2016年秋八年级数学上册1勾股定理章末复习(一)勾股定理(新版)北师大版

合集下载

北师大版八年级上册第一章勾股定理复习(教案)

北师大版八年级上册第一章勾股定理复习(教案)
-数据分析能力的培养:在分析勾股数的过程中,学生可能不知道如何系统地分析和归纳数据,从而找出勾股数的规律。
举例:针对勾股定理证明的难点,教师可以通过以下方法帮助学生突破:
-使用直观的图形和动画演示面积法的证明过程,让学生看到面积转化的直观效果。
-分步骤讲解证明过程,强调每一步的逻辑关系和数学意义。
-组织学生进行小组讨论,鼓励他们用自己的语言解释证明过程,加深理解。
其次,在新课讲授环节,我注重理论与实践相结合,通过具体的案例分析和实验操作,帮助学生加深对勾股定理的理解。这种教学方法取得了较好的效果,但我也注意到部分学生在理解证明过程时仍存在困难。因此,在今后的教学中,我需要更加关注学生的个体差异,针对不同水平的学生进行有针对性的辅导。
在实践活动环节,分组讨论和实验操作使学生积极参与到课堂中,提高了他们的动手能力和团队协作能力。但同时,我也发现部分小组在讨论过程中存在时间分配不均的问题。为了提高课堂效率,我需要在今后的教学中加强对小组讨论的引导和监督,确保每个学生都能充分参与到讨论中来。
-对于勾股数的性质,教师可以设计一些探索性的活动,如让学生尝试找出一定范围内所有的勾股数,通过实践活动发现勾股数的规律。
-在解决实际问题时,教师应引导学生如何从问题中抽象出数学模型,如何将现实问题转化为数学问题,并通过示例来演示解题步骤。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形斜边长度的情况?”比如,测量一块三角形的草地面积。这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾勾股定理的奥秘。
-勾股定理的应用:学会将勾股定理应用于解决实际问题,如计算直角三角形的斜边长度或判断一组数是否为勾股数。

北师大版八年级数学上册第一章勾股定理复习精品

北师大版八年级数学上册第一章勾股定理复习精品

1八年级期末复习第一章勾股定理知识点睛1.直角三角形的性质:边:直角三角形斜边长______任意一条直角边长;角:直角三角形两锐角_________;2.勾股定理:如果用a ,b 和c 分别表示直角三角形的两条直角边和斜边,那么a 2+b 2=c 2.3.勾股定理逆定理:如果三角形的三边a ,b ,c 满足a 2+b 2=c 2,则这个三角形是直角三角形.4.勾股数:满足a 2+b 2=c 2的三个正整数,称为勾股数.常见勾股数有_____________;______________;______________;_______________;_______________;_________________. 精讲精练1.一个直角三角形两直角边长分别为3和4,下列说法正确的是()A .斜边长为25B .三角形的周长为25C .斜边长为5D .三角形的面积为202.如图,在Rt △ABC 和Rt △ACF 中,BC 长为3cm ,AB 长为4cm ,AF 长为12cm ,则正方形CDEF 的面积为_________.3.如图,已知Rt △ABC 的两直角边长分别为6和8,分别以其三边为直径作半圆,则图中阴影部分的面积为___________.4.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为______.5.如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 为边向外作正方形ABDE ,已知正方形ABDE 的面积为100,BC 的长为8,则点E 到直线BC 的距离为_________.6.如图,在△ABC 中,AD ⊥BC 于点D ,若AB=13cm ,BD=5cm ,CD=9cm ,则线段AD=_________,AC =________________.7.下列各组数中不能作为直角三角形三边长的是()A .0.3,0.4,0.5B .7,12,15C .11,60,61D .9,40,418.如图,在单位正方形组成的网格图中有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是()A .CD ,EF ,GHB .AB ,EF ,GHC .AB ,CD ,GHD .AB ,CD ,EF 9.若三角形的三边长分别是222122221n n n n n ++++,,(n 为正整数),则三角形的最大内角等于_______度.10.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A .12≤a ≤13B .12≤a ≤15C .5≤a ≤12D .5≤a ≤1311.如图,将一根24cm 长的筷子,置于底面直径为15cm ,高为8cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是()A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤16应用1:蚂蚁爬最短路问题处理思路背记11—19的平方:112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361.注:勾股定理:角(Rt △)→边(a 2+b 2=c 2)勾股定理逆定理:边(a 2+b 2=c 2)→角(Rt △)2(1)__________________________;(2)__________________________;(3)_______________,利用________________进行计算.1.有这样一个有趣的问题:如图所示,圆柱的高等于12cm ,底面半径等于3cm .在圆柱的下底面的A 点处有一只蚂蚁,它想吃到上底面上与A 相对的B 点处的食物,则沿圆柱的侧面爬行的最短路程是__________.(π取整数3)2.如图,藤蔓一晚上生长的长度是沿树干爬一圈后由A 上升到B ,已知AB =5cm ,树干直径为4cm .藤蔓一晚上生长的最短长度为______(π取整数3)3.如图,一个三级台阶的每一级的长、宽、高分别为20dm ,3dm ,2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是________.4.如图,一只蚂蚁从长、宽都是3,高是8的长方体纸箱(有盖)的A 点沿纸箱爬到B 点,那么它所爬行的最短路程是____________.应用2:折叠问题处理思路(1)找___________;(2)______________;(3)利用____________列方程.1.如图,有一张直角三角形纸片,两直角边AC =6,BC =8,点D 在BC 边上,将直角边AC 沿直线AD 折叠,点C 恰好落在斜边AB 上的点E 处.设DE 的长为x ,则CD =__________,BD =_________.(用含x 的代数式表示)2.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E处,点A 落在点F 处,折痕为MN ,则线段CN 的长为__________.3.如图,在长方形ABCD 中,AB =3,AD =9,将此长方形折叠,使点D与点B 重合,折痕为EF ,则△ABE 的面积为_________.4.如图,折叠长方形的一边AD ,使点D 落在BC 边上的点F 处,若AB =4cm ,BC =5cm ,则EF 的长为________.拓展练习1.若直角三角形两直角边的比为5:12,则斜边上的高与斜边的比为()A .60:13B .5:12C .12:13D .60:1692.如图,Rt △ABC 的直角边长分别为12和16,在其内部有n 个小直角三角形,则这n 个小直角三角形周长之和为()A.28 B.48 C.36 D.563.如图,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为3的半圆,其边缘AB=CD=16,点E 在CD 上,CE=4,一滑板爱好者从A 点滑到E 点,则他滑行的最短距离的平方为()(π按3计算)A.225 B.180 C.468 D.4414.下列长度的三条线段:①9,12,15;②7,24,25;③32,42,52;④3a ,4a ,5a (a>0);⑤22n m -,2mn ,22n m +(m ,n 为正整数,且m>n ).其中可以构成直角三角形的有()A.①②③④⑤ B.①②④⑤ C.①②④ D.①②5.一辆卡车装满货物后宽3.2米,这辆卡车要通过如图所示的隧道(上方是一个半圆,下方是边长为4米的正方形),则装满货物后卡车的最大高度为()米.A.5.2 B.5.8 C.7.6 D.5.4。

北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)

北师大版八年级数学上册1.1 第1课时 勾股定理的认识  课件(共23张PPT)

探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1

2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .

