最新2019-2020年度人教版八年级数学上册《全等三角形的性质、判定》专项练习及答案-精品试题

合集下载

八年级数学上册《第十二章 三角形全等的判定》单元测试题及答案(人教版)

八年级数学上册《第十二章 三角形全等的判定》单元测试题及答案(人教版)

八年级数学上册《第十二章三角形全等的判定》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点回顾1.三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

一、选择题1.如图,已知AB=AD,∠BAD=∠CAE,则添加下列条件之一,仍不一定能判定△ABC≌△ADE的是()A.AC=AE B.∠C=∠E C.BC=DE D.∠B=∠D 2.用三角尺可按下面方法画角的平分线.如图,在∠AOB两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,可得△POM≌△PON则判定三角形全等的依据是()A.SSS B.SAS C.ASA D.HL3.下列命题中,真命题的是()A.有一直角边和一锐角对应相等的两个直角三角形全等B.周长相等的两个三角形全等C.两边及其中一边的对角分别相等的两个三角形全等D.全等三角形的面积相等,面积相等的两个三角形全等4.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OP、PC不一定相等C.∠CPO=∠DPO D.OC=OD5.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=5,BD=1,则CF的长度为()A.2 B.2.5 C.4 D.56.如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的度数和为()A.60°B.75°C.90°D.120°7.如图所示,AB∥CD,AD∥BC,BE=DF,则图中全等三角形共有( )对.A.2 B.3 C.4 D.18.如图,在△ABC中∠B=∠C,BF=CD,BD=CE,∠A=50°,则∠FDE的度数为()A.75°B.70°C.65°D.60°二、填空题9.如图,已知BF=CE,AC=DF请添加一个条件,使得△ABC≌△DEF则添加的条件可以是:.(不添加其他字母及辅助线)10.已知,如图AD=AE,BD=CE那么图中△ADC≌.11.如图,在△ABC中AD⊥BC,CE⊥AB垂足分别是D,E.AD,CE交点H,已知EH=EB=3,AE=5则CH的长是.12.如图,△ABC的面积为6cm2,AP垂直∠ABC的平分线BP于点P,则△PBC的面积是cm2.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.三、解答题14.如图,已知点C,F在直线AD上,且有BC= EF,AB=DE,CD=AF。

人教版八年级上册数学《三角形全等的判定》同步练习(含答案)

人教版八年级上册数学《三角形全等的判定》同步练习(含答案)

三角形全等的判定一 、选择题1.不能确定两个三角形全等的条件是( )A .三边对应相等B .两边及其夹角相等C .两角和任一边对应相等D .三个角对应相等 2.下列命题错误的是( )A .全等三角形对应边上的高相等B .全等三角形对应边上的中线相等C .全等三角形对应角的角平分线相等D .有两边和一个角对应相等的两个三角形全等3.如图,AC AB AD =,平分CAB ∠,E 在AD 上,则图中能全等的三角形有对.A .1B .2C .3D .44.ABC △和DEF △,AB DE A D =∠=∠,,若ABC DEF ≌△△还需要( ) A .B E ∠=∠ B .C F ∠=∠ C .AC DF = D .以上三中情况都可以5.如图,图中有两个三角形全等,且A D AB ∠=∠,与DF 是对应边,则下列书写最规范的是( )A .ABC DEF ≌△△B .ABC DFE ≌△△ C .BAC DEF ≌△△D .ACB DEF ≌△△二 、填空题6.如图,若12∠=∠,C D ∠=∠,则ADB ≌△ ,理由 .DECBADE C BA7.如图,AC BD =,要使ABC DCB ≌△△还需要知道的一个条件是 .8.考查下列命题:①有两边及一角对应相等的两个三角形全等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中正确命题的个数有_________个.三 、解答题9.两组邻边分别相等的四边形我们称它为筝形如图,在筝形ABCD 中,AB AD =,BC DC =,AC 、BD 相交于点O ⑴求证:①ABC ∆≌ADC ∆;②OB OD =,AC BD ⊥ ⑵如果6AC =,4BD =,求筝形ABCD 的面积10.已知:如图,A B C D 、、、四点在同一直线上,请你从下面四项中选出三个作为条件,其余一个作为结论,构成一个真命题,并进行证明.①ACE D ∠=∠,②AB CD =③AE BF =,④EAG FBG ∠=∠11.如图,已知AD BC ∥,AD BC =,AE AD ⊥,AF AB ⊥,AE AD =,AB AF =。

