2017届高三复习简单的逻辑联结词、全称量词与存在量词
高三理科数学第一轮复习§1.3:简单的逻辑联结词、全称量词与存在量词

第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
解析
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
§1.3:简单的逻辑联结词、全称量词与存在量词
第一章:集合与常用逻辑用语
高三数学一轮复习优质学案:§1.3 简单的逻辑联结词、全称量词与存在量词

§1.3简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断2.全称量词和存在量词(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含一个量词的命题的否定知识拓展1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.(3)綈p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则綈q”,否命题是“若綈p,则綈q”.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.(√)(2)命题p和綈p不可能都是真命题.(√)(3)若命题p,q中至少有一个是真命题,则p∨q是真命题.(√)(4)“全等三角形的面积相等”是特称命题.(×)(5)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.(×)题组二教材改编2.『P18B组』已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为()A.1 B.2C.3 D.4答案 B解析p和q显然都是真命题,所以綈p,綈q都是假命题,p∨q,p∧q都是真命题.3.『P28T6(4)』命题“正方形都是矩形”的否定是____________________.答案存在一个正方形,这个正方形不是矩形题组三易错自纠4.已知命题p,q,“綈p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析由綈p为真知,p为假,可得p∧q为假;反之,若p∧q为假,则可能是p真q假,从而綈p为假,故“綈p为真”是“p∧q为假”的充分不必要条件,故选A. 5.(2017·贵阳调研)下列命题中的假命题是()A.∃x0∈R,lg x0=1 B.∃x0∈R,sin x0=0C.∀x∈R,x3>0 D.∀x∈R,2x>0答案 C解析当x=10时,lg 10=1,则A为真命题;当x=0时,sin 0=0,则B为真命题;当x<0时,x3<0,则C为假命题;由指数函数的性质知,∀x∈R,2x>0,则D为真命题.故选C.6.已知命题p:∀x∈R,x2-a≥0;命题p:∃x0∈R,x20+2ax0+2-a=0.若命题“p∧q”是真命题,则实数a的取值范围为__________.答案(-∞,-2』解析由已知条件可知p和q均为真命题,由命题p为真得a≤0,由命题q为真得Δ=4a2-4(2-a)≥0,即a≤-2或a≥1,所以a≤-2.题型一含有逻辑联结词的命题的真假判断1.(2018·济南调研)设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中的真命题是()A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∨(綈q)答案 A解析如图所示,若a=A1A→,b=AB→,c=B1B→,则a·c≠0,命题p为假命题;显然命题q为真命题,所以p∨q 为真命题.故选A.2.(2017·山东)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)答案 B解析∵x>0,∴x+1>1,∴ln(x+1)>ln 1=0.∴命题p为真命题,∴綈p为假命题.∵a>b,取a=1,b=-2,而12=1,(-2)2=4,此时a2<b2,∴命题q为假命题,∴綈q为真命题.∴p∧q为假命题,p∧(綈q)为真命题,(綈p)∧q为假命题,(綈p)∧(綈q)为假命题.故选B.3.已知命题p:若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q:在空间中,对于三条不同的直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a ∥c .对以上两个命题,有以下命题: ①p ∧q 为真;②p ∨q 为假;③p ∨q 为真;④(綈p )∨(綈q )为假. 其中,正确的是________.(填序号) 答案 ②解析 命题p 是假命题,这是因为α与γ也可能相交;命题q 也是假命题,这两条直线也可能异面,相交.思维升华 “p ∨q ”“p ∧q ”“綈p ”等形式命题真假的判断步骤 (1)确定命题的构成形式; (2)判断其中命题p 、q 的真假;(3)确定“p ∧q ”“p ∨q ”“綈p ”等形式命题的真假. 题型二 含有一个量词的命题命题点1 全称命题、特称命题的真假 典例 下列四个命题:p 1:∃x 0∈(0,+∞),0011()()23x x <; p 2:∃x 0∈(0,1),101023log log x x >;p 3:∀x ∈(0,+∞),⎝⎛⎭⎫12x>12log x ;p 4:∀x ∈⎝⎛⎭⎫0,13,⎝⎛⎭⎫12x <13log x . 其中真命题是( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 4答案 D解析 对于p 1,当x 0∈(0,+∞)时,总有0011()()23x x >成立,故p 1是假命题;对于p 2,当x 0=12时,有1=121log 2=131log 3>131log 2成立,故p 2是真命题;对于p 3,结合指数函数y =⎝⎛⎭⎫12x与对数函数y =12log x 在(0,+∞)上的图象,可以判断p 3是假命题;对于p 4,结合指数函数y =⎝⎛⎭⎫12x 与对数函数y =13log x 在⎝⎛⎭⎫0,13上的图象,可以判断p 4是真命题.命题点2 含一个量词的命题的否定典例 (1)命题“∀x ∈R ,⎝⎛⎭⎫13x>0”的否定是( ) A .∃x 0∈R ,01()3x <0 B .∀x ∈R ,⎝⎛⎭⎫13x≤0 C .∀x ∈R ,⎝⎛⎭⎫13x <0 D .∃x 0∈R ,01()3x ≤0答案 D解析 全称命题的否定是特称命题,“>”的否定是“≤”.(2)(2017·河北五个一名校联考)命题“∃x 0∈R ,1<f (x 0)≤2”的否定形式是( ) A .∀x ∈R ,1<f (x )≤2 B .∃x 0∈R ,1<f (x 0)≤2 C .∃x 0∈R ,f (x 0)≤1或f (x 0)>2 D .∀x ∈R ,f (x )≤1或f (x )>2 答案 D解析 特称命题的否定是全称命题,原命题的否定形式为“∀x ∈R ,f (x )≤1或f (x )>2”. 思维升华 (1)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立. (2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词; ②对原命题的结论进行否定.跟踪训练 (1)下列命题是假命题的是( ) A .∃α,β∈R ,使cos(α+β)=cos α+cos β B .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃x 0∈R ,使x 30+ax 20+bx 0+c =0(a ,b ,c ∈R 且为常数)D .∀a >0,函数f (x )=ln 2x +ln x -a 有零点 答案 B解析 取α=π2,β=-π4,cos(α+β)=cos α+cos β,A 正确;取φ=π2,函数f (x )=sin ⎝⎛⎭⎫2x +π2=cos 2x 是偶函数,B 错误; 对于三次函数y =f (x )=x 3+ax 2+bx +c ,当x →-∞时,y →-∞,当x →+∞时,y →+∞,又f (x )在R 上为连续函数,故∃x 0∈R ,使x 30+ax 20+bx 0+c =0,C 正确;当f (x )=0时,ln 2x +ln x -a =0,则有a =ln 2x +ln x =⎝⎛⎭⎫ln x +122-14≥-14,所以∀a >0,函数f (x )=ln 2x +ln x -a 有零点,D 正确,综上可知,选B.(2)(2017·福州质检)已知命题p :“∃x 0∈R ,0e x -x 0-1≤0”,则綈p 为( ) A .∃x 0∈R ,0e x -x 0-1≥0 B .∃x 0∈R ,0e x -x 0-1>0 C .∀x ∈R ,e x -x -1>0 D .∀x ∈R ,e x -x -1≥0 答案 C解析 根据全称命题与特称命题的否定关系,可得綈p 为“∀x ∈R ,e x -x -1>0”,故选C.题型三 含参命题中参数的取值范围典例 (1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在『3,+∞)上是增函数,若p ∧q 是真命题,则实数a 的取值范围是________________. 答案 『-12,-4』∪『4,+∞)解析 若命题p 是真命题,则Δ=a 2-16≥0, 即a ≤-4或a ≥4;若命题q 是真命题,则-a4≤3,即a ≥-12.∵p ∧q 是真命题,∴p ,q 均为真,∴a 的取值范围是『-12,-4』∪『4,+∞).(2)已知f (x )=ln(x 2+1),g (x )=⎝⎛⎭⎫12x-m ,若对∀x 1∈『0,3』,∃x 2∈『1,2』,使得f (x 1)≥g (x 2),则实数m 的取值范围是________________. 答案 ⎣⎡⎭⎫14,+∞ 解析 当x ∈『0,3』时,f (x )min =f (0)=0,当x ∈『1,2』时, g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.引申探究本例(2)中,若将“∃x 2∈『1,2』”改为“∀x 2∈『1,2』”,其他条件不变,则实数m 的取值范围是___________. 答案 ⎣⎡⎭⎫12,+∞解析 当x ∈『1,2』时,g (x )max =g (1)=12-m ,由f (x )min ≥g (x )max ,得0≥12-m ,∴m ≥12.思维升华 (1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练 (1)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( )A .(-∞,-1)B .(-1,3)C .(-3,+∞)D .(-3,1)答案 B解析 原命题的否定为∀x ∈R ,2x 2+(a -1)x +12>0,由题意知,其为真命题,即Δ=(a -1)2-4×2×12<0,则-2<a -1<2,即-1<a <3. (2)(2017·洛阳模拟)已知p :∀x ∈⎣⎡⎦⎤14,12,2x <m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点,若“p 且q ”为真命题,则实数m 的取值范围是__________.答案 ⎝⎛⎭⎫45,1解析 由2x <m (x 2+1),可得m >2x x 2+1, 又x ∈⎣⎡⎦⎤14,12时,⎝ ⎛⎭⎪⎫2x x 2+1max =45, 故当p 为真时,m >45; 函数f (x )=4x +2x +1+m -1=(2x +1)2+m -2,令f (x )=0,得2x =2-m -1,若f (x )存在零点, 则2-m -1>0,解得m <1, 故当q 为真时,m <1.若“p 且q ”为真命题,则实数m 的取值范围是⎝⎛⎭⎫45,1.