(完整)八年级数学上册知识点复习总结(北师大版),推荐文档

(完整)八年级数学上册知识点复习总结(北师大版),推荐文档

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

北师大版八年级数学上册第一章勾股定理复习与小结课件

北师大版八年级数学上册第一章勾股定理复习与小结课件

P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’


是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么


验证方法:面积法

北师大版八年级数学上册第一章《勾股定理》章末复习题含答案解析 (36)

北师大版八年级数学上册第一章《勾股定理》章末复习题含答案解析 (36)

一、选择题1.下列长度的三条线段能组成直角三角形的是( )A.1,2,3B.2,3,4C.3,4,5D.4,5,62.下列各组数中,不能作为直角三角形的三边长的是( )A.1,√3,2B.7,12,15C.3,4,5D.5,12,133.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的点F处,已知AB=6,△ABF的面积是24,则FC等于( )A.1B.2C.3D.44.我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴案,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为( )A.x2+102=(x+1)2B.(x−1)2+52=x2C.x2+52=(x+1)2D.(x−1)2+102=x25.如图,在Rt△ABC中,∠ACB=90∘,D是AB的中点,CE⊥BE,交CD的延长线于点E,若AC=2,BC=2√2,则BE的长为( )A.2√63B.√62C.√3D.√26.下列各组数中,不能作为直角三角形的三边长的是( )A.1,√3,2B.7,12,15C.3,4,5D.5,12,137.【例3】如图,在三个正方形中,其中两个的面积S1=25,S2=144,则另一个正方形的面积S3为( )A.13B.200C.169D.2258.如图,有一张直角三角形纸片,两直角边长AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于( )A.254cm B.223cm C.74cm D.53cm9.若△ABC的三条边a,b,c满足(a−8)2+∣15−b∣+√c−17=0,则△ABC是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定10.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )A.5B.6C.8D.10二、填空题11.勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),⋯.分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),⋯⋯,分析上面规律,第5个勾股数组为.12.如图,在等腰直角三角形ABC中,∠ABC=90∘,AB=BC=4,P是△ABC所在平面内一点,且满足PA⊥PB,则PC的最大值为.13.在△ABC中,∠C=90∘,AD是∠BAC的平分线,BC=10cm,BD=6cm,则点D到AB的距离是cm.14.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则AB的长为.15.如图,Rt△ABC中,AB=9,BC=6,∠B=90∘,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为.16.如图,在Rt△ABC中,∠C=90∘,AD平分∠BAC交BC于点D.若BC=8,BD=5,则点D到AB的距离是.17.已知正方形ABCD边长为4,点P为其所在平面内一点,PD=√5,∠BPD=90∘,则点A到BP的距离等于.三、解答题18.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点都在格点上.(1) 直接写出边AB,AC,BC的长.(2) 判断△ABC的形状,并说明理由.19.如图,在四边形ABCD中,∠B=90∘,AB=9,BC=12,AD=8,CD=17.求:(1) AC的长.(2) 四边形ABCD的面积.20.我们学习了勾股定理后,都知道"勾三、股四、弦五".观察:3、4、5;5、12、13;7、24、25;9、40、41;……,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1) 请你根据上述的规律写出下一组勾股数:;(2) 若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.21.如图,一块三角形的铁皮,边BC的长为40厘米,BC上的高AD为30厘米,要把它加工成一块矩形铁皮,使矩形的一边FG在BC上,其余两个顶点E,H分别在AB,AC上,且矩形的面积是三角形面积的一半,这个矩形的长和宽各是多少?22.葛藤是一种刁钻的植物,它自已腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘旋上升的路线,总是沿着最短路线盘旋前进的.难道植物也懂得数学吗?阅读以上信息,你能设计一种方法解决下列问题吗?(1) 如图,如果树的周长为3cm,从点A绕圈到B点,葛藤升高4cm,则它爬行的路程是多少厘米?(2) 如果树的周长为8cm,绕一圈爬行10cm,则爬行一圈升高多少厘米?如果爬行10圈到达树顶,则树干高多少厘米?23.已知:如图,在△ABC中,∠C=90∘,AD是∠A的平分线,BD=5,CD=3.求AB的长.24.如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知该纸片宽AB=3 cm,长BC=5 cm.求EC的长.25.阅读:小明同学在某材料中看到如下问题及部分证明.如图①,已知在△ABC和△A1B1C1中,BD=DC,B1D1=D1C1,AB=A1B1,AC=A1C1,AD=A1D1,求证:∠1=∠2.证明:延长AD到E,使DE=AD,连接CE,延长A1D1到E1,使D1E1=A1D1,连接C1E1,在△ABD和△ECD中,∵AD=DE(已作),∠ADB=∠EDC(对顶角相等),BD=DC(已知),∴△ABD≌△ECD(SAS),∴AB=EC(全等三角形的对应边相等),同理可证,A1B1=E1C1,未完待续⋯⋯(1) 请你补全这个证明.(2) 应用:如图②,在△ABC中,AD是BC边上的中线,若AB=5,AC=3,则AD长的范围是.(3) 拓展:如图③,在△ABC中,AD是BC边上的中线,若AB=√89,AC=5,AD=4,则△ABC的面积是.答案一、选择题1. 【答案】C【解析】∵12+22≠32,∴三条线段不能组成直角三角形;∵22+32≠42,∴三条线段不能组成直角三角形;∵32+42=52,∴三条线段能组成直角三角形;∵42+52≠62,∴三条线段不能组成直角三角形.【知识点】勾股逆定理2. 【答案】B【知识点】勾股逆定理3. 【答案】B【知识点】勾股定理之折叠问题4. 【答案】B【知识点】勾股定理的实际应用5. 