最新2019-2020年度人教版八年级数学上册《全等三角形》单元测试题及答案解析-精品试题

最新2019-2020年度人教版八年级数学上册《全等三角形》单元测试题及答案解析-精品试题

《第12章全等三角形》一、解答题1.如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,求AD的取值范围.2.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.3.如图,△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.4.已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC.5.如图,在正方形ABCD中,P、Q分别为BC、CD边上的点,且∠PAQ=45°,求证:PQ=PB+DQ.6.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.7.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.8.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?9.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.10.如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.11.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从点D出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度,沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时移动时间和G点的移动距离.12.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG 为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE 的长度关系及所在直线的位置关系.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.二、作图题(共5小题,满分0分)13.如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.(1)试猜想∠POP″与a的大小关系,并说出你的理由.(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?14.如图,铁路和公路都经过P地,曲线MN是一条河流,现欲在河上建一个货运码头Q,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q的位置.(注意:①保留作图痕迹;②在图中标出点Q)15.(1)如图(1),已知∠AOB和线段CD,求作一点P,使PC=PD,并且点P到∠AOB的两边距离相等(尺规作图,不写作法,保留作图痕迹,写出结论);(2)如图(2)在道路L上键一个水坝站P,使向A′B两村送水所用水管PA+PB最短,水坝站P应建何处?16.已知,P为∠AOB内一点,PO=24cm,∠AOB=30°,试在OA、OB上分别找出两点C、D,使△PCD周长最小,并求这个最小周长.17.(1)如图1,计划在三个住宅小区A、B、C之间修建一个购物中心,使得它到三个小区的距离相等,请作图找到购物中心的位置.(2)如图2,有a、b、c三条公路,先要建一个货物中转站到三条公路的距离相等,请作图找到货物中转站的位置.《第12章全等三角形》参考答案与试题解析一、解答题1.如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,求AD的取值范围.【考点】全等三角形的判定与性质;三角形三边关系.【分析】延长AD到E,使AD=DE,连结BE,证明△ADC≌△EDB就可以得出BE=AC,根据三角形的三边关系就可以得出结论.【解答】解:延长AD到E,使AD=DE,连结BE.∵AD是△ABC的中线,∴BD=CD.在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE.∵AB﹣AE<AE<AB+BE,∴AB﹣AC<2AD<AB+AC.∵AB=8,AC=5,∴1.5<AD<6.5.【点评】本题考查了全等三角形的判定及性质的运用,三角形的中线的性质的运用,三角形三边关系的性质的运用,解答时证明三角形全等是关键.2.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可延长ED至P,使DP=DE,连接FP,连接CP,将BE转化为PC,EF转化为FP,进而在△PCF中即可得出结论.【解答】答:BE+CF>FP=EF.证明:延长ED至P,使DP=DE,连接FP,CP,∵D是BC的中点,∴BD=CD,在△BDE和△CDP中,∴△BDE≌△CDP(SAS),∴BE=CP,∵DE⊥DF,DE=DP,∴EF=FP,(垂直平分线上的点到线段两端点距离相等)在△CFP中,CP+CF=BE+CF>FP=EF.【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.3.如图,△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AC上截取AE=AB,连接DE,证明△ABD≌△AED,得到∠B=∠AED,再证明ED=EC 即可.【解答】证明:在AC上截取AE=AB,连接DE,∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE,又∠B=2∠C,∴∠AED=2∠C,而∠AED=∠C+∠EDC=2∠C,∴∠C=∠EDC,∴DE=CE,∴AB+BD=AE+CE=AC.【点评】本题考查了全等三角形的判定和性质;此题利用了全等三角形中常用辅助线﹣截长补短法构造全等三角形,然后利用全等三角形解题,这是解决线段和差问题最常用的方法,注意掌握.4.已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】先延长AD至F,使得CF⊥AC,得出∠ABM=∠DAC,再根据AB=AC,CF⊥AC,得出△ABM≌△CAF,从而证出∠BMA=∠F,AM=CF,再根据所给的条件得出△FCD≌△MCD,即可得出∠AMB=∠F=∠CMD.