常用逻辑用语考点分析 有关四种命题及其真假判断、充分必要条件的判断或求参数的取值范围、量词等问题几乎在每年高考中都会出现,多与函数、数列、立体几何、解析几何等知识相结合,难度中等偏下.解决这类问题应熟练把握各类知识的内在联系.一、命题的真假判断典例1 (1)(2017·佛山模拟)已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.(2)(2017·江西红色七校联考)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,则下列命题为真命题的是( )A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q ) 答案 B解析 因为3x >0,当m <0时,m -x 2<0,所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13, 所以f (f (-1))=f ⎝⎛⎭⎫13=19-⎝⎛⎭⎫132=0,所以命题q 为真命题,逐项检验可知,只有(綈p )∧q 为真命题,故选B.二、充要条件的判断典例2 (1)(2017·湖南五市十校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 若A =B =0,则S n =0,数列{a n }不是等比数列;若数列{a n }是等比数列,则由a 1=Aq+B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2及a 3a 2=a 2a 1,得A =-B ,故选B. (2)(2017·湖北七市联考)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r <3,q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|2=2.当r ∈(0,1)时,直线与圆相离,圆C 上没有到直线的距离为1的点;当r =1时,直线与圆相离,圆C 上只有1个点到直线的距离为1;当r ∈(1,2)时,直线与圆相离,圆C 上有2个点到直线的距离为1;当r =2时,直线与圆相切,圆C 上有2个点到直线的距离为1;当r ∈(2,3)时,直线与圆相交,圆C 上有2个点到直线的距离为1.综上,当r ∈(0,3)时,圆C 上至多有2个点到直线的距离为1,又由圆C 上至多有2个点到直线的距离为1,可得0<r <3,故p 是q 的充要条件,故选C.三、求参数的取值范围典例3 (1)已知命题p :∀x ∈『0,1』,a ≥e x ,命题q :∃x 0∈R ,x 20+4x 0+a =0,若命题“p ∧q ”是真命题,则实数a 的取值范围是__________.答案 『e,4』解析 命题“p ∧q ”是真命题,p 和q 均是真命题.当p 是真命题时,a ≥(e x )max =e ;当q 为真命题时,Δ=16-4a ≥0,a ≤4,所以a ∈『e,4』. (2)已知函数f (x )=x +4x,g (x )=2x +a ,若∀x 1∈⎣⎡⎦⎤12,3,∃x 2∈『2,3』使得f (x 1)≥g (x 2),则实数a 的取值范围是________.答案 (-∞,0』 解析 ∵x ∈⎣⎡⎦⎤12,3,∴f (x )≥2 x ·4x=4,当且仅当x =2时,f (x )min =4,当x ∈『2,3』时,g (x )min =22+a =4+a ,依题意知f (x )min ≥g (x )min ,即4≥a +4,∴a ≤0.。
高三数学一轮复习课时作业15:§1.3 简单的逻辑联结词、全称量词与存在量词

§1.3 简单的逻辑联结词、全称量词与存在量词1.已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .(綈p )∧(綈q ) C .(綈p )∧q D .p ∧(綈q )答案 D解析 因为指数函数的值域为(0,+∞),所以对任意x ∈R ,y =2x >0恒成立,故p 为真命题;因为当x >1时,x >2不一定成立,反之,当x >2时,一定有x >1成立,故“x >1”是“x >2”的必要不充分条件,故q 为假命题.则p ∧q ,綈p 为假命题,綈q 为真命题,(綈p )∧(綈q ),(綈p )∧q 为假命题,p ∧(綈q )为真命题,故选D.2.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( ) A .p 为真 B .綈q 为假 C .p ∧q 为假 D .p ∨q 为真答案 C解析 函数y =sin 2x 的最小正周期为2π2=π,故命题p 为假命题;x =π2不是y =cos x 的对称轴,故命题q 为假命题,故p ∧q 为假.故选C. 3.下列命题中为假命题的是( )A .∀x ∈⎝⎛⎭⎫0,π2,x >sin x B .∃x 0∈R ,sin x 0+cos x 0=2 C .∀x ∈R ,3x >0 D .∃x 0∈R ,lg x 0=0 答案 B解析 对于A ,令f (x )=x -sin x ,则f ′(x )=1-cos x ,当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0.从而f (x )在⎝⎛⎭⎫0,π2上是增函数,则f (x )>f (0)=0,即x >sin x ,故A 正确;对于B ,由sin x +cos x =2sin ⎝⎛⎭⎫x +π4≤2<2知,不存在x 0∈R ,使得sin x 0+cos x 0=2,故B 错误;对于C ,易知3x >0,故C 正确;对于D ,由lg 1=0知,D 正确.故选B.4.(2017·豫西五校联考)若定义域为R 的函数f (x )不是偶函数,则下列命题中一定为真命题的是( )A .∀x ∈R ,f (-x )≠f (x )B .∀x ∈R ,f (-x )=-f (x )C .∃x 0∈R ,f (-x 0)≠f (x 0)D .∃x 0∈R ,f (-x 0)=-f (x 0) 答案 C解析 由题意知∀x ∈R ,f (-x )=f (x )是假命题,则其否定为真命题,∃x 0∈R ,f (-x 0)≠f (x 0)是真命题,故选C.5.(2017·安庆二模)设命题p :∃x 0∈(0,+∞),x 0+1x 0>3;命题q :∀x ∈(2,+∞),x 2>2x ,则下列命题为真的是( ) A .p ∧(綈q ) B .(綈p )∧q C .p ∧q D .(綈p )∨q答案 A解析 对于命题p ,当x 0=4时,x 0+1x 0=174>3,故命题p 为真命题;对于命题q ,当x =4时,24=42=16,即∃x 0∈(2,+∞),使得02x =x 20成立,故命题q 为假命题,所以p ∧(綈q )为真命题,故选A.6.(2018届东莞外国语学校月考)已知命题p :∃x 0∈R ,cos x 0=54;命题q :∀x ∈R ,x 2-x+1>0.则下列结论正确的是( ) A .命题p ∧q 是真命题 B .命题p ∧(綈q )是真命题 C .命题(綈p )∧q 是真命题 D .命题(綈p )∨(綈q )是假命题 答案 C解析 因为对任意x ∈R ,都有cos x ≤1成立,而54>1,所以命题p :∃x 0∈R ,cos x 0=54是假命题;因为对任意的x ∈R ,x 2-x +1=⎝⎛⎭⎫x -122+34>0, 所以命题q :∀x ∈R ,x 2-x +1>0是真命题. 由此对照各个选项,可知命题(綈p )∧q 是真命题. 7.下列命题中,真命题是( ) A .∃x 0∈R ,0e x ≤0 B .∀x ∈R ,2x >x 2C .a +b =0的充要条件是ab=-1D .“a >1,b >1”是“ab >1”的充分条件 答案 D解析 因为y =e x >0,x ∈R 恒成立,所以A 不正确; 因为当x =-5时,2-5<(-5)2,所以B 不正确; “ab =-1”是“a +b =0”的充分不必要条件,C 不正确; 当a >1,b >1时,显然ab >1,D 正确.8.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4』B .『0,4』C .(-∞,0』∪『4,+∞)D .(-∞,0)∪(4,+∞)答案 D解析 因为命题p :∀x ∈R ,ax 2+ax +1≥0, 所以綈p :∃x 0∈R ,ax 20+ax 0+1<0,则a <0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a >0,解得a <0或a >4.9.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为____________________. 答案 ∃x 0∈(0,+∞),x 0≤x 0+1解析 因为p 是綈p 的否定,所以只需将全称命题变为特称命题,再对结论否定即可. 10.已知函数f (x )的定义域为(a ,b ),若“∃x 0∈(a ,b ),f (x 0)+f (-x 0)≠0”是假命题,则f (a +b )=________. 答案 0解析 若“∃x 0∈(a ,b ),f (x 0)+f (-x 0)≠0”是假命题,则“∀x ∈(a ,b ),f (x )+f (-x )=0”是真命题,即f (-x )=-f (x ),则函数f (x )是奇函数,则a +b =0,即f (a +b )=f (0)=0. 11.以下四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x 0∈Q ,x 20=2;③∃x 0∈R ,x 20+1=0;④∀x ∈R,4x 2>2x -1+3x 2.其中真命题的个数为________. 答案 0解析 ∵x 2-3x +2=0的判别式Δ=(-3)2-4×2>0, ∴当x >2或x <1时,x 2-3x +2>0才成立, ∴①为假命题;当且仅当x =±2时,x 2=2,∴不存在x 0∈Q ,使得x 20=2,∴②为假命题; 对∀x ∈R ,x 2+1≠0,∴③为假命题; 4x 2-(2x -1+3x 2)=x 2-2x +1=(x -1)2≥0, 即当x =1时,4x 2=2x -1+3x 2成立, ∴④为假命题. ∴①②③④均为假命题. 故真命题的个数为0.12.(2017·江西五校联考)已知命题p :∃x 0∈R ,(m +1)·(x 20+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为____________. 答案 (-∞,-2』∪(-1,+∞)解析 由命题p :∃x 0∈R ,(m +1)(x 20+1)≤0,可得m ≤-1,由命题q :∀x ∈R ,x 2+mx +1>0恒成立,可得-2<m <2,因为p ∧q 为假命题,所以m ≤-2或m >-1.13.已知命题p :x 2+2x -3>0;命题q :13-x >1,若“(綈q )∧p ”为真,则x 的取值范围是___.答案 (-∞,-3)∪(1,2』∪『3,+∞)解析 因为“(綈q )∧p ”为真,即q 假p 真,而当q 为真命题时,13-x -1=-x -2x -3>0,即2<x <3,所以当q 为假命题时,有x ≥3或x ≤2;当p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3,所以x 的取值范围是{x |x ≥3或1<x ≤2或x <-3}. 14.下列结论:①若命题p :∃x 0∈R ,tan x 0=1;命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题是“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________. 答案 ①③解析 ①中命题p 为真命题,命题q 为真命题, 所以p ∧(綈q )为假命题,故①正确; ②当b =a =0时,有l 1⊥l 2,故②不正确; ③正确,所以正确结论的序号为①③.15.