【答案】A【解析】方法1:在Rt△ABC中,∠ACB=90∘,AC=2,BC=2√2,由勾股定理得:AB=√AC2+BC2=√22+(2√2)2=2√3,∵D是AB的中点,∴BD=CD=√3,设DE=x,由勾股定理得:(√3)2−x2=(2√2)2−(√3+x)2,解得:x=√3,3∴在Rt△BED中,BE=√BD2−DE2=√(√3)2−(√33) 2=2√63.方法2:三角形ABC的面积=12×AC×BC=12×2×2√2=2√2,∵D是AB中点,∴△BCD的面积=△ABC面积×12=√2,Rt△ABC中,∠ACB=90∘,AC=2,BC=2√2,由勾股定理得:AB=√AC2+BC2=√22+(2√2)2=2√3,∵D是AB的中点,∴CD=√3,∴BE=√2×2÷√3=2√63.【知识点】勾股定理6. 【答案】B【知识点】勾股逆定理7. 【答案】C【解析】由题可知,在直角三角形中两直角边的平方分别为25和144,所以斜边的平方为144+25=169,即面积S3为169.【知识点】勾股定理8. 【答案】C【知识点】勾股定理之折叠问题、图形成轴对称9. 【答案】B【解析】∵(a−8)2+∣15−b∣+√c−17=0,∴a−8=0,15−b=0,c−17=0,∴a=8,b=15,c=17,∴a2+b2=c2.∴△ABC是直角三角形.【知识点】勾股逆定理10. 【答案】C【解析】∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD=√AB2−AD2=4,∴BC=2BD=8,故选C.【知识点】等腰三角形“三线合一”、勾股定理二、填空题11. 【答案】(11,60,61)【解析】在勾股数组:(3,4,5),(5,12,13),(7,24,25),⋯中,4=1×(3+1),12=2×(5+1),24=3×(7+1),⋯⋯,可得第4组勾股数组中间的数为4×(9+1)=40,故对应的勾股数组为(9,40,41);第5组勾股数组中间的数为5×(11+1)=60,故对应的勾股数组为(11,60,61),故答案为(11,60,61).【知识点】勾股数12. 【答案】2√5+2【解析】∵PA⊥PB,∴∠APB=90∘,∴点P在以AB为直径的圆上,取AB的中点,连接CO,如图,则OC=√22+42=2√5,∵点P为CO的延长线于⊙O的交点时,CP最大,∴PC的最大值为2√5+2.【知识点】圆周角定理推论、勾股定理13. 【答案】4【知识点】角平分线的性质、勾股定理14. 【答案】2√10【解析】将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB=√62+22=2√10.【知识点】平面展开-最短路径问题15. 【答案】 4【解析】设 BN =x ,由折叠的性质可得 DN =AN =9−x , ∵D 是 BC 的中点, ∴BD =3,在 Rt △BND 中,x 2+32=(9−x )2, 解得 x =4.故线段 BN 的长为 4. 【知识点】勾股定理之折叠问题16. 【答案】 3【知识点】勾股定理17. 【答案】3√3+√52或3√3−√52【解析】 ∵ 点 P 满足 PD =√5,∴ 点 P 在以 D 为圆心,√5 为半径的圆上, ∵∠BPD =90∘,∴ 点 P 在以 BD 为直径的圆上, ∴ 如图,点 P 是两圆的交点,若点 P 在 AD 上方,连接 AP ,过点 A 作 AH ⊥BP , ∵CD =4=BC ,∠BCD =90∘, ∴BD =4√2, ∵∠BPD =90∘,∴BP =√BD 2−PD 2=3√3, ∵∠BPD =90∘=∠BAD ,∴ 点 A ,点 B ,点 D ,点 P 四点共圆, ∴∠APB =∠ADB =45∘,且 AH ⊥BP , ∴∠HAP =∠APH =45∘, ∴AH =HP ,在 Rt △AHB 中,AB 2=AH 2+BH 2, ∴16=AH 2+(3√3−AH)2, ∴AH =3√3+√52(不合题意),或 AH =3√3−√52, 若点 P 在 CD 的右侧,同理可得 AH =3√3+√52.综上所述:AH =3√3+√52 或 3√3−√52.【知识点】判断四点共圆的方法、勾股定理三、解答题18. 【答案】(1) AB =√12+22=√5,AC =√22+12=√5,BC =√12+32=√10;(2) △ABC 是等腰直角三角形,∵AB 2+AC 2=5+5=10=BC 2,∵AB =AC ,∴△ABC 是等腰直角三角形.【知识点】等腰直角三角形、勾股定理、勾股逆定理19. 【答案】(1) AC =√AB 2+BC 2=15.(2) ∵AD =8,AC =15,CD =17,∴AD 2+AC 2=CD 2,∴△ADC 是直角三角形,∴∠DAC =90∘,∴四边形ABCD 的面积=S △ABC +S △ADC =12×9×12+12×8×15=114.【知识点】勾股逆定理、勾股定理20. 【答案】(1) 11,60,61(2) 后两个数表示为n 2−12和n 2+12. ∵n 2+(n 2−12)2=n 2+n 4−2n 2+14=n 4+2n 2+14, (n 2+12)2=n 4+2n 2+14, ∴n 2+(n 2−12)2=(n 2+12)2.∵n ≥3,且 n 为奇数,∴ 由 n ,n 2−12,n 2+12 三个数组成的数是勾股数. 【解析】(1) 下一个勾为 11,根据所提供的例子发现股是勾的平方减去 1 的二分之一,弦是勾的平方加 1 的二分之一. 所以勾股数为 11,60,61 .(2) 根据所提供的例子发现股是勾的平方减去 1 的二分之一,弦是勾的平方加 1 的二分之一. 所以后两个数为 n 2−12和n 2+12.【知识点】勾股定理21. 【答案】矩形的长和宽分别为 20 cm 和 15 cm .【知识点】矩形的面积、一般三角形面积公式、勾股定理22. 【答案】(1) 如果树的周长为 3 cm ,绕一圈升高 4 cm ,则葛藤绕树爬行的最短路程为;32+42=52,则爬行的路程是 5 cm .(2) 如果树的周长为 8 cm ,绕一圈爬行 10 cm ,则爬行一圈升高:102−82=62,则升高 6 cm ,如果爬行 10 圈到达树顶,则树干高为:10×6=60(cm ).【知识点】平面展开-最短路径问题23. 【答案】提示:过点 D 作 AB 的垂线,垂足为 E ,则 DE =3,可求出 BE =4,根据 AC 2+BC 2=AB 2,可求出 AC =6,即 AE =6,所以 AB =10.【知识点】勾股定理24. 【答案】 ∵ 折叠,∴AF =AD =BC =5 cm ,∵ 在 Rt △ABF 中,BF 2+AB 2=AF 2,AB =3 cm ,∴BF =4 cm ,∴CF =BC −BF =5−4=1 cm ,设 EC =x cm ,则 EF =ED =CD −CE =(3−x )cm ,∵ 在 Rt △CEF 中,CF 2+CE 2=EF 2,∴12+x 2=(3−x )2,∴x=43,∴CE=43cm.【知识点】勾股定理之折叠问题25. 【答案】(1) ∵AD=A1D1,∴2AD=2A1D1,即AE=A1E1,在△AEC和△A1E1C1中,{AE=A1E1, AC=A1C1, EC=E1C1,∴△AEC≌△A1E1C1(SSS),∴∠1=∠2.(2) 1<AD<4(3) 20【解析】(2) 延长AD至E,使DA=DE,连接BE,CE,由(1)可知,AB=CE=5,∴5−3<2AD<5+3,∴1<AD<4.(3) 延长AD至E,使DA=DE,连接CE,同理可证,CE=AB=√89,AE=2AD=8,∴AE2+AC2=CE2,∴△AEC是Rt△,∴S△ABC=S△AEC=8×5×12=20.【知识点】勾股逆定理、边角边。