【解答】证明:如图,延长AD至F,使得CF⊥AC.∵AB⊥AC,AD⊥BM,∴∠ABM=∠DAC,在△ABM与△CAF中,,∴△ABM≌△CAF(ASA),∴∠BMA=∠F,AM=CF,在△FCD与△MCD中,,∴△FCD≌△MCD(SAS),∴∠F=∠CMD,∴∠AMB=∠DMC.【点评】此题考查了解等腰直角三角形;解题的关键是根据题意画出图形,再根据解等腰直角三角形的性质和全等三角形的判断与性质进行解答即可.5.如图,在正方形ABCD中,P、Q分别为BC、CD边上的点,且∠PAQ=45°,求证:PQ=PB+DQ.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】将△ADQ绕点A顺时针旋转90°得到△ABE,根据旋转的性质可得BE=DQ,AE=AQ,∠BAE=∠DAQ,然后求出∠EAP=∠PAQ=45°,再利用“边角边”证明△APE和△APQ全等,根据全等三角形对应边相等可得PQ=PE,再根据PE=PB+BE等量代换即可得证.【解答】证明:如图,将△ADQ绕点A顺时针旋转90°得到△ABE,由旋转的性质得,BE=DQ,AE=AQ,∠BAE=∠DAQ,∵∠PAQ=45°,∴∠EAP=∠PAQ=45°,在△APE和△APQ中,,∴△APE≌△APQ(SAS),∴PQ=PE,∵PE=PB+BE,∴PQ=PB+DQ.【点评】本题考查了正方形的性质,全等三角形的判定与性质,利用旋转作辅助线构造出全等三角形是解题的关键,也是本题的难点.6.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.【考点】等边三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】延长AC到E,使CE=BM,连接DE,求证△BMD≌△CDE可得∠BDM=∠CDE,进而求证△MDN≌△EDN可得MN=NE=NC+CE=NC+BM,即可计算△AMN周长,即可解题.【解答】解:延长AC到E,使CE=BM,连接DE,(如图)∵BD=DC,∠BDC=120°,∴∠CBD=∠BCD=30°,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACD=∠DCE=90°,∴△BMD≌△CDE,∴∠BDM=∠CDE,DM=DE,又∵∠MDN=60°,∴∠BDM+∠NDC=60°,∴∠EDC+∠NDC=∠NDE=60°=∠NDM,又∵DN=DN,∴△MDN≌△EDN(SAS),∴MN=NE=NC+CE=NC+BM,所以△AMN周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2.【点评】本题考查了全等三角形的证明和全等三角形对应边、对应角相等的性质,等边三角形各边长相等、各内角为60°的性质,本题中求证MN=NE=NC+CE=NC+BM是解题的关键.7.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【考点】全等三角形的判定与性质.【专题】动点型.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,存在或使得△ACP与△BPQ全等.【点评】此题考查全等三角形的判定与性质,注意分类讨论思想的渗透.8.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.9.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.【考点】全等三角形的判定与性质;等腰直角三角形;平行四边形的性质.【专题】几何综合题.【分析】(1)如答图2,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP;(2)如答图3,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP.【解答】题干引论:证明:如答图1,过点D作DF⊥MN,交AB于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠FDP=90°,∠FDP+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(1)答:BD=DP成立.证明:如答图2,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(2)答:BD=DP.证明:如答图3,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、平行线的性质等知识点,作辅助线构造全等三角形是解题的关键.10.如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.【考点】全等三角形的判定与性质;角平分线的性质;等边三角形的性质.【分析】(1)根据角平分线上的点到角的两边的距离相等直接回答;(2)过P作OA、OB的垂线,构造图①的图形,利用(1)的结论证明PC、PD所在的三角形全等;(3)仿(2)的证明可得PC=PD.【解答】解:(1)证明:∵OP平分∠AOB,PC⊥OA于C,OM平分∠AOB,∴∠CPO=∠OPD=30°,∠AOP=∠POB=60°,∴PD⊥OB于D,∴PC=PD.(角平分线上的点到角的两边的距离相等)(2)解:PC=PD.过P点作PQ⊥OA于Q,PN⊥OB于N.由(1)得PQ=PN.∵∠AOB=120°,∴∠QPN=360°﹣90°﹣90°﹣120°=60°.∴∠QPC=∠NPD=60°﹣∠CPN.∴△PQC≌△PND.(ASA)∴PC=PD.(3)解:PC=PD.【点评】此题考查全等三角形的判定和性质,由易到难层层递进,把握解题思路是关键.11.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从点D出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度,沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时移动时间和G点的移动距离.【考点】全等三角形的判定与性质.【分析】(1)由AD=BC=8,AB=CD,BD为公共边,所以可证得△ABD≌△CDB,所以可知∠ADB=∠CBD,所以AD∥BC;(2)设G点的移动距离为y,分两种情况,一种F由C到B,一种F由B到C,再结合△DEG≌△BFG可得到DE=BF,DG=BG,或DE=BG,DG=BF可得到方程,解出时间t和y的值即可.