已知命题p :∃x 0∈R ,0e x-mx 0=0,命题q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是____. 答案 『0,2』解析 若p ∨(綈q )为假命题,则p 假q 真. 由e x-mx =0,可得m =e xx,x ≠0,设f (x )=e xx ,x ≠0,则f ′(x )=x e x -e x x 2=(x -1)e xx 2,当x >1时,f ′(x )>0,函数f (x )=e xx 在(1,+∞)上是单调递增函数;当0<x <1或x <0时,f ′(x )<0,函数f (x )=e xx 在(0,1)和(-∞,0)上是单调递减函数,所以当x =1时,函数取得极小值f (1)=e ,所以函数f (x )=e xx的值域是(-∞,0)∪『e ,+∞),由p 是假命题,可得0≤m <e.当命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(綈q )为假命题时,m 的取值范围是0≤m ≤2.16.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x (a >1,x ≥2).(1)若∃x 0∈『2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为________________; (2)若∀x 1∈『2,+∞),∃x 2∈『2, +∞),使得f (x 1)=g (x 2),则实数a 的取值范围为________________.答案 (1)『3,+∞) (2)(1,3』解析 (1)因为f (x )=x 2-x +1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x =2时等号成立,所以若∃x 0∈『2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为『3,+∞). (2)因为当x ≥2时,f (x )≥3,g (x )≥a 2,若∀x 1∈『2,+∞),∃x 2∈『2,+∞),使得f (x 1)=g (x 2),则⎩⎪⎨⎪⎧a 2≤3,a >1, 解得a ∈(1,3』.。
高三数学人教版A版数学(理)高考一轮复习教案简单的逻辑联结词、全称量词与存在量词

第三节简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词了解逻辑联结词“或”“且”“非”的含义.2.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.知识点一简单的逻辑联结词1.用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.2.用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.3.对一个命题p全盘否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.4.命题p∧q,p∨q,綈p的真假判断:p∧q中p,q有一假为假,p∨q有一真为真,p与非p必定是一真一假.必备方法逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.[自测练习]1.(2015·枣庄模拟)如果命题“p∨q”与命题“綈p”都是真命题,则()A.命题q一定是真命题B.命题p不一定是假命题C.命题q不一定是真命题D.命题p与命题q真假相同解析:由綈p是真命题,则p为假命题.又p∨q是真命题,故q一定为真命题.答案:A知识点二全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”、“任意一个”在逻辑中通常叫作全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫作全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.2.存在量词与特称命题(1)短语“存在一个”、“至少有一个”在逻辑中通常叫作存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫作特称命题.(3)特称命题“存在M 中的一个x 0,使p (x 0)成立”可用符号简记为∃x 0∈M ,P (x 0),读作“存在M 中的元素x 0,使p (x 0)成立”.3.含有一个量词的命题的否定命 题 命题的否定 ∀x ∈M ,p (x ) ∃x 0∈M ,綈p (x 0) ∃x 0∈M ,p (x 0)∀x ∈M ,綈p (x )易误提醒(1)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定,否则易出错.(2)p 或q 的否定易误写成“綈p 或綈q ”;p 且q 的否定易误写成“綈p 且綈q ”. 必备方法 不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.[自测练习]2.(2015·郑州预测)已知命题p :∀x >2,x 3-8>0,那么綈p 是( ) A .∀x ≤2,x 3-8≤0 B .∃x >2,x 3-8≤0 C .∀x >2,x 3-8≤0D .∃x ≤2,x 3-8≤0解析:本题考查全称命题的否定.依题意,綈p 是“∃x >2,x 3-8≤0”,故选B. 答案:B3.下列命题为真命题的是( ) A .∃x 0∈Z,1<4x 0<3 B .∃x 0∈Z,5x 0+1=0 C .∀x ∈R ,x 2-1=0 D .∀x ∈R ,x 2+x +2>0解析:1<4x 0<3,14<x 0<34,这样的整数x 0不存在,故A 为假命题;5x 0+1=0,x 0=-15∉Z ,故B 为假命题;x 2-1=0,x =±1,故C 为假命题;对任意实数x ,都有x 2+x +2=⎝⎛⎭⎫x +122+74>0,故D 为真命题.答案:D考点一 含有逻辑联结词的命题的真假判断|1.(2016·石家庄一模)命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( )A .p 或qB .p 且qC .qD .綈p解析:取x =π3,y =5π6,可知命题p 不正确;由(x -y )2≥0恒成立,可知命题q 正确,故綈p 为真命题,p 或q 是真命题,p 且q 是假命题,故选B.答案:B2.给定下列三个命题:p 1:函数y =a x +x (a >0,且a ≠1)在R 上为增函数; p 2:∃a ,b ∈R ,a 2-ab +b 2<0;p 3:cos α=cos β成立的一个充分不必要条件是α=2k π+β(k ∈Z ). 则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∧p 3 C .p 1∨綈p 3D .綈p 2∧p 3解析:对于p 1:令y =f (x ),当a =12时,f (0)=⎝⎛⎭⎫120+0=1,f (-1)=⎝⎛⎭⎫12-1-1=1,所以p 1为假命题;对于p 2:a 2-ab +b 2=⎝⎛⎭⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3:由cos α=cos β,可得α=2k π±β(k ∈Z ),所以p 3是真命题,所以綈p 2∧p 3为真命题,故选D.答案:D判断一个含有逻辑联结词的命题的真假的三个步骤(1)判断复合命题的结构;(2)判断构成这个命题的每个简单命题的真假;(3)依据含有“或”、“且”、“非”的命题的真假判断方法,作出判断即可.考点二 全称命题与特称命题真假判断|1.下列命题中,真命题是( )A .存在x 0∈R ,sin 2x 02+cos 2x 02=12B .任意x ∈(0,π),sin x >cos xC .任意x ∈(0,+∞),x 2+1>xD .存在x 0∈R ,x 20+x 0=-1解析:对于A 选项:∀x ∈R ,sin 2x 2+cos 2x2=1,故A 为假命题;对于B 选项:存在x=π6,sin x =12,cos x =32,sin x <cos x ,故B 为假命题;对于C 选项:x 2+1-x =⎝⎛⎭⎫x -122+34>0恒成立,C 为真命题;对于D 选项:x 2+x +1=⎝⎛⎭⎫x +122+34>0恒成立,不存在x 0∈R ,使x 20+x 0=-1成立,故D 为假命题.答案:C2.下列命题中,真命题是( )A .∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )是偶函数B .∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )是奇函数C .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )都是偶函数D .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )都是奇函数解析:由于当m =0时,函数f (x )=x 2+mx =x 2为偶函数,故“∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )为偶函数”是真命题.答案:A全称命题与特称命题真假的判断方法 命题名称 真假 判断方法一 判断方法二 全称命题真 所有对象使命题真 否定为假 假存在一个对象使命题假否定为真考点三 利用命题的真假求参数范围|(2015·高考山东卷)若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.[解析] 由已知可得m ≥tan x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π4恒成立.设f (x )=tan x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π4,显然该函数为增函数,故f (x )的最大值为tan π4=1,由不等式恒成立可得m ≥1,即实数m 的最小值为1.[答案] 1根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况); (2)然后再求出每个命题是真命题时参数的取值范围; (3)最后根据每个命题的真假情况,求出参数的取值范围.已知命题p :∃m ∈R ,m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题.则实数m 的取值范围为________.解析:易知命题p 为真命题, 若命题q 为真命题,则Δ=m 2-4<0, 即-2<m <2.当p ∧q 为真时,有⎩⎪⎨⎪⎧m +1≤0,-2<m <2.∴-2<m ≤-1, ∴p ∧q 为假时,m 的取值范围为{m |m ≤-2,或m >-1}. 答案:(-∞,-2]∪(-1,+∞) 2.全称命题的否定不当致误【典例】 设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∉B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B[解析] “∀x ∈A ”的否定为“∃x ∈A ”,“2x ∈B ”的否定为“2x ∉B ”,故原命题的否定为“∃x ∈A,2x ∉B ”,故选D.[答案] D[易误点评] 此类题目常易犯下列三种错误:(1)否定了结论,并没有否定量词. (2)否定了条件与结论,没有否定量词. (3)否定了条件,没有否定结论.[防范措施] (1)弄清楚是全称命题还是特称命题,尤其是省略了量词的命题.(2)全(特)称命题的否定应从两个方面着手:一是量词变化,“∀”与“∃”互换;二是否定命题的结论,但不是否定命题的条件.