北师大版八年级上册数学第一章勾股定理全章知识点及习题

cbaD CA B第一章 勾股定理学问点一:勾股定理定义画一个直角边为3cm 和4cm 的直角△ABC ,量AB 的长;一个直角边为5和12的直角△ABC ,量AB 的长发觉32+42及52的关系,52+122和132的关系,对于随意的直角三角形也有这特性质吗?直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

(即:a 2+b 2=c 2)1.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ;(给出证明) ⑷三边之间的关系: 。

学问点二:验证勾股定理学问点三:勾股定理证明(等面积法)例1。

已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

证明:ACBD例2。

已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

证明:学问点四:勾股定理简洁应用 在Rt △ABC 中,∠C=90°(1) 已知:a=6, b=8,求c (2) 已知:b=5,c=13,求a学问点五:勾股定理逆定理假设三角形的三边长为c b a ,,,满意222c b a =+,那么,这个三角形是直角三角形. 利用勾股定理的逆定理判别直角三角形的一般步骤: ①先找出最大边(如c )②计算2c 及22a b +,并验证是否相等。

若2c =22a b +,则△ABC 是直角三角形。

若2c ≠22a b +,则△ABC 不是直角三角形。

1.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A.a=7,b=24,c=25 B.a=7,b=24,c=24C.a=6,b=8,c=10D.a=3,b=4,c=52.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形 3.已知0)10(862=-+-+-z y x ,则由此z y x ,,为三边的三角形是 三角形. 学问点六:勾股数bbba(1)满意222c b a =+的三个正整数,称为勾股数.(2)勾股数中各数的一样的整数倍,仍是勾股数,如3、4、5是勾股数,6、8、10也是勾股数.(3)常见的勾股数有:①3、4、5②5、12、13;③8、15、17;④7、24、25; ⑤11、60、61;⑥9、40、41.1.设a 、b 、c 是直角三角形的三边,则a 、b 、c 不行能的是( ).A.3,5,4B. 5,12,13C.2,3,4D.8,17,151.若线段a ,b ,c 组成Rt △,则它们的比可以是( )A.2∶3∶4B.3∶4∶6C.5∶12∶13D.4∶6∶7学问点七:确定最短路途1.一只长方体木箱如图所示,长、宽、高分别为5cm 、4cm 、3cm,有一只甲虫从A 动身,沿外表爬到C ',最近间隔 是多少?2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π 取3)是 .学问点八:逆定理推断垂直1.在△ABC 中,已知AB 2-BC 2=CA 2,则△ABC 的形态是( )A .锐角三角形;B .直角三角形;C .钝角三角形;D .无法确定.2.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对学问点九:勾股定理应用题1.在我国古代数学著作《九章算术》中记载了一道好玩的问题,这个问题的意思是:有一个水ABCD A 'B 'C 'D 'ABC5米3米池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,假设把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?2.如图为某楼梯,测得楼梯的长为5米,高3米,安排在楼梯外表铺地毯,地毯的长度至少须要________米.3.一根直立的桅杆原长25m,折断后,桅杆的顶部落在离底部的5m处,则桅杆断后两局部各是多长?4.某中学八年级学生想知道学校操场上旗杆的高度,他们发觉旗杆上的绳子垂到地面还多1米,当他们把绳子的下端拉开5米后,发觉下端刚好触地面,你能帮他们把旗杆的高度和绳子的长度计算出来吗?综合练习一一、选择题1、下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2 – n 2, 2mn(m,n 均为正整数,m >n);④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( )A.①②;B.①③;C.②③;D.③④2已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )A.25B.14C.7D.7或253.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形;B. 钝角三角形;C. 直角三角形;D. 锐角三角形. 4.△ABC 的三边为a 、b 、c 且(a+b)(a-b)=c 2,则( )A.a 边的对角是直角B.b 边的对角是直角C.c 边的对角是直角D.是斜三角形5.以下列各组中的三个数为边长的三角形是直角三角形的个数有( )①6、7、8,②8、15、17,③7、24、25,④12、35、37,⑤9、40、41 A 、1个 B 、2个 C 、3个 D 、4个6.将直角三角形的三边扩大一样的倍数后,得到的三角形是 ( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不是直角三角形7.若△ABC 的三边a 、b 、c 满意(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( ) A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.如图,∠C =∠B =90°,AB =5,BC =8,CD =11,则AD 的长为 ( )A 、10B 、11C 、12D 、139.如图、山坡AB 的高BC =5m ,程度间隔 AC =12m ,若在山坡上每隔0.65m 栽一棵茶树,则从上到下共 ( )A 、19棵B 、20棵C 、21棵D 、22棵10.Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,若c =2,则2a +2b +2c 的值是 ( )A 、6B 、8C 、10D 、4 11.下列各组数据中,不能构成直角三角形的一组数是( )A、9,12,15 B 、45,1,43 C 、0.2,0.3,0.4 D 、40,41,9 12.已知,一轮船以16海里/时的速度从港口A 动身向东北方向航行,另一轮船以12海里/时的速度同时从港口A 动身向东南方向航行,分开港口2小时后,则两船相距( )A.25海里B.30海里C.35海里D.40海里二、填空题1.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt △ABC =________2.现有长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成直角三角形,则其周长为 cm .3.勾股定理的作用是在直角三角形中,已知两边求 ;勾股定理的逆定理的作用是用来证明 .4.如图中字母所代表的正方形的面积:A = B = .400225AB812255.在△ABC中,∠C=90°,若a=5,b=12,则c=.6.△ABC中,AB=AC=17cm,BC=16cm,则高AD= ,S△ABC = 。