【解答】(1)证明:在△ABD和△CDB中∴△ABD≌△CDB,∴∠ADB=∠CBD,∴AD∥BC;(2)解:设G点的移动距离为y,当△DEG与△BFG时有:∠EDG=∠FBG,∴DE=BF,DG=BG,或DE=BG,DG=BF,当F由C到B,即0<t≤时,则有,解得,或,解得(舍去),当F由B到C,即时,有,解得,或,解得,综上可知共有三次,移动的时间分别为2秒、4秒、5秒,移动的距离分别为6、6、5.【点评】本题主要考查三角形全等的判定和性质,第(2)题解题的关键是利用好三角形全等,从而得到方程解得.12.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG 为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE 的长度关系及所在直线的位置关系.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.【考点】正方形的性质;全等三角形的判定与性质.【专题】动点型;操作型.【分析】(1)根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;(2)结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论.【解答】解:(1)BG=DE,BG⊥DE;∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,在△BCG和△DCE中,BC=DC∠BCG=∠DCE CG=CE,∴△BCG≌△DCE(SAS),∴BG=DE;延长BG交DE于点H,∵△BCG≌△DCE,∴∠CBG=∠CDE,又∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE,即BG⊥DE;(2)BG=DE,BG⊥DE仍然成立,在图(2)中证明如下∵四边形ABCD、四边形CEFG都是正方形∴BC=CD,CG=CE,∠BCD=∠ECG=90°∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS)∴BG=DE,∠CBG=∠CDE,又∵∠BHC=∠DHO,∠CBG+∠BHC=90°∴∠CDE+∠DHO=90°∴∠DOH=90°∴BG⊥DE.【点评】此题考查的知识点是正方形的性质,解答本题关键要充分利用正方形的特殊性质,利用三角形全等论证.二、作图题(共5小题,满分0分)13.如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.(1)试猜想∠POP″与a的大小关系,并说出你的理由.(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形,再由HL定理得出△DOP′≌△DOP,△EOP″≌△EOP′根据全等三角形的性质即可得出结论;(2)根据题意画出图形,同(1)可得出结论.【解答】解:(1)猜想:∠POP″=2α.理由:如图1,在△DOP′与△DOP中∵,∴△DOP′≌△DOP.同理可得,△EOP″≌△EOP′∴∠POP″=2α;(2)成立.如图2,当点P在∠AOB内时,∵同(1)可得,△DOP′≌△DOP,EOP″≌△EOP′,∴∠POD=∠P′OD,∠EOP″=∠EOP′,∴∠POP″=∠P′OP″﹣∠POP′=3α﹣α=2α.如图3,当点P在∠AOB的边上时,∵同(1)可得△EOP″≌△EOP,∴∠POP″=2α.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.14.如图,铁路和公路都经过P地,曲线MN是一条河流,现欲在河上建一个货运码头Q,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q的位置.(注意:①保留作图痕迹;②在图中标出点Q)【考点】作图—应用与设计作图.【分析】根据角平分线的作法,作出铁路与公路所形成的角的平分线,角平分线与河流的交点即为所求.【解答】解:如图所示:,点Q即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握角平分线上的点到角两边的距离相等.15.(1)如图(1),已知∠AOB和线段CD,求作一点P,使PC=PD,并且点P到∠AOB的两边距离相等(尺规作图,不写作法,保留作图痕迹,写出结论);(2)如图(2)在道路L上键一个水坝站P,使向A′B两村送水所用水管PA+PB最短,水坝站P应建何处?【考点】轴对称-最短路线问题;角平分线的性质;线段垂直平分线的性质.【分析】(1)作∠AOB的平分线和线段CD的中垂线,两者的交点就是P;(2)作出A关于m的对称点A',连接A'B于直线m的交点就是P.【解答】解:如图所示:【点评】本题考查了基本作图,理解角平分线的性质、以及线段的中垂线的性质是关键.16.已知,P为∠AOB内一点,PO=24cm,∠AOB=30°,试在OA、OB上分别找出两点C、D,使△PCD周长最小,并求这个最小周长.【考点】轴对称-最短路线问题.【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于C,交OB于D,△PCD 的周长=P1P2,然后证明△OP1P2是等边三角形,即可求解.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于C,交OB于D,则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,CP=P1C,PD=P2D,则△PCD的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形,△PCD的周长=P1P2,∴P1P2=OP1=OP2=OP=24cm.【点评】本题考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.17.(1)如图1,计划在三个住宅小区A、B、C之间修建一个购物中心,使得它到三个小区的距离相等,请作图找到购物中心的位置.(2)如图2,有a、b、c三条公路,先要建一个货物中转站到三条公路的距离相等,请作图找到货物中转站的位置.【考点】作图—应用与设计作图.【分析】(1)利用线段垂直平分线的性质得出P点即可;(2)利用角平分线的性质分别得出符合题意的答案.【解答】解:(1)如图所示:P点即为所求;(2)如图所示:D,E,F,G点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质以及线段垂直平分线的性质是解题关键.。