[跟踪练习] (2015·高考全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:命题p 是一个特称命题,其否定是全称命题,故选C. 答案:CA 组 考点能力演练1.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0解析:綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0. 答案:C2.已知命题p :∃x ∈R ,x 2-3x +4≤0,则下列说法正确的是( ) A .綈p :∃x ∈R ,x 2-3x +4>0,且綈p 为真命题 B .綈p :∃x ∈R ,x 2-3x +4>0,且綈p 为假命题 C .綈p :∀x ∈R ,x 2-3x +4>0,且綈p 为真命题 D .綈p :∀x ∈R ,x 2-3x +4>0,且綈p 为假命题解析:因为x 2-3x +4=⎝⎛⎭⎫x -322+74≥74,所以命题p 为假命题,所以綈p :∀x ∈R ,x 2-3x +4>0,且綈p 为真命题,故选C.答案:C3.(2016·珠海一模)命题p :5的值不超过2,命题q :2是无理数,则( )A .命题“p 或q ”是假命题B .命题“p 且q ”是假命题C .命题“非p ”是假命题D .命题“非q ”是真命题解析:因为5≈2.236>2,故p 为假命题,2是无理数,故q 是真命题,由复合命题的真假判断法则可知B 正确.答案:B4.下列选项中,说法正确的是( )A .命题“∃x ∈R ,x 2-x ≤0”的否定是“∃x ∈R ,x 2-x >0”B .命题“p ∨q 为真”是命题“p ∧q 为真”的充分不必要条件C .命题“若am 2≤bm 2,则a ≤b ”是假命题D .命题“在△ABC 中,若sin A <12,则A <π6”的逆否命题为真命题解析:A 中命题的否定是:∀x ∈R ,x 2-x >0,故A 不对;B 中当p 为假命题、q 为真命题时,p ∨q 为真,p ∧q 为假,故B 不对;C 中当m =0时,a ,b ∈R ,故C 的说法正确;D 中命题“在△ABC 中,若sin A <12,则A <π6”为假命题,所以其逆否命题为假命题.故选C.答案:C5.(2016·太原模拟)已知命题p :∃x 0∈R ,e x 0-mx 0=0,q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是( )A .(-∞,0)∪(2,+∞)B .[0,2]C .RD .∅解析:若p ∨(綈q )为假命题,则p 假q 真.命题p 为假命题时,有0≤m <e ;命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(綈q )为假命题时,m 的取值范围是0≤m ≤2.答案:B6.命题“存在x ∈R ,使得|x -1|-|x +1|>3”的否定是________.解析:本题考查了特称命题与全称命题.命题“存在x ∈R ,使得|x -1|-|x +1|>3”的否定是“对任意的x ∈R ,都有|x -1|-|x +1|≤3”.答案:对任意的x ∈R ,都有|x -1|-|x +1|≤37.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件;命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”、“p ∧q ”、“綈p ”中为真命题的是________.解析:依题意知p 假,q 真,所以p ∨q ,綈p 为真. 答案:p ∨q ,綈p8.命题:“存在实数x ,满足不等式(m +1)x 2-mx +m -1≤0”是假命题,则实数m 的取值范围是________.解析:依题意,“对任意的实数x ,都满足不等式(m +1)x 2-mx +m -1>0”是真命题,则必须满足⎩⎪⎨⎪⎧m +1>0,(-m )2-4(m +1)(m -1)<0,解得m >233.答案:⎝⎛⎭⎫233,+∞ 9.已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,求实数a 的取值范围.解:命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4; 命题q 等价于-a4≤3,即a ≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假. 若p 真q 假,则a <-12; 若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4). 10.设p :实数x 满足x 2-4ax +3a 2<0,其中a >0.q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围. (2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围. 解:由x 2-4ax +3a 2<0,a >0得a <x <3a , 即p 为真命题时,a <x <3a ,由⎩⎪⎨⎪⎧ x 2-x -6≤0,x 2+2x -8>0,得⎩⎪⎨⎪⎧-2≤x ≤3,x >2或x <-4,即2<x ≤3,即q 为真命题时2<x ≤3.(1)a =1时,p :1<x <3.由p ∧q 为真知p ,q 均为真命题,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3,得2<x <3, 所以实数x 的取值范围为(2,3).(2)设A ={x |a <x <3a },B ={x |2<x ≤3},由题意知p 是q 的必要不充分条件, 所以B A ,有⎩⎪⎨⎪⎧0<a ≤2,3a >3,∴1<a ≤2, 所以实数a 的取值范围为(1,2].B 组 高考题型专练1.(2014·高考辽宁卷)设a ,b ,c 是非零向量,已知命题p :若a·b =0,b·c =0,则a·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )解析:对命题p 中的a 与c 可能为共线向量,故命题p 为假命题.由a ,b ,c 为非零向量,可知命题q 为真命题.故p ∨q 为真命题.故选A.答案:A2.(2014·高考安徽卷)命题“∀x ∈R ,|x |+x 2≥0”的否定是( ) A .∀x ∈R ,|x |+x 2<0 B .∀x ∈R ,|x |+x 2≤0 C .∃x 0∈R ,|x 0|+x 20<0 D .∃x 0∈R ,|x 0|+x 20≥0解析:全称命题的否定是特称命题,否定结论. 答案:C3.(2015·高考浙江卷)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解析:全称命题的否定为特称命题,因此命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“∃n0∈N*,f(n0)∉N*或f(n0)>n0”.答案:D4.(2015·高考湖北卷)命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是()A.∀x∈(0,+∞),ln x≠x-1B.∀x∉(0,+∞),ln x=x-1C.∃x0∈(0,+∞),ln x0≠x0-1D.∃x0∉(0,+∞),ln x0=x0-1解析:该命题的否定是将存在量词改为全称量词,等号改为不等号即可,故选A.答案:A。
简单的逻辑联结词、全称量词与存在量词

知识点一 命题及四种命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假 的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.注意:命题必须是陈述句,疑问句、祈使句、感叹句 都不是命题。
2.四种命题及其关系(1)四种命题间的相互关系.(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性无关.注意:(补充)1、一个命题不可能同时既是真命题又是假命题 原词语 等于(=) 大于(>) 小于(<)是 否定词语 不等于(≠) 不大于(≤) 不小于(≥)不是 原词语 都是 至多有一个 至多有n 个或 否定词语 不都是 至少有两个 至少有n+1个且 原词语 至少有一个 任意两个 所有的任意的 否定词语 一个也没有 某两个 某些某个 知识点二 充分条件与必要条件1、充分条件与必要条件的概念(1)充分条件:q p ⇒ 则p 是q 的充分条件即只要有条件p 就能充分地保证结论q 的成立, 亦即要使q 成立,有p 成立就足够了,即有它即可。
(2)必要条件: q p ⇒ 则q 是p 的必要条件q p ⇒⇔q p ⌝⇒⌝ 即没有q 则没有p ,亦即q 是p 成立的必须要有的条件,即无它不可。
(补充)(3)充要条件q p ⇒且q p ⇒即p q ⇔ 则p 、q 互为充要条件(既是充分又是必要条件) “p 是q 的充要条件”也说成“p 等价于q ”、“q 当且仅当p ”等(补充)2、充要关系的类型 (1)充分但不必要条件定义:若q p ⇒,但p q ⇒/,则p 是q 的充分但不必要条件; (2)必要但不充分条件定义:若p q ⇒,但q p ⇒/,则p 是q 的必要但不充分条件 (3)充要条件定义:若 q p ⇒,且 p q ⇒,即p q ⇔,则p 、q 互为充要条件; (4)既不充分也不必要条件定义:若q p ⇒/,且p q ⇒/,则p 、q互为既不充分也不必要条件. 3、判断充要条件的方法:①定义法;②集合法;③逆否法(等价转换法).逆否法----利用互为逆否的两个命题的等价性集合法----利用集合的观点概括充分必要条件 若条件p 以集合A 的形式出现,结论q 以集合B 的形式出现,则借助集合知识,有助于充要条件的理解和判断.(1)若⊂≠A B ,则p 是q 的充分但不必要条件(2)若⊂≠B A ,则p 是q 的必要但不充分条件 (3)若B A =,则p 是q 的充要条件(4)若B A ⊂/,且B A ⊃/,则p 是q 的既不必要也不充分条件 (补充)简记作----若A 、B 具有包含关系,则(1)小范围是大范围的充分但不必要条件(2)大范围是小范围的必要但不充分条件二、例题分析(一)四种命题及其相互关系例1.(1) 命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数例1.(2)下列命题中正确的是( )①“若a ≠0,则ab ≠0”的否命题;②“正多边形都相似”的逆命题; ③“若m>0,则x2+x -m =0有实根”的逆否命题;④“若x -123是有理数,则x 是无理数”的逆否命题.A .①②③④ B .①③④ C .②③④ D .①④例1.(3) 原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真 B .假,假,真 C .真,真,假 D .假,假,假 问题2四种命题间关系的两条规律(1)逆命题与否命题互为逆否命题; 互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用.例2.(1)已知a ,b ,c ∈R ,命题“若a b c ++=3,则222a b c ++≥3”的否命题是( )(A)若a+b+c ≠3,则222a b c ++<3 (B)若a+b+c=3,则222a b c ++<3(C)若a+b+c ≠3,则222a b c ++≥3 (D)若222a b c ++≥3,则a+b+c=3 例2.)命题:“若0xy =,则0x =或0y =”的否定是:________注意:命题的否定与否命题的区别(二)充要条件的判断与证明例1.(1)(补充) (07湖北)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。
高考一轮复习第1章集合与常用逻辑用语第3讲逻辑联结词全称量词与存在量词