(完整版)北师大八年级上册第一章勾股定理全章复习与巩固(提高)

《勾股定理》全章复习与巩固(提高)【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.【知识网络】【要点梳理】要点一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c ;(2)验证:22a b +与2c 是否具有相等关系:若222a b c +=,则△ABC 是以∠C 为90°的直角三角形;若222a b c +>时,△ABC 是锐角三角形;若222a b c +<时,△ABC 是钝角三角形.2.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41. 如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及逆定理的应用1、如图所示,等腰直角△ABC 中,∠ACB =90°,E 、F 为AB 上两点(E 左F 右),且∠ECF =45°,求证:222AE BF EF +=.【思路点拨】由于∠ACB =90°,∠ECF =45°,所以∠ACE +∠BCF =45°,若将∠ACE 和∠BCF 合在一起则为一特殊角45°,于是想到将△ACE 旋转到△BCF 的右外侧合并,或将△BCF 绕C 点旋转到△ACE 的左外侧合并,旋转后的BF 边与AE 边组成一个直角,联想勾股定理即可证明.【答案与解析】解:(1)222AE BF EF +=,理由如下:将△BCF 绕点C 旋转得△ACF′,使△BCF 的BC 与AC 边重合,即△ACF′≌△BCF ,∵ 在△ABC 中,∠ACB =90°,AC =BC ,∴ ∠CAF′=∠B =45°,∴ ∠EAF′=90°.∵ ∠ECF =45°,∴ ∠ACE +∠BCF =45°.∵ ∠ACF′=∠BCF ,∴ ∠ECF′=45°.在△ECF 和△ECF′中45CE CE ECF ECF CF CF =⎧⎪'∠=∠=⎨⎪'=⎩°∴ △ECF ≌△ECF′(SAS),∴ EF =EF′.在Rt △AEF′中,222AE F A F E ''+=,∴ 222AE BF EF +=.【总结升华】若一个角的内部含有同顶点的半角,(如平角内含直角,90°角内含45°角,120°角内含60°角),则常常利用旋转法将剩下的部分拼接在一起组成又一个半角,然后利用角平分线、全等三角形等知识解决问题.举一反三:【变式】已知凸四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,求证:222BD AB BC =+.【答案】解:将△ABD 绕点D 顺时针旋转60°.由于DC =AD ,故点A 转至点C .点B 转至点E ,连结BE .∵ BD =DE ,∠BDE =60°∴ △BDE 为等边三角形,BE =BD易证△DAB ≌△DCE ,∠A =∠2,CE =AB∵ 四边形ADCB 中∠ADC =60°,∠ABC =30°∴ ∠A +∠1=360°-60°-30°=270°∴ ∠1+∠2=∠1+∠A =270°∴ ∠3=360°-(∠1+∠2)=90°∴222BC CE BE +=∴ 222BC AB BD += 2、如图,在△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PB=1,PC=2,PA=3,求∠BPC 的度数.【答案与解析】解:如图,做∠ECB=∠PCA ,且使CE=CP ,连结EP ,EB在△APC 和△BEC 中PCA ECB AC BC PC EC =⎧⎪∠=∠⎨⎪=⎩∴△APC ≌△BEC∴△PCE 为等腰直角三角形∴∠CPE=45°,PE 2=PC 2+CE 2=8又∵PB 2=1,BE 2=9∴PE 2+ PB 2= BE 2则∠BPE=90°∴∠BPC=135°【总结升华】本题考查了勾股定理的逆定理,通过观察所要求的角度,作出辅助线,把PA 、PB 、PC 的长度转化为一个三角形三条边,构造出直角三角形是解题的关键,当然此题也可以利用旋转的思想来解,即将△APC 绕点C 旋转,使CA 与CB 重合即△APC ≌△BEC. 类型二、勾股定理及逆定理的综合应用3、(2016春•丰城市期末)如图,已知四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.【思路点拨】连接AC ,在直角三角形ABC 中,由AB 及BC 的长,利用勾股定理求出AC 的长,再由AD 及CD 的长,利用勾股定理的逆定理得到三角形ACD 为直角三角形,根据四边形ABCD 的面积=直角三角形ABC 的面积+直角三角形ACD 的面积,即可求出四边形的面积.【答案与解析】解:连接AC ,如图所示:∵∠B=90°,∴△ABC 为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC 2=25,又∵CD=12,AD=13,∴AD 2=132=169,CD 2+AC 2=122+52=144+25=169,∴CD 2+AC 2=AD 2,∴△ACD 为直角三角形,∠ACD=90°,则S 四边形ABCD =S △ABC +S △ACD =AB •BC +AC •CD=×3×4+×5×12=36.故四边形ABCD 的面积是36.【总结升华】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.4、如图:正方形ABCD 中,E 是DC 中点,F 是EC 中点.求证:∠BAF=2∠EAD.【答案与解析】证明:取BC 中点G ,连结AG 并延长交DC 延长线于H∵ ∠ABG=∠HCG ,BG=CG ,∠AGB=∠HGC∴ △GAB ≌△HCG∴ ∠GAB=∠H ,AB=CH又∵ AB=AD ,∠B=∠D ,BG=DE∴ △ABG ≌△ADE∴ ∠GAB=∠DAE在Rt ADF △中,设AD a =,由勾股定理得:222222325()41654AF AD DF a a a AF a =+=+==∴ 又544a HF CH CF a a =+=+= ∴ AF=HF∴ ∠FAH=∠H∴ ∠FAH=∠DAE∴ ∠BAF=2∠DAE【总结升华】要证∠BAF=2∠EAD ,一般方法是在∠BAF 中取一个角使之等于∠EAD ,再证明另一个角也等于∠EAD ,另一种方法是把小角扩大一倍,看它是否等于较大的角. 举一反三:【变式】(2014春•防城区期末)如图所示,在△ABC 中,AB :BC :CA=3:4:5,且周长为36cm ,点P 从点A 开始沿边向B 点以每秒1cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2cm 的速度移动,如果同时出发,问过3秒时,△BPQ 的面积为多少?解:设AB为3xcm,BC为4xcm,AC为5xcm,∵周长为36cm,AB+BC+AC=36cm,∴3x+4x+5x=36,得x=3,∴AB=9cm,BC=12cm,AC=15cm,∵AB2+BC2=AC2,∴△ABC是直角三角形,过3秒时,BP=9﹣3×1=6(cm),BQ=2×3=6(cm),∴S△PBQ=BP•BQ=×(9﹣3)×6=18(cm2).故过3秒时,△BPQ的面积为18cm2.类型三、勾股定理的实际应用5、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD=800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?【思路点拨】作点A关于直线CD的对称点G,连接GB,交CD于点E,利用“两点之间线段最短”可知应在E处饮水,再根据对称性知GB的长为所走的最短路程,然后构造直角三角形,利用勾股定理可解决.【答案与解析】解:作点A关于直线CD的对称点G,连接GB交CD于点E,由“两点之间线段最短”可以知道在E点处饮水,所走路程最短.说明如下:在直线CD上任意取一异于点E的点I,连接AI、AE、BE、BI、GI、GE.∵点G、A关于直线CD对称,∴AI=GI,AE=GE.由“两点之间线段最短”或“三角形中两边之和大于第三边”可得GI+BI>GB=AE+BE,最短路程为GB 的长,自点B 作CD 的垂线,自点G 作BD 的垂线交于点H ,在直角三角形GHB 中,∵ GH =CD =800,BH =BD +DH =BD +GC =BD +AC =200+400=600,∴ 由勾股定理得222228006001000000GB GH BH =+=+=.∴ GB =1000,即最短路程为1000米.【总结升华】这是一道有关极值的典型题目.解决这类题目,一方面要考虑“两点之间线段最短”;另一方面,证明最值,常常另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明,如本题中的I 点.本题体现了勾股定理在实际生活中的应用.举一反三:【变式】如图所示,正方形ABCD 的AB 边上有一点E ,AE =3,EB =1,在AC 上有一点P ,使EP +BP 最短.求EP +BP 的最小值.【答案】解:根据正方形的对称性可知:BP =DP ,连接DE ,交AC 于P ,ED =EP +DP =EP +BP , 即最短距离EP +BP 也就是ED .∵ AE =3,EB =1,∴ AB =AE +EB =4,∴ AD =4,根据勾股定理得:222223425ED AE AD =+=+= .∵ ED >0,∴ ED =5,∴ 最短距离EP +BP =5.6、台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图台风中心在我国台湾海峡的B 处,在沿海城市福州A 的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C 移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?【答案与解析】解:(1)该城市会受到台风影响.理由:如图,过点A 作AD ⊥BC 于D 点,则AD 即为该城市距离台风中心的最短距离.在Rt △ABD 中,因为∠B=30°,AB=240.∴AD =12AB =12×240=120(千米). 由题可知,距台风中心在(12-4)×25=200(千米)以内时,则会受到台风影响. 因为120<200,因此该城市将会受到影响.(2)依题(1)可知,当点A 距台风中心不超过200千米时,会受台风影响,故在BC 上作AE=AF=200;台风中心从点E 移动到点F 处时,该城市会处在台风影响范围之内.(如图)由勾股定理得,2222220012025600DE AE AD =-=-=DE =160(千米).所以EF=2×160=320(千米).又知台风中心以20千米/时的速度移动.所以台风影响该城市320÷20=16(小时).(3)∵AD 距台风中心最近,∴该城市受到这次台风最大风力为:12-(120÷25)=7.2(级).答:该城市受台风影响最大风力7.2级.【总结升华】本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,运用勾股定理使问题解决.【巩固练习】一.选择题1.在△ABC 中,若1,2,122+==-=n c n b n a ,则△ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形2. