才之路 ·数学 ·人教A版 · 必修4
第一章
1.1.2 弧度制
第一章 三角函数
第一章
1.1 1.1.2
成才之路 ·数学 ·人教A版 · 必修4
下列表述中正确的是(
)
A.一弧度是一度的圆心角所对的弧 B.一弧度是长度为半径的弧 C.一弧度是一度的弧与一度的角之和 D.一弧度是长度等于半径长的弧所对的圆心角的大小, 它是角的一种度量单位
[答案] D
第一章
1.1 1.1.2
成才之路 ·数学 ·人教A版 · 必修4
第一章
1.1 1.1.2
成才之路 ·数学 ·人教A版 · 必修4

高中数学必修四 第1章 三角函数课件 1.1.2 弧度制

高中数学 必修四
第一章 三角函数
1.1.2 弧度制
【教学目标】 1.了解角的另外一种度量方法——弧度制. 2.能进行弧度与角度的互化. 3.掌握弧度制中扇形的弧长公式和面积公式. 【重难点】 1.对弧度制概念的理解.(难点) 2.弧度制与角度制的互化.(重点、易错点)
新知导学
1.度量角的单位制 (1)角度制 用度作为单位来度量角的单位制叫做角度制,规定 1 度的角等 1 于周角的 360 . (2)弧度制 ①弧度制的定义
[思路探索] 本题主要考查角度与弧度的换算,直接套用角度与 弧度的换算公式,即度数×1π80=弧度数,弧度数×1π80°=度 数.
解 (1)20°=2108π0=π9. (2)-15°=-11850π=-1π2. (3)71π2=172×180°=105°. (4)-115π=-151×180°=-396°.

α2kπ+π2<α<2kπ+π,k∈Z


α2kπ+π<α<2kπ+32π,k∈2π<α<2kπ+2π,k∈Z

类型一 角度制与弧度制的换算 【例 1】 将下列角度与弧度进行互化.
(1)20°;(2)-15°;(3)71π2;(4)-115π.
解 (1)-1 500°=-1 500×1π80=-253π=-10π+53π. ∵53π是第四象限角,∴-1 500°是第四角限角. (2)∵25π=25×180°=72°,∴终边与角25π相同的角为 θ=72°+ k·360°(k∈Z),当 k=0 时,θ=72°;当 k=1 时,θ=432°, ∴在 0°~720°范围内,与25π角终边相同的角为 72°,432°. [规律方法] 用弧度制表示终边相同的角 2kπ+α(k∈Z)时,其 中 2kπ 是 π 的偶数倍,而不是整数倍,还要注意角度制与弧度 制不能混用.

人教版高中数学必修四弧度制和弧度制与角度制的换算公开课教学课件共18张PPT


当堂检测(限时5分钟,满分10分)
2、
-144o
3、-25º 4、 所求扇形的中心角的弧度数为
小结
圆周角度360

算 等价
六十进制 区别
十进制
圆周弧度2
角度制
弧度制
角的度量
三角函数
温故而知新
1、角度制:初中时我们用角度制度量角,1度的角 等于周角的1/360。
周角的 1/360

n° l R
1弧度的概念
如图,把长度等于半径长的圆弧所对的圆心角叫做 1弧度的角,记作1rad,读作1弧度.
探究1:深化弧度的概念
思考1:1弧度圆心角的大小与所在圆的半径的大小 是否有关?为什么?
B’ B l=R
1弧度
1弧度l=r O r R A A’
思考2:如果将半径为r圆的一条半径OA,绕圆心旋转 到OB,若弧AB长为2r,那么∠AOB的大小为多少弧度?
2rad
2r
B
r
A O
思考3:如果半径为r的圆的圆心角α所对的弧长为l, 那么,角α的弧度数的绝对值如何计算?
探究2:角度与弧度的换算
解的?
正角
正实数
零角

十进制
负角
负实数
探究3:与扇形有关的公式
思考1:角度制下,扇形的圆心角是n°,则扇形的面积是?
思考2:类比思考1,在弧度制下,若扇形的圆心角是 弧 度,则扇形的面积是?还有其它的表示方法么?
A
r
OS l B
例题讲解
例1 把
解:∵ ∴
化成弧度。
例2 把 化成度。
解:∵ 1rad=
人教版高中数学必修四 弧度制和弧度制与角度 制的换算公开课教学课
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r ③正角的弧度数是一个正数.
④负角的弧度数是一个负数.
⑤零角的弧度数是零.
⑥角的弧度数的绝对值||=
l r
.
角度与弧度之间的转换 ①将角度化为弧度:
角度与弧度之间的转换 ①将角度化为弧度:
角度与弧度之间的转换 ①将角度化为弧度:
角度与弧度之间的转换 ①将角度化为弧度:
角度与弧度之间的转换 ①将角度化为弧度:
角 度
0o
30o
45o
60o
90o 120o
弧 度
0

6

4

3
2
23
角 度
135o
150o
180o
270o
360o
弧 3
度4
特殊角的弧度
角 度
0o
30o
45o
60o
90o 120o
弧 度
0

6

4

3
2
23
角 度
135o
150o
180o
270o
360o
弧 3 5
度4 6
特殊角的弧度
思考:
1.一定大小的圆心角所对应的弧长与
半径的比值是否是确定的?与圆的半径 大小有关吗?
思考:
1.一定大小的圆心角所对应的弧长与
半径的比值是否是确定的?与圆的半径 大小有关吗?
2.阅读教材P.6,完成探究.
弧度制的性质
弧度制的性质
①半圆所对的圆心角为 r .
r
弧度制的性质
①半圆所对的圆心角为 r .
角 度
0o
30o
45o
60o
90o 120o
弧 度
0