第三讲逻辑联结词、全称量词与存在量词知识梳理·双基自测知识点一简单的逻辑联结词(1)用联结词“且”联结命题p和命题q,记作p∧q,(2)用联结词“或”联结命题p和命题q,记作p∨q,(3)对一个命题p的否定记作¬ p,(4)命题p∧q,p∨q,¬ p的真假判断真值表知识点二全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x).2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0).3.含有一个量词的命题的否定(1)(2)p∨q的否定是(¬p)∧(¬ q);p∧q的否定是(¬p)∨(¬ q).重要结论1.逻辑联结词与集合的关系.(1)“或”与集合的“并”密切相关,集合的并集是用“或”来定义的,命题“p∨q”为真有三个含义:只有p成立,只有q成立,p、q同时成立;(2)“且”与集合的“交”密切相关,集合的交集是用“且”来定义的,命题p∧q为真表示p、q同时成立;(3)“非”与集合中的补集相类似.2.常用短语的否定词题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“2023≥2022”是真命题.( √)(2)命题p和¬ p不可能都是真命题.( √)(3)“全等三角形的面积相等”是特称命题.( ×)(4)命题¬(p∧q)是假命题,则命题p,q都是真命题.( √)题组二走进教材2.(选修2-1P23T2改编)下列命题中的假命题是( C )A.∃x0∈R,lg x0=1 B.∃x0∈R,sin x0=0C.∀x∈R,x3>0 D.∀x∈R,2x>0[解析]对于C,任意x∈R,x3∈R,故选C.3.(选修2-1P18A1(3),改编)已知p:2是偶数,q:2是质数,则命题¬p,¬q,p∨q,p∧q中真命题的个数为( B )A.1 B.2C.3 D.4[解析]命题p是真命题,q是真命题,因此命题¬p,¬q都是假命题,p∨q,p∧q都是真命题,故选B.题组三走向高考4.(2020·课标Ⅱ,5分)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是①③④.①p1∧p4②p1∧p2③(¬ p 2)∨p 3 ④(¬ p 3)∨(¬ p 4)[解析] 对于命题p 1,两两相交且不过同一点的三条直线的交点记为A 、B 、C ,易知A 、B 、C 三点不共线,所以可确定一个平面,记为α,由A ∈α,B∈α,可得直线AB ⊂α,同理,另外两条直线也在平面α内,所以p 1是真命题;对于命题p 2,当三点共线时,过这三点有无数个平面,所以p 2是假命题,从而¬ p 2是真命题; 对于命题p 3,空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p 3是假命题,从而¬ p 3是真命题;对于命题p 4,由直线与平面垂直的性质定理可知,是真命题,从而¬ p 4是假命题.综上所述,p 1∧p 4是真命题,p 1∧p 2是假命题,(¬ p 2)∨p 3是真命题,(¬ p 3)∨(¬ p 4)是真命题,所以答案为①③④.5.(2016·浙江,5分)命题“∀x ∈R ,∃n ∈N *,使得n≥x 2”的否定形式是( D ) A .∀x ∈R ,∃n ∈N *,使得n<x 2B .∀x ∈R ,∀x ∈N *,使得n<x 2C .∃x ∈R ,∃n ∈N *,使得n<x 2D .∃x ∈R ,∀n ∈N *,使得n<x 2[解析] 根据含有量词的命题的否定的概念可知,选D .6.(2015·山东,5分)若“∀x ∈[0,π4],tan x ≤m ”是真命题,则实数m 的最小值为1.[解析] 由已知可得m≥tan x (x∈⎣⎢⎡⎦⎥⎤0,π4)恒成立.设f(x)=tan x (x∈⎣⎢⎡⎦⎥⎤0,π4),显然该函数为增函数,故f(x)的最大值为f ⎝ ⎛⎭⎪⎫π4=tan π4=1,由不等式恒成立可得m≥1,即实数m 的最小值为1.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU 考点一 含逻辑联结词的命题及其真假判断——自主练透例1 (1)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( A )A .(¬ p)∨(¬ q)B .p ∧(¬ q)C .(¬ p)∧(¬ q)D .p ∨q(2)(多选)命题p :若sin x>sin y ,则x>y ;命题q :x 2+y 2≥2xy.下列命题为真命题的是( ACD ) A .p 或q B .p 且q C .qD .¬ p(3)已知命题p :若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q :在空间中,对于三条不同的直线a ,b ,c ,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:①p ∧q 为真;②p∨q 为假;③p∨q 为真;④(¬ p)∨(¬ q)为假. 其中,正确的是②.(填序号)[解析] (1)命题p 是“甲降落在指定范围”,则¬ p 是“甲没降落在指定范围”,q 是“乙降落在指定范围”,则¬ q 是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”“甲没降落在指定范围,乙降落在指定范围”“甲没降落在指定范围,乙没降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为(¬ p)∨(¬ q).(2)取x =π3,y =5π6,可知命题p 是假命题;由(x -y)2≥0恒成立,可知命题q 是真命题,故¬ p 为真命题,p 或q 是真命题,p 且q 是假命题. (3)命题p 是假命题,这是因为α与γ也可能相交;命题q 也是假命题,这两条直线也可能异面,相交.考点二 含有一个量词的命题——多维探究 角度1 全称命题、特称命题的真假例2 (多选题)( 2021·山东济宁期末)下列命题中真命题是( ACD ) A .∀x ∈R ,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x ∈R ,lg x<1D .∃x ∈R ,tan x =2[解析] 根据指数函数的值域知A 是真命题;取x =1,计算知(x -1)2=0,故B 是假命题;取x =1,计算知lg x =0<1,故C 是真命题;由y =tan x 的值域为R.知D 是真命题.故选ACD .角度2 含一个量词的命题的否定例3 (1)已知命题p :“∃x 0∈R ,ex 0-x 0-1≤0”,则¬ p 为( C ) A .∃x 0∈R ,ex 0-x 0-1≥0 B .∃x 0∈R ,ex 0-x 0-1>0 C .∀x ∈R ,e x-x -1>0 D .∀x ∈R ,e x -x -1≥0(2)(2021·陕西部分学校摸底)命题“∀x ∈R ,xx -1≥0”的否定是( D )A .∃x ∈R ,x 0x 0-1<0B .∃x ∈R ,0<x 0<1C .∀x ∈R ,xx -1≤0D .∃x ∈R ,0<x 0≤1[解析] (1)根据全称命题与特称命题的否定关系,可得¬ p 为“∀x ∈R ,e x-x -1>0”,故选C . (2)∀x ∈R ,x x -1≥0的否定是∃x 0∈R ,使xx -1不大于等于0,包括小于零和无意义,即∃x 0∈R ,0<x 0<1或x 0=1,故选D .名师点拨 MING SHI DIAN BO 全(特)称命题真假的判断方法全称命题特称命题真假 真假真假法一 证明所有对象使命题为真存在一个对象使命题为假存在一个对象使命题为真证明所有对象使命题为假法二否定为假否定为真否定为假否定为真注:当判断原命题的真假有困难时,可通过判断它的逆否命题的真假来实现. 角度3 含参命题中参数的取值范围例 4 已知f(x)=ln(x 2+1),g(x)=⎝ ⎛⎭⎪⎫12x-m ,若对于∀x 1∈[0,3],∃x 2∈[1,2],使得f(x 1)≥g(x 2),则实数m 的取值范围是( A )A .⎣⎢⎡⎭⎪⎫14,+ ∞B .⎝ ⎛⎦⎥⎤-∞,14C .⎣⎢⎡⎭⎪⎫13,+∞ D .⎝⎛⎦⎥⎤-∞,13 [解析] 当x∈[0,3]时,f(x)min =f(0)=0,当x∈[1,2]时,g(x)min =g(2)=14-m ,由f(x)min ≥g(x)min 得0≥14-m ,所以m≥14.[引申1]把本例中“∃x 2∈[1,2]”改为:“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是m≥12. [解析] 当x∈[0,3]时,f(x)min =f(0)=0, 当x∈[1,2]时,g(x)max =g(1)=12-m ,由f(x)min ≥g(x)max 得0≥12-m ,所以m≥12.[引申2]把本例中,∀x 1∈[0,3]改为∃x 1∈[0,3]其他条件不变,则实数m 的取值范围是m≥14-ln_10.[解析] 当x∈[0,3]时,f(x)max =f(3)=ln 10, 当x∈[1,2]时,g(x)min =g(2)=14-m ,由f(x)max ≥g(x)min 得ln 10≥14-m ,所以m≥14-ln 10.答案:m≥14-ln 10[引申3]把本例中,∀x 1∈[0,3],∃x 2∈[1,2]改为∃x 1∈[0,3],∀x 2∈[1,2],其他条件不变,则实数m 的取值范围是m ≥12-ln 10. [解析] 当x∈[0,3]时,f(x)max =f(3)=ln 10, 当x∈[1,2]时,g(x)max =g(1)=12-m ,由f(x)max ≥g(x)max ,得ln 10≥12-m ,所以m≥12-ln 10.答案:m≥12-ln 10名师点拨 MING SHI DIAN BO根据复合命题的真假求参数范围的步骤(1)先求出每个简单命题为真命题时参数的取值范围.(2)再根据复合命题的真假确定各个简单命题的真假情况(有时不一定只有一种情况). (3)最后由(2)的结论求出满足条件的参数取值范围. 〔变式训练1〕(1)(角度1)(多选题)(2020·吉林长春外国语学校高三上期中改编)下列命题中,假命题是( ABD ) A .∃x 0∈R ,sin 2 x 02+cos 2 x 02=12B .∀x ∈(0,π),sin x>cos xC .∀x ∈(0,+∞),x 2+1>x D .∃x 0∈R ,x 20+x 0=-1(2)(角度2)已知命题p :∃x 0∈R ,log 2(3x 0+1)≤0,则( B ) A .p 是假命题;¬ p :∀x ∈R ,log 2(3x+1)≤0 B .p 是假命题;¬ p :∀x ∈R ,log 2(3x +1)>0 C .p 是真命题;¬ p:∀x ∈R ,log 2(3x +1)≤0 D .p 是真命题;¬ p:∀x ∈R ,log 2(3x +1)>0(3)(角度3)已知命题p :“∀x ∈[1,2],x 2-a≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(¬ p)∧q”是真命题,则实数a 的取值范围是( C )A .(-∞,-2)∪{1}B .(-∞,-2]∪[1,2]C .(1,+∞)D .[-2,1](4)(角度3)已知函数f(x)=x 2+2x +a 和g(x)=2x +x +1,对∀x 1∈[-1,+∞),∃x 2∈R 使g(x 1)=f(x 2)成立,则实数a 的取值范围是[-1,+∞).[解析] (1)对于A ,由同角三角函数的平方关系,我们知道∀x ∈R ,sin 2 x 2+cos 2 x2=1,所以A 为假命题;对于B ,取特殊值,当x =π4时,sin x =cos x =22,所以B 为假命题;对于C ,一元二次方程根的判别式Δ=1-4=-3<0,所以原方程没有实数根,所以C 为真命题;对于D ,判别式Δ=1-4=-3<0,所以D 错误.故选A 、B 、D .(2)∵3x>0,∴3x+1>1,则log 2(3x+1)>0,∴p 是假命题,¬ p:∀x ∈R ,log 2(3x+1)>0.