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°3.(2015春•西华县期末)下列满足条件的三角形中,不是直角三角形的是( )A .三内角之比为1:2:3B .三边长的平方之比为1:2:3C .三边长之比为3:4:5D .三内角之比为3:4:54.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m 和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A .2900mB . 1200mC . 1300mD .1700m5. 直角三角形的两条直角边长为a ,b ,斜边上的高为h ,则下列各式中总能成立的是( )A .ab =h 2B .a 2+b 2=h 2C .111a b h +=D .222111a b h+= 6.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则(AC +BC)2等于( )A .25B .325C .2197D .4057. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( ) A .()()2222221,4,1a m b m c m =-==+B .()()222221,4,1a m b m c m =-==+C .()()222221,2,1a m b m c m =-==+D .()()2222221,2,1a m b m c m =-==+8.(2016•连云港)如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4、S 5、S 6.其中S 1=16,S 2=45,S 5=11,S 6=14,则S 3+S 4=( )A .86B .64C .54D .48二.填空题9.如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.10.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.11.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,BC=_______.12.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD 上的任意一点,则AP+EP的最小值是cm.13.如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=14 BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要cm.14.(2014春•监利县期末)小明把一根70cm长的木棒放到一个长宽高分别为30cm,40cm,50cm的木箱中,他能放进去吗?答:(选填“能”或“不能”).15.(2016春•浠水县期末)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.16.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,∠BAD=________.三.解答题17.(2016春•召陵区月考)能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.3,4,532+42=525,12,13,52+122=1327,24,25 72+242=2529,40,41 92+402=412……17,b,c 172+b2=c218.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s 的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.19.(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.cm,CD=15cm,将这四根木条用小钉20.如图1,四根长度一定....的木条,其中AB=6绞合在一起,构成一个四边形ABCD(在A、B、C、D四点处是可以活动的).现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D在BA的延长线上时,点C在线段AD上(如图2);位置二:当点C在AB的延长线上时,∠C=90°.(1)在图2中,若设BC的长为x,请用x的代数式表示AD的长;(2)在图3中画出位置二的准确..图形;(各木条长度需符合题目要求)(3)利用图2、图3求图1的四边形ABCD 中,BC 、AD 边的长.【答案与解析】一.选择题1.【答案】D ;【解析】因为()()2222221111c a n n n n -=++-+-+=422n b =,所以222c a b -=, 222a b c +=,由勾股定理的逆定理可知:△ABC 是直角三角形.2.【答案】C ;【解析】连接AC ,计算AC 2=BC 2=5,AB 2=10,根据勾股定理的逆定理,△ABC 是等腰直角三角形,∴∠ABC =45°.3.【答案】D ;【解析】解:A 、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形,故正确;B 、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;C 、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;D 、因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选D .4.【答案】C ;【解析】作A 点关于河岸的对称点A′,连接BA′交河岸与P ,则PB+PA=PB+PA′=BA′最短,如图,BB′=BD+DB′=1200,B′A′=500,BA′=1300(m ).5.【答案】D ; 【解析】解:根据直角三角形的面积可以导出:ab c h =.再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2= 222a b h .两边同除以a 2b 2,得222111a b h +=.6.【答案】B ;【解析】()222222AC BC AC BC AC BC AB AB CD +=++⋅=+⋅=169+2×13×6=325.7.【答案】B ;【解析】()()22141m m m -+=+.8.【答案】C ;【解析】解:如图1,S 1=AC 2,S 2=AB 2,S 3=BC 2, ∵BC 2=AB 2﹣AC 2,∴S 2﹣S 1=S 3,如图2,S 4=S 5+S 6,∴S 3+S 4=45﹣16+11+14=54.故选C .二.填空题9.【答案】6;【解析】延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为直角三角形.10.【答案】3;【解析】设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,CE=4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程.11.【答案】14或4;【解析】当△ABC 是锐角三角形时,BC =9+5=14;当△ABC 是钝角三角形时,BC =9-5=4.12.【答案】5【解析】作E 点关于直线BD 的对称点E′,连接AE′,则线段AE′的长即为AP+EP 的最小值5.13.【答案】5【解析】∵长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=14BC ,∴AC=4cm ,PC=34BC=3cm ,根据两点之间线段最短,AP=5.14.【答案】能;【解析】解:可设放入长方体盒子中的最大长度是xcm ,根据题意,得x 2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.15.【答案】96;【解析】连接AC ,在Rt △ACD 中,AD=8,CD=6,∴AC 2=100,在△ABC 中,∵AC 2+BC 2=102+242=262=AB 2,∴△ABC 为直角三角形; ∴图形面积为:S △ABC ﹣S △ACD =×10×24﹣×6×8=96.16.【答案】90°;【解析】延长AD 到M ,使DM =AD ,易得△ABD ≌△MCD .∴ CM =AB =5 AM =2AD =12在△ACM 中22251213+= 即222CM AM AC +=∴∠AMC =∠BAD=90°三.解答题17.【解析】 解:(1)以上各组数的共同点可以从以下方面分析:①以上各组数均满足a 2+b 2=c 2;②最小的数(a)是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m为大于1的奇数,将m2拆分为两个连续的整数之和,即m2=n+(n+1),则m,n,n+1就构成一组简单的勾股数,证明:∵m2=n+(n+1)(m为大于1的奇数),∴m2+n2=2n+1+n2=(n+1)2,∴m,n,(n+1)是一组勾股数;(2)运用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.18.【解析】解:如图,作AD⊥BC,交BC于点D,∵BC=8cm,∴BD=CD=BC=4cm,∴AD=3,分两种情况:当点P运动t秒后有PA⊥AC时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t,∴t=7秒,当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴点P运动的时间为7秒或25秒.19.【解析】解:(1)过点A作AD⊥ON于点D,∵∠NOM=30°,AO=80m,∴AD=40m,即对学校A的噪声影响最大时卡车P与学校A的距离为40米;(2)由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=80m,∵在Rt△AOD中,∠AOB=30°,∴AD=OA=×80=40m,在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD===30m,故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即=300米/分钟,∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.20.【解析】解:(1)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变,BC =x , ∴ 在图2中,AC =BC -AB =x -6,AD =AC +CD =x +9.(2)位置二的图形见图3.(3)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变, ∴ 在图3中,BC =x ,AC =AB +BC =6+x ,AD =x +9.在△ACD 中,∠C =90°由勾股定理得222AC CD AD +=.∴ 222(6)15(9)x x ++=+.整理,得2212362251881x x x x +++=++.化简,得6x =180.解得 x =30.即 BC =30.∴ AD =39.。