6

4

3
2
23
角 度
135o
150o
180o
270o
360o
弧 3 5
度4 6

特殊角的弧度
角 度
0o
30o
45o
60o
90o 120o
弧 度
0

6

4

3
2
23
角 度
135o
150o
180o
270o
360o
弧 3 5
度4 6
④负角的弧度数是一个负数.
弧度制的性质
①半圆所对的圆心角为 r .
r
②整圆所对的圆心角为 2 r 2 .
r ③正角的Zx.xk弧度数是一个正数.
④负角的弧度数是一个负数.
⑤零角的弧度数是零.
弧度制的性质
①半圆所对的圆心角为 r .
r
②整圆所对的圆心角为 2 r 2 .
360o
弧 度
特殊角的弧度
角 度
0o
30o
45o
60o
90o 120o
弧 度
0

6

4

3

2
角 度
135o
150o
180o
270o
360o
弧 度
特殊角的弧度
角 度
0o
30o
45o
60o
90o 120o
弧 度
0

6

4

3
2
23
角 度
135o
150o
180o
270o
360o
弧 度
特殊角的弧度
n
180
角度与弧度之间的转换 ②将弧度化为角度:
角度与弧度之间的转换 ②将弧度化为角度:
角度与弧度之间的转换 ②将弧度化为角度:
角度与弧度之间的转换 ②将弧度化为角度:
角度与弧度之间的转换 ②将弧度化为角度:
180 n

常规写法 ①用弧度数表示角时,常常把弧度数
写成多少的形式,不必写成小数.

3
2
特殊角的弧度
角 度
0o
30o
45o
60o
90o 120o
弧 度
0

6

4

3
2
23
角 度
135o
150o
180o
270o
360o
弧 3 5
度4 6

3 2
2
弧长公式
l l r
r
弧长等于弧所对应的圆心角(的弧度 数)的绝对值与半径的积.
例1.把67o30'化成弧度.
象限.
例6.利 用 弧 度 制 证 明 扇 形 面积 公 式
S 1 lR, 其中l是扇形弧长, R是圆 2
的 半 径.
课堂小结
1.什么叫1弧度角? 2.任意角的弧度的定义. 3.“角度制”与“弧度制”的联系与区别.
课后作业
1.阅读教材P.6-P.8; 2.教材P.9练习第1、2、3、6题; 3.教材P.10习题1.1A组第7、8题 B组第2、3题.
讲授新课
弧度制定义 我们规定,长度等于半径的弧所 对的圆心角叫做1弧度的角度制定义 我们规定,长度等于半径的弧所
对的圆心角叫做1弧度的角; 用弧度来度量角的单位制叫做弧
Z.x.x.K
度制.
在弧度制下,1弧度记做1rad.
讲授新课
弧度制定义 我们规定,长度等于半径的弧所 对的圆心角叫做1弧度的角; 用弧度来度量角的单位制叫做弧 度制. 在弧度制下,1弧度记做1rad. 在实际运算中,常常将rad单位 省略.
高中数学课件
(金戈铁骑 整理制作)
1.1.2弧度制
复习引入
初中所学的角度制是怎样规定角 的度量的?
复习引入
初中所学的角度制是怎样规定角 的度量的?
规定把周角的作为1度316的0 角, 用度做单位来度量角的制度叫做角度 制.
讲授新课
弧度制定义
讲授新课
弧度制定义 我们规定,长度等于半径的弧所 对的圆心角叫做1弧度的角;
弧 度
0

6
角 度
135o
150o
180o
270o
360o
弧 度
特殊角的弧度
角 度
0o
30o
45o
60o
90o 120o
弧 度
0

6

4
角 度
135o
150o
180o
270o
360o
弧 度
特殊角的弧度
角 度
0o
30o
45o
60o
90o 120o
弧 度
0

6

4

3
角 度
135o
150o
180o
270o
r
②整圆所对的圆心角为 2 r 2 .
r
弧度制的性质
①半圆所对的圆心角为 r .
r
②整圆所对的圆心角为 2 r 2 .
r ③正角的弧度数是一个正数.
弧度制的性质
①半圆所对的圆心角为 r .
r
②整圆所对的圆心角为 2 r 2 .
r ③正角的弧度数是一个正数.
例1.把67o30'化成弧度. 例2.把化3 成r度ad.
5
例3.计算: (1)sin ; (2)tan1.5 .
4
例3.计算: (1)sin ; (2)tan1.5 .
4
例4.将下列各角化成0到2的角 加上2k(k∈Z)的形式:
(1) 19 ; (2) 315 .
3
例5.将下列各角化成2k+(k∈Z, 0≤<2)的形式,并确定其所在的
②弧度与角度不能混用.
特殊角的弧度
角 度
0o
30o
45o
60o
90o 120o
弧 度
角 度
135o
150o
180o
270o
360o
弧 度
特殊角的弧度
角 度
0o
30o
45o
60o
90o 120o
弧 度
0
角 度
135o
150o
180o
270o
360o
弧 度
特殊角的弧度
角 度
0o
30o
45o
60o
90o 120o
相关文档
最新文档