故选B . (3)命题p 为真命题时a≤1;命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”为真命题,即方程x 2+2ax +2-a =0有实根,故Δ=4a 2-4(2-a)≥0,解得a≥1或a≤-2.又(¬ p)∧q 为真命题,即¬ p 真且q 真,所以a>1,即a 的取值范围为(1,+∞).故选C .(4)因为f(x)=x 2+2x +a =(x +1)2+a -1, 所以f(x)∈[a-1,+∞).因为g(x)=2x +x +1在[-1,+∞)上单调递增, 所以g(x)∈[-2,+∞).由题意得a -1≤-2, 所以a≤-1,故实数a 的取值范围是(-∞,-1].名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG简易逻辑的综合应用例5 (2019·全国卷Ⅱ,5分)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( A ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙[解析] 依题意,若甲预测正确,则乙、丙均预测错误,此时三人成绩由高到低的次序为甲、乙、丙;若乙预测正确,此时丙预测也正确,这与题意相矛盾;若丙预测正确,则甲预测错误,此时乙预测正确,这与题意相矛盾.综上所述,三人成绩由高到低的次序为甲、乙、丙,选A .名师点拨 MING SHI DIAN BO在一些逻辑问题中,当字面上并未出现“或”“且”“非”字样时,应从语句的陈述中搞清含义,并根据题目进行逻辑分析,找出各个命题之间的内在联系,从而解决问题.〔变式训练2〕(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( D )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩[解析]由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.。
简单的逻辑联结词、全称量词与存在量词
§1.3简单的逻辑联结词、全称量词与存在量词考点梳理:1.逻辑联结词命题中的“或”“且”“非”称为____________________.2.全称量词“所有的”“任意一个”“每一个”等短语在逻辑中通常叫做____________,并用符号“________”表示.含有全称量词的命题称为____________,全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x).3.存在量词“存在一个”“至少有一个”等短语在逻辑中通常叫做______________,并用符号“________”表示.含有存在量词的命题称为______________,特称命题“存在M中的元素x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0).注:特称命题也称存在性命题.4.命题.5.命题p∧q,p∨q,﹁p的真假判断(真值表)自查自纠:1.逻辑联结词2.全称量词∀全称命题3.存在量词∃特称命题4.∃x0∈M,﹁p(x0)∀x∈M,﹁p(x)特称全称5.①真②真③假④假⑤真⑥假⑦假⑧真⑨真○10假⑪假⑫真典型例题讲练类型一含有逻辑联结词的命题及其真假判断例题1:指出下列命题的构成形式,并对该命题进行分解,然后判断其真假.(1)矩形的对角线相等且垂直;(2)3≥3;(3)10是2或5的倍数;(4)10是2和5的倍数;解:(1)是“p∧q”形式的命题.其中p:矩形的对角线相等,q:矩形的对角线垂直.该命题为假命题.(2)是“p ∨q ”形式的命题.其中p :3>3,q :3=3.该命题是真命题.(3)是“p ∨q ”形式的命题.其中p :10是2的倍数,q :10是5的倍数.该命题是真命题.(4)是“p ∧q ”形式的命题.其中p :10是2的倍数,q :10是5的倍数.该命题是真命题.变式1: 分别写出由下列各组命题构成的“p ∨q ”“p ∧q ”“ ﹁p ”形式的新命题,并判断其真假.(1)p :2是4的约数,q :2是6的约数;(2)p :矩形的对角线相等,q :矩形的对角线互相平分. 解:(1)p ∨q :2是4的约数或2是6的约数,真命题; p ∧q :2是4的约数且2是6的约数,真命题;﹁p :2不是4的约数,假命题.(2)p ∨q :矩形的对角线相等或互相平分,真命题; p ∧q :矩形的对角线相等且互相平分,真命题; ﹁p :矩形的对角线不相等,假命题.类型二 含有逻辑联结词命题的综合问题例题2: (2015·金华联考)已知p :方程x 2+mx +1=0有两个不相等的负实数根;q :不等式4x 2+4(m -2)x +1>0的解集为R .若“p ∨q ”为真命题,“p ∧q ”为假命题,则实数m 的取值范围是________.解:p 为真命题,有⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0, 解得m >2.q 为真命题,有Δ=[4(m -2)]2-4×4×1<0,解得1<m <3. 由“p ∨q ”为真命题,“p ∧q ”为假命题,知p 与q 一真一假.当p 真,q 假时,由⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3, 得m ≥3;当p 假,q 真时,由⎩⎪⎨⎪⎧m ≤2,1<m <3, 得1<m ≤2.综上,实数m 的取值范围是(1,2]∪[3,+∞). 故填(1,2]∪[3,+∞).变式2: (2015·锦州月考)命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,命题q :函数f (x )=(3-2a )x 是增函数,若p 或q 为真,p 且q 为假,则实数a 的取值范围是________.解:设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,∴函数g (x )的图象开口向上且与x 轴没有交点,有Δ=4a 2-16<0,解得-2<a <2.又∵函数f (x )=(3-2a )x 是增函数, ∴3-2a >1,∴a <1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1)若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥1, ∴1≤a <2.(2)若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2或a ≥2,a <1, ∴a ≤-2.综上可知,所求实数a 的取值范围是(-∞,-2]∪[1,2).故填(-∞,-2]∪[1,2).类型三 全称命题与特称命题的否定例题3: 写出下列命题的否定,并判断它们的真假. (1)p 1:∀x ∈{x |x 是无理数},x 2是无理数;(2)p 2:至少有一个整数,它既能被2整除,又能被5整除; (3)p 3:∃x ∈{x |x ∈Z },log 2x >0;(4)p 4:∀x ∈R ,x 2-x +14>0.解:(1)﹁p 1:∃x ∈{x |x 是无理数},x 2不是无理数,是真命题. (2) ﹁p 2:所有的整数,都不能被2整除或不能被5整除,是假命题. (3) ﹁p 3:∀x ∈{x |x ∈Z },log 2x ≤0,是假命题.(4)﹁p 4:∃x ∈R ,x 2-x +14≤0,是真命题.变式3: (2015·浙江)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解:全称命题的否定为特称命题,因此命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是“∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0”.故选D.方法规律总结1.含有逻辑联结词命题真假的判断判断一个含有逻辑联结词命题的真假,应先对该命题进行分解,判断出构成它的简单命题的真假,再根据真值表进行判断.2.全称命题与特称命题真假的判断(1)要判断全称命题是真命题,需要对集合M 中每个元素x ,证明p (x )成立,但不容易证,一般是用反证法证明它的特称命题为假;要判断全称命题为假只需在集合M 中找到一个元素x 0,使得p (x 0)不成立即可。
高考数学总复习教案:简单的逻辑联结词、全称量词与存在量词
第一章集合与常用逻辑用语第3课时简单的逻辑联结词、全称量词与存在量词(对应学生用书(文)、(理)5~6页)考情分析考点新知了解命题的逆命题、否命题与逆否命题的意义;理解必要条件、充分条件、充要条件的意义;了解逻辑联结词“或”“且”“非”的含义;了解全称量词与存在量词的意义;了解含有一个量词的命题的否定的意义.会分析四种命题的相互关系.会判断必要条件、充分条件与充要条件.能用“或”“且”“非”表述相关的数学内容(真值表不做要求).能用全称量词与存在量词叙述简单的数学内容.⑤能正确地对含有一个量词的命题进行否定.1. (选修11P20第4(1)题改编)命题“若a、b、c成等比数列,则ac=b2”的逆否命题是________________________________________________________________________.答案:若ac≠b2,则a、b、c不成等比数列2. (选修11P20第6题改编)若命题p的否命题为q,命题q的逆否命题为r,则p与r的关系是__________.答案:互为逆命题3. (选修11P20第7题改编)已知p、q是r的充分条件,r是s的充分条件,q是s的必要条件,则s是p的__________条件.答案:必要不充分4. (原创)写出命题“若x+y=5,则x=3且y=2”的逆命题、否命题、逆否命题,并判断它们的真假.答案:逆命题:若x=3且y=2,则x+y=5.是真命题.否命题:若x+y≠5,则x≠3或y≠2.是真命题.逆否命题:若x≠3或y≠2,则x+y≠5.是假命题.5. 下列命题中的真命题有________.(填序号)①$x∈R,x+1x=2;②$x∈R,sinx=-1;③"x∈R,x2>0;④"x∈R,2x>0.答案:①②④解析:对于①,x=1时,x+1x=2,正确;对于②,当x=3π2时,sinx=-1,正确;对于③,x=0时,x2=0,错误;对于④,根据指数函数的值域,正确.6. 命题p:有的三角形是等边三角形.命题綈p:____________________________.答案:所有的三角形都不是等边三角形1. 四种命题及其关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系(3) 四种命题的真假关系两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.2. 充分条件与必要条件(1) 如果pÞq,那么称p是q的充分条件,q是p的必要条件.(2) 如果pÞq,且q p,那么称p是q的充要条件,记作pÛq.(3) 如果pÞq,qÞ/p,那么称p是q的充分不必要条件.(4) 如果qÞp,pÞq,那么称p是q的必要不充分条件.(5) 如果pÞ/ q,且qÞ/ p,那么称p是q的既不充分也不必要条件.3. 简单的逻辑联结词(1) 用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(2) 用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(3) 对一个命题p全盘否定记作綈p,读作“非p”或“p的否定”.(4) 命题p∧q,p∨q,綈p的真假判断p∧q中p、q有一假为假,p∨q有一真为真,p与非p必定是一真一假.4. 全称量词与存在量词(1) 全称量词与全称命题短语“所有”“任意”“每一个”等表示全体的量词在逻辑中称为全称量词,并用符号“"x”表示.