八年级数学上册 第一章 勾股定理知识点与常见题型总结及练习 (新版)北师大版

第1章 勾股定理一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五〞形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,那么c =b,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比拟,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;假设222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如假设三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+〔2,n ≥n 为正整数〕; 2221,22,221n n n n n ++++〔n 为正整数〕 2222,2,m n mn m n -+〔,m n >m ,n 为正整数〕 7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线〔通常作垂线〕,构造直角三角形,以便正确使用勾股定理进行求解. 8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比拟,切不可不加思考的用两边的平方和与第三边的平方比拟而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒. ⑴6AC =,8BC =.求AB 的长 ⑵17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC = 题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵直角三角形的两直角边长之比为3:4,斜边长为15,那么这个三角形的面积为 ⑶直角三角形的周长为30cm ,斜边长为13cm ,那么这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴4AC =, 2.4AC BCCD AB⋅==⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,那么17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DECD == 在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影局部面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,那么6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD 答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c = 222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CBAAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=一、 选择题1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,那么以下结论中恒成立的是 ( )A 、2ab<c 2B 、2ab ≥c 2C 、2ab>c 2D 、2ab ≤c22、x 、y 为正数,且│x 2-4│+〔y 2-3〕2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为〔 〕A 、5B 、25C 、7D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,那么满足要求的直角三角形共有〔 〕A 、4个B 、5个C 、6个D 、8个4、以下命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,〔a>b=c 〕,那么a 2∶b 2∶c 2=2∶1∶1。

北师大版八上数学专题一勾股定理(内含答案详解)

北师大版八上数学专题一勾股定理(内含答案详解)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版八上数学专题一勾股定理(内含答案详解))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版八上数学专题一勾股定理(内含答案详解)的全部内容。