含有全称量词的命题,叫做全称命题.全称命题“对M中任意一个x,有p(x)成立”可用符号简记为"x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2) 存在量词与存在性命题短语“有一个”“有些”“存在一个”等表示部分的量词在逻辑中称为存在量词,并用符号“$x ”表示.含有存在量词的命题,叫做存在性命题.存在性命题“存在M 中的一个x ,使p(x)成立”可用符号简记为$x ∈M ,p(x),读作“存在一个x 属于M ,使p(x)成立”.5. 含有一个量词的命题的否定命题 命题的否定"x ∈M ,p(x)$x ∈M ,Ø p(x); $x ∈M ,p(x)"x ∈M ,Øp(x).[备课札记]题型1 否命题与命题否定例1 (1) 命题“若a >b ,则2a >2b -1”的否命题为____________________________;(2) 命题:“若x2+x -m =0没有实根,则m≤0”是____(填“真”或“假”)命题;(3) 命题p :“有些三角形是等腰三角形”,则Øp 是____________________.答案:(1) 若a≤b ,则2a ≤2b -1 (2) 真 (3) 所有三角形都不是等腰三角形解析:(2) 很可能许多同学会认为它是假命题原因为当m =0时显然方程有根,其实不然,由x2+x -m =0没实根可推得m<-14,而{m|m<-14}是{m|m≤0}的真子集,由m<-14可推得m ≤0,故原命题为真,而它的逆否命题“若m>0,则x2+x -m =0有实根”显然为真,其实用逆否命题很容易判断它是真命题.(3) Øp 为“对任意x ∈A ,有p(x)不成立”,它恰与全称性命题的否定命题相反.变式训练把下列命题改写成“若p 则q”的形式,并写出它们的逆命题、否命题、逆否命题.(1) 正三角形的三个内角相等;(2) 已知a 、b 、c 、d 是实数,若a =b ,c =d ,则a +c =b +d.解:(1) 原命题:若一个三角形是正三角形,则它的三个内角相等.逆命题:若一个三角形的三个内角相等,则这个三角形是正三角形.否命题:若一个三角形不是正三角形,则它的三个内角不全相等.逆否命题:若一个三角形的三个内角不全相等,那么这个三角形不是正三角形.(2) 原命题:已知a 、b 、c 、d 是实数,若a =b ,c =d ,则a +c =b +d.逆命题:已知a 、b 、c 、d 是实数,若a +c =b +d ,则a =b 且c =d.否命题:已知a 、b 、c 、d 是实数,若a 与b ,c 与d 不都相等,则a +c≠b +d.逆否命题:已知a 、b 、c 、d 是实数,若a +c≠b +d ,则a 与b ,c 与d 不都相等.题型2 充分必要条件例2 已知p :x2-8x -20≤0,q :x2-2x +1-m2≤0(m >0),若Øp 是Øq 的必要不充分条件,求实数m 的取值范围.解:Øp :x2-8x -20>0,得x <-2或x >10,设A ={x|x <-2或x >10},Øq :x2-2x +1-m2>0,得x <1-m ,或x >1+m ,设B ={x|x <1-m 或x >1+m}.∵ Øp 是Øq 的必要非充分条件,∴ B 真包含于A ,即⎩⎪⎨⎪⎧1-m≤-21+m≥10Þm ≥9.∴ 实数m 的取值范围为m≥9.备选变式(教师专享)下列四个结论正确的是________.(填序号)① “x ≠0”是“x +|x|>0”的必要不充分条件;② 已知a 、b ∈R ,则“|a +b|=|a|+|b|”的充要条件是ab>0;③ “a>0,且Δ=b2-4ac≤0”是“一元二次不等式ax2+bx +c≥0的解集是R”的充要条件; ④ “x ≠1”是“x 2≠1”的充分不必要条件.答案:①③解析:① 因为由x≠0推不出x +|x|>0,如x =-1,x +|x|=0,而x +|x|>0x ≠0,故①正确;因为a =0时,也有|a +b|=|a|+|b|,故②错误,正确的应该是“|a +b|=|a|+|b|”的充分不必要条件是ab>0;由二次函数的图象可知③正确;x =-1时,有x2=1,故④错误,正确的应该是“x≠1”是“x 2≠1”的必要不充分条件.题型3 全称命题与存在性命题的否定例3 命题“所有不能被2整除的整数都是奇数”的否定是_______________________________. 答案:存在一个不能被2整除的整数不是奇数备选变式(教师专享)若命题改为“存在一个能被2整除的整数是奇数”,其否定为_____________________________. 答案:所有能被2整除的整数都不是奇数题型4 求参数范围例4 已知命题p :方程a2x2+ax -2=0在[-1,1]上有解;命题q :只有一个实数x 满足不等式x2+2ax +2a≤0,若命题“p 或q”是假命题,求实数a 的取值范围.解:由a2x2+ax -2=0,得(ax +2)(ax -1)=0,显然a≠0,∴ x =-2a 或x =1a .∵ x ∈[-1,1],故⎪⎪⎪⎪2a ≤1或⎪⎪⎪⎪1a ≤1, ∴ |a|≥1.由题知命题q“只有一个实数x 满足x2+2ax +2a≤0”,即抛物线y =x2+2ax +2a 与x 轴只有一个交点,∴ Δ=4a2-8a =0,∴ a =0或a =2,∴ 当命题“p 或q”为真命题时|a|≥1或a =0.∵ 命题“p 或q”为假命题,∴ a 的取值范围为{a|-1<a<0或0<a<1}.备选变式(教师专享)已知命题p :函数y =loga(1-2x)在定义域上单调递增;命题q :不等式(a -2)x2+2(a -2)x -4<0对任意实数x 恒成立.若p ∨q 是真命题,求实数a 的取值范围.解:∵ 命题p :函数y =loga(1-2x)在定义域上单调递增,∴ 0<a<1.又命题q :不等式(a -2)x2+2(a -2)x -4<0对任意实数x 恒成立,∴ a =2或⎩⎪⎨⎪⎧a -2<0,Δ=4(a -2)2+16(a -2)<0,即-2<a≤2. ∵ p ∨q 是真命题,∴ a 的取值范围是-2<a≤2.命题“所有能被2整除的数都是偶数”的否定是___________________________________________________.答案:存在一个能被2整除的数不是偶数2. 设α、β为两个不同的平面,直线l Ìα,则“l ⊥β”是“α⊥β”成立的________条件. 答案:充分不必要解析:根据定理知由l ⊥β可以推出α⊥β.反之不成立,仅当l 垂直于α、β的交线时才成立.3. “若a +b 为偶数,则a 、b 必定同为奇数或偶数”的逆否命题为__________________________. 答案:若a 、b 不同为奇数且不同为偶数,则a +b 不是偶数4.已知命题p1:函数y =ln(x +1+x2),是奇函数,p2:函数y =x 12为偶函数,则下列四个命题: ① p1∨p2;② p 1∧p2;③ (Øp1)∨p2;④ p 1∧(Øp2).其中,真命题是________.(填序号)答案:①④解析:由函数的奇偶性可得命题p1为真命题,命题p2为假命题,再由命题的真假值表可得②③为假,①④为真.1. 若a 、b 为实数,则 “0<ab<1”是“b<1a ”的________条件.答案:既不充分也不必要解析:0<ab<1,a 、b 都是负数时,不能推出b<1a ;同理b<1a 也不能推出0<ab<1.2. 在命题p 的四种形式的命题(原命题、逆命题、否命题、逆否命题)中,正确命题的个数记为f(p),已知命题p :“若两条直线l1:a1x +b1y +c1=0,l2:a2x +b2y +c2=0平行,则a1b2-a2b1=0”.那么f(p)=________.答案:2解析:若两条直线l1:a1x +b1y +c1=0与l2:a2x +b2y +c2=0平行,则必有a1b2-a2b1=0,但当a1b2-a2b1=0时,直线l1与l2不一定平行,还有可能重合,因此命题p 是真命题,但其逆命题是假命题,从而其否命题为假命题,逆否命题为真命题,所以在命题p 的四种形式的命题(原命题、逆命题、否命题、逆否命题)中,有2个正确命题,即f(p)=2.3. 设命题p :关于x 的不等式2|x -2|<a 的解集为;命题q :函数y =lg(ax2-x +a)的值域是R.如果命题p 和q 有且仅有一个正确,求实数a 的取值范围.解:由不等式2|x -2|<a 的解集为Æ得a≤1.由函数y =lg(ax2-x +a)的值域是R 知ax2-x +a 要取到所有正数,故⎩⎪⎨⎪⎧a>0Δ=1-4a2≥00<a ≤12 或a =0即0≤a≤12. 由命题p 和q 有且仅有一个正确得a 的取值范围是(-∞,0)∪⎝⎛⎦⎤12,1. 4. 设数列{an}、{bn}、{cn}满足:bn =an -an +2,cn =an +2an +1+3an +2(n =1,2,3,…),求证:{an}为等差数列的充分必要条件是{cn}为等差数列且bn ≤bn +1(n =1,2,3,…). 证明:必要性:设{an}是公差为d1的等差数列,则bn +1-bn =(an +1-an +3) - (an -an +2)= (an +1-an) - (an +3-an +2)= d1- d1=0,所以bn ≤bn +1(n =1,2,3,…)成立.又cn +1-cn =(an +1-an)+2(an +2-an +1)+3(an +3-an +2)= d1+2d1 +3d1 =6d1(常数)(n =1,2,3,…),所以数列{cn}为等差数列.充分性:设数列{cn}是公差为d2的等差数列,且bn ≤bn +1(n =1,2,3,…).∵ cn =an +2an +1+3an +2, ①∴ cn +2=an +2+2an +3+3an +4, ②①-②,得cn -cn +2=(an -an +2)+2 (an +1-an +3)+3 (an +2-an +4)=bn +2bn +1+3bn +2.∵ cn -cn +2=(cn -cn +1)+(cn +1-cn +2)= -2d2,∴ bn +2bn +1+3bn +2=-2d2, ③从而有bn +1+2bn +2+3bn +3=-2d2, ④④-③,得(bn +1-bn)+2 (bn +2-bn +1)+3 (bn +3-bn +2)=0.⑤∵ bn +1-bn ≥0,bn +2-bn +1≥0,bn +3-bn +2≥0,∴ 由⑤得bn +1-bn =0(n =1,2,3,…).由此不妨设bn =d3 (n =1,2,3,…),则an -an +2=d3(常数).由此cn =an +2an +1+3an +2cn =4an +2an +1-3d3,从而cn +1=4an +1+2an +2-5d3,两式相减得cn +1-cn =2(an +1-an) -2d3,因此an +1-an =12(cn +1-cn)+d3=12d2+d3(常数) (n =1,2,3,…),∴ 数列{an}为等差数列.1. 在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可.对涉及数学概念的命题的判定要从概念本身入手.2. 充要条件的判断,重在“从定义出发”,利用命题“若p,则q”及其逆命题的真假进行区分,在具体解题中,要注意分清“谁是条件”“谁是结论”,如“A是B的什么条件”中,A是条件,B 是结论,而“A的什么条件是B”中,A是结论,B是条件.有时还可以通过其逆否命题的真假加以区分.3. 含有逻辑联结词的命题真假的判断规律(1) p∨q:p、q中有一个为真,则p∨q为真,即一真全真;(2) p∧q:p、q中有一个为假,则p∧q为假,即一假即假;(3) Øp:与p的真假相反,即一真一假,真假相反.请使用课时训练(A)第3课时(见活页).[备课札记]。
第3节 全称量词与存在量词、逻辑联结词“且”“或”“非”
数学
反思归纳
判断含有逻辑联结词命题真假的方法:一是要注意明确简
单命题p、q的真假;二是要注意真值表的记忆与理解,正确判断含有逻
辑联结词命题的真假.
数学
【即时训练】 命题p:函数f(x)=x3-3x在区间(-1,1)内单调递减,命题q:
函数f(x)=|sin 2x|的最小正周期为π ,则下列命题为真命题的是(
全称命题
特称命题
对M中任意一个x,有p(x)成立
存在M中的一个x0,使p(x0)成立
数学
(3)全称命题和特称命题的否定 命题 任意x∈M,p(x) 存在x0∈M,p(x0) 命题的否定 存在x0∈M,﹁p(x0) . 任意x∈M,﹁p(x) .
数学
夯基自测
1.(2015 太原市模拟)下列命题中的假命题是( (A)任意 x∈R,e >0 (C)存在 x0∈R,sin x0=2
0
B
)
+
(B)存在 x0∈R+,| e x -1|≤x0+1
0
(C)任意的 x0∈R+,| e x -1|≤x0+1
0
(D)不存在 x0∈R ,| e x -1|≤x0+1
+
0
解析:全称命题的否定不但要否定结论,而且要对量词进行转换,故选B.
数学
3.(2015河北石家庄一模)命题p:若sin x>sin y,则x>y;命题q:x2+y2≥2xy, 下列命题为假命题的是( B ) (A)p或q (B)p且q (C)q (D)﹁p
解析:(2)对于 p1:当 a>1 时,y=ax-a-x 为增函数,当 0<a<1 时,y=ax-a-x 为减函 数,所以 p1 为假命题; 对于 p2:a2-ab+b2=(a1 3 b)2+ b2≥0,所以 p2 为假命题; 2 4
【数学】高考数学复习:集合与简易逻辑+简单的逻辑联结词、全称量词与存在量词
答案:真
1.对“或”“且”“非”的理解 (1)“或”与日常生活中的用语“或”的意义不同.对于逻辑用语 “或”的理解我们可以借助于集合中的并集的概念:在 A∪B={x|x∈A,或x∈B}中的“或”是指“x∈A”与“x∈B”
中至少有一个成立,可以是“x∈A且x∉B”,也可以是
“x∉A且x∈B”,也可以是“x∈A且x∈B”,逻辑用语中的 “或”与并集中的“或”的含义是一样的.
(2)对“且”的理解,可以联想到集合中的交集的概念:在
A∩B={x|x∈A,且x∈B}中的“且”是指“x∈A”“x∈B”都要
满足的意思,即x既要属于集合A,又要属于集合B. (3)对“非”的理解,可以联想到集合中的补集的概念:若将 命题p对应集合P,则命题非p就对应着集合P在全集U中 的补集∁UP.对于非的理解,还可以从字意上来理解,
题型七:集合运算与解析几何
M {( x, y) y 16 x , y 0} 例7:已知 : N {( x, y) y x b} M 7
(1).已知: A
{( x, y) x y 1},
p或q为假,
答案:A
3.命题“有些负数满足不等式(1+x)(1-9x2)>0”用符号“∃”写
成特称命题为 ( )
答案:∃x∈R且x<0,(1+x)(1-9x2)>0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 简单的逻辑联结词、全称量词与存在量词
题号
1 2 3 4 5 6
答案
1.(2014·湖北卷)命题“∀x∈R,x2≠x”的否定是( )
A.∀x∉R,x2≠x B.∀x∈R,x2=x
C.∃x∉R,x2≠x D.∃x∈R,x2=x
解析:全称命题的否定方法是先改变量词,然后否定结论,故所
求的命题是“∃x∈R,x2=x”.故选D.
答案:D
2.(2013·湖北黄冈上学期期末)命题“所有实数的平方都是正
数”的否定为( )
A.所有实数的平方都不是正数
B.有的实数的平方是正数
C.至少有一个实数的平方是正数
D.至少有一个实数的平方不是正数
答案:D
3.(2013·新课标全国卷Ⅰ)已知命题p:∀x∈R,2x<3x;命题q:
∃x∈R,x3=1-x2,则下列命题中为真命题的是( )
A.p∧q B.(綈p)∧q
C.p∧(綈q) D.(綈p)∧(綈q)
解析:由指数函数的性质知,命题p是错误的.而命题q是正
确的.故选B.
答案:B
4.“命题‘∃x∈R,x2+ax-4a<0’为假命题”是“-
16≤a≤0”的( )
A.充要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
解析:因为“∃x∈R,x2+ax-4a<0”为假命题,所以“∀x∈R,
x2+ax-4a≥0”为真命题.所以Δ=a2+16a≤0,即-16≤a≤0.故选A.
答案:A
5.已知命题p:函数y=sin 4x是周期函数,命题q:函数y=
tan x在π2,π上单调递减,则下列命题为真命题的是( )
A.p∧q B.(綈p)∨q
C.(綈p)∧(綈q) D.p∨q
解析:本题先判断命题p,q的真假,再依真值表来判断复合命
题的真假.因为函数y=sin 4x的最小正周期为π2,故命题p为真命
题;因为函数y=tan x在π2,π上单调递增,故命题q为假命题,所
以p∧q为假命题,(綈p)∨q为假命题,(綈p)∧(綈q)为假命题,排
除A,B,C三项,故选D.
答案:D
6.给出如下四个判断:
①∃x0∈R,ex0≤0;
②∀x∈R+,2x>x2;
③设a,b是实数,a>1,b>1是ab>1的充要条件;
④命题“若p,则q”的逆否命题是“若綈q,则綈p”.
其中正确的判断个数是( )
A.1个 B.2个 C.3个 D.4个
解析:对任意x∈R,ex>0,故①不正确;当x=2时,2x=x2,
故②不正确;由ab>1不能得到a>1,b>1,故③不正确;④正确,
故选A.
答案:A
7.若命题“∃x∈R,使得x2+(1-a)x+1<0”是真命题,则实
数a的取值范围是______________.
解析:由题意可知,Δ=(1-a)2-4>0,解得a<-1或a>3.
答案:(-∞,-1)∪(3,+∞)
8.(2013·辽宁五校协作体摸底文改编)命题p:∃x∈R,使sin x
+cos x=34;命题q:∀x∈R,都有2x2+x+2>0.则下列说法正确的
是____________(把正确的序号都填上).
①命题“p∧q”是真命题;②命题“p∧(綈q)”是假命题;③
命题“(綈p)∨q”是假命题;④命题“(綈p)∨(綈q)”是假命题.
解析:命题p是真命题,命题q是真命题,所以綈p是假命题,
綈q是假命题.从而可以判断①、②、④说法正确.
答案:①②④
9.已知命题p:f(x)=x3-ax在(2,+∞)为增函数,命题q:g(x)
=x2-ax+3在(1,2)为减函数,若p或q为真命题,p且q为假命
题,求a的取值范围.
解析:p:f′(x)=3x2-a≥0在(2,+∞)上恒成立,
则a≤3×22=12;
q:
a
2
≥2,得a≥4.
由“p或q为真,p且q为假”知:
p真q假时,有a≤12,a<4,得a<4;
p假q真时,有a>12,a≥4,得a>12.
综上所述,a的取值范围为(-∞,4)∪(12,+∞).
10.已知命题p:方程2x2+ax-a2=0在[-1,1]上有解;命题
q:只有一个实数x0满足不等式x20+2ax0+2a≤0,若命题“p∨q”
是假命题,求实数a的取值范围.
解析:由2x2+ax-a2=0得(2x-a)(x+a)=0,
∴x=a2或x=-a,
∴当命题p为真命题时
a
2
≤1或|-a|≤1,∴|a|≤2.
又“只有一个实数x0满足x20+2ax0+2a≤0”,
即抛物线y=x2+2ax+2a与x轴只有一个交点,
∴Δ=4a2-8a=0,∴a=0或a=2.
∴当命题q为真命题时,a=0或a=2.
∴命题“p∨q”为真命题时,|a|≤2.
∵命题“p∨q”为假命题,∴a>2或a<-2.
即a的取值范围为(-∞,-2)∪(2,+∞).