BS 八上数学专题一勾股定理一.选择题(共14小题)1.在Rt△ABC中,若斜边AB=3,则AC2+BC2等于()A.6B.9C.12D.182.在△ACB中,若AB=AC=5,BC=6,则△ABC的面积为()A.6B.8C.12D.243.直角三角形的两边长分别为6和8,那么它的第三边长度为()A.8B.10C.8或2D.10或24.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.645.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.B.2C.D.26.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”;当AC=3,BC=4时,计算阴影部分的面积为()A.6B.6πC.10πD.127.△ABC的三边长为a,b,c,已知a:b=1:2,且斜边c=2,则△ABC的周长为()A.3B.5C.6D.68.如图,线段AD是直角三角形ABC斜边上的高,AB=6,AC=8,则AD=()A.4B.4.5C.4.8D.59.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S3.若S2=48,S3=9,则S1的值为()A.18B.12C.9D.310.下列各组数据分别为三角形的三边长,不能组成直角三角形的是()A.9,12,15B.7,24,25C.6,8,10D.3,5,711.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm12.在一次课外社会实践中,王强想知道学校旗杆的高,他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.13 m B.12 m C.4 m D.10 m13.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为()A.14cm B.15cm C.24cm D.25cm14.一架长25dm的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7dm,如果梯子的顶端沿墙下滑4dm,那么梯足将滑()A.9 dm B.15 dm C.5 dm D.8 dm二.填空题(共6小题)15.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4=,12=,24=…请写出第5个数组:.16.如果一个三角形的三边长之比为9:12:15,且周长为72cm,则它的面积为cm2.17.如图,AC⊥BC,AC=6,BC=8,AB=10,则点C到线段AB的距离是.18.已知两线段的长分别是5cm、3cm,则第三条线段长是时,这三条线段构成直角三角形19.小东拿着一根长竹竿进一个宽为4米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末复习(一) 勾股定理
分点突破
知识点1 勾股定理及其验证
1.在△ABC 中,∠A 、∠B、∠C 的对应边分别是a 、b 、c ,若∠A+∠C =90°,则下列等式中成立的是( )
A .a 2+b 2=c 2
B .b 2+c 2=a 2
C .a 2+c 2=b 2
D .c 2-a 2=b 2
2.如图是一张直角三角形的纸片,两直角边AC =6 cm ,BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )
A .4 cm
B .5 cm
C .6 cm
D .10 cm 3.下列选项中,不能用来证明勾股定理的是( )
知识点2 直角三角形的判别
4.在△ABC 中,AB =12 cm ,AC =9 cm ,BC =15 cm ,则S △ABC 等于( )
A .54 cm 2
B .108 cm 2
C .180 cm 2
D .90 cm 2
5.下列说法错误的是( )
A .在△ABC 中,∠C =∠A-∠B,则△ABC 为直角三角形
B .在△AB
C 中,若∠A∶∠B∶∠C=5∶2∶3,则△ABC 为直角三角形
C .在△ABC 中,若a =35c ,b =4
5
c ,则△ABC 为直角三角形
D .在△ABC 中,若a∶b∶c=3∶2∶4,则△ABC 为直角三角形
6.已知如图,在△ABC 中,AB =13 cm ,BC =10 cm ,BC 边上的中线AD =12 cm ,试说明△ABC 是等腰三角形.
知识点3 勾股定理的应用
7.一条河的宽度处处相等,小强想从河的南岸游到北岸去,由于水流影响,小强上岸地点偏离目标地点200 m,他在水中实际游了520 m,那么该河的宽度为( )
A.440 m B.460 m
C.480 m D.500 m
8.如图,铁路MN和公路PQ在点O处交汇.公路PQ上A处距离O点240米,距离MN 120米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间是多少?
综合训练
9.在△ABC中,AB=n2+1,AC=2n,BC=n2-1(n>1),则这个三角形是( )
A.锐角三角形 B.钝角三角形
C.直角三角形 D.等腰三角形
10.某会会标如图所示,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和为5,则中间小正方形的面积是( )
A.1 B.2 C.4 D.6
11.(泰州中考)如图,长方形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP, PE与CD 相交于点O,且OE=OD,则AP的长为________.
12.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你说明理由.你能利用这个结论得出一些勾股数吗?
13.小明把一根长为160 cm的细铁丝弯折成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40 cm,你知道小明是怎样弯折铁丝的吗?
14.如图,一根长度为50 cm 的木棒的两端系着一根长度为70 cm 的绳子,现准备在绳子上找一点,然后将绳子拉直,使拉直后的绳子与木棒构成一个直角三角形,这个点将绳子分成的两段各有多长?
参考答案
1.C
2.B
3.D
4.A
5.D
6.因为AB =13,AD =12,BD =12BC =12×10=5,AD 2+BD 2=122+52=169=132=AB 2
,所以△ADB 为直角三角形,且∠ADB
=90°,即AD⊥BC.在直角三角形ADC 中,AC =AD 2
+CD 2
=122
+52
=169=13,所以AB =AC.故△ABC 是等腰三
角形.
7.C 8.作AD⊥MN,并作AB =AC =200 m 交MN 于点B 、C ,因为AD =120 m ,所以BD =2002
-1202
=160(m).BC =160×2=320(m),t =0.32÷72×3 600=16(s).答:A 处受噪音影响的时间是16 s . 9.C 10.A 11.4.8
12.因为a 2=4m 2,b 2=m 4-2m 2+1,c 2=m 4+2m 2+1,a 2+b 2=c 2
,所以△ABC 是直角三角形,∠C 为直角.又m 为大于
1的整数,故2m ,m 2-1,m 2
+1都是正整数,因此,a ,b ,c 为勾股数.利用这个结论可以得出勾股数:如4、3、5;8、15、17等.
13.设腰长AB =AC =x cm ,则BC =160-2x ,BD =12BC =80-x.在Rt△ABD 中,AB 2=BD 2+AD 2,即x 2=(80-x)2+402
.
解得x =50.所以AB =AC =50 cm ,BC =160-2×50=60(cm).所以小明在先量取铁丝50 cm 弯折一次,再量取50 cm 弯折一次,然后将铁丝的两端点对接即可得到等腰三角形风筝的边框ABC.
14.分两种情况:(1)如图1,当∠B=90°时,设BC =x cm ,则AC =(70-x)cm.在Rt △ABC 中,AC 2=AB 2+BC 2
,即(70-x)2
=502
+x 2
,解得x =
1207,则A C =70-x =3707
.
(2)如图2,当∠C=90°时,根据勾3股4弦5可知这两段绳子的长度分别为30 cm 和40 cm.答:该点将绳子分成长度分别为1207 cm 和370
7
cm 的两段或30 cm 和40 cm 两段.。

相关文档
最新文档