人教版八年级上册数学《全等三角形》单元测试题(附答案)

人教版八年级上册数学《全等三角形》单元测试题(附答案)

人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.全等三角形的性质1.(2019•上海)在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.二.全等三角形的判定2.(2019•兴安盟)如图,已知AB=AC,点D、E分别在线段AB、AC上,BE与CD相交于点O,添加以下哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AE=AD C.BD=CE D.BE=CD3.(2019•安顺)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC第2题第3题第4题4.(2019•阿坝州)如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC5.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)6.(2020•铜仁市)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.第5题第6题三.直角三角形全等的判定7.(2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.四.全等三角形的判定与性质第7题8.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.19.(2019•临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD 的长是()A.0.5B.1C.1.5D.2第8题第9题10.(2020•菏泽)如图,在△ABC 中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.第10题11.(2020•泸州)如图,AC平分∠BAD,AB=AD.求证:BC=DC.第11题12.(2020•南充)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.第12题13.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.第13题14.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.第14题15.(2018秋•溧水区期末)如图,点C 、E 、F 、B 在同一直线上,点A 、D 在BC 异侧,AB ∥CD ,AE =DF ,∠A =∠D .(1)求证:AB =CD ;(2)若AB =CF ,∠B =40°,求∠D 的度数.第15题五.全等三角形的应用16.(2019•南通)如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B .连接AC 并延长到点D ,使CD =CA .连接BC 并延长到点E ,使CE =CB .连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?第16题六.角平分线的性质17.(2019•陕西)如图,在△ABC 中,∠B =30°,∠C =45°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E .若DE =1,则BC 的长为( ) A .22+ B .32+ C .32+ D .318.(2019•张家界)如图,在△ABC 中,∠C =90°,AC =8,DC =31AD ,BD 平分∠ABC ,则点D 到AB 的距离等于( )A .4B .3C .2D .1第17题第18题第19题19.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.42参考答案一.全等三角形的性质(共1小题)1.(2019•上海)在△ABC 和△A 1B 1C 1中,已知∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,点D 、D 1分别在边AB 、A 1B 1上,且△ACD ≌△C 1A 1D 1,那么AD 的长是 .【分析】根据勾股定理求得AB =5,由△ACD ≌△C 1A 1D 1,所以可以将A 1点放在左图的C 点上,C 1点放在左图的A 点上,D 1点对应左图的D 点,从而得出BC ∥B 1C 1,根据其性质得出=2,解得求出AD 的长.【解答】解:∵△ACD ≌△C 1A 1D 1,可以将△C 1A 1D 1与△ACD 重合,如图,∵∠C =∠C 1=90°,∴BC ∥B 1C 1,∴, ∵AC =3,BC =4,∴AB =5, ,解得AD ,∴AD , .二.全等三角形的判定(共5小题)2.(2019•兴安盟)如图,已知AB =AC ,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O ,添加以下哪个条件仍不能判定△ABE ≌△ACD ( )AD AD -5BCC B BD AD 11A.∠B=∠C B.AE=AD C.BD=CE D.BE=CD【分析】根据全等三角形的判定定理判断.【解答】解:A、当∠B=∠C时,利用ASA定理可以判定△ABE≌△ACD;B、当AE=AD时,利用SAS定理可以判定△ABE≌△ACD;C、当BD=CE时,得到AD=AE,利用SAS定理可以判定△ABE≌△ACD;D、当BE=CD时,不能判定△ABE≌△ACD;故选:D.3.(2019•安顺)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项符合题意;选项B、添加AC=DF可用AAS进行判定,故本选项不符合题意;选项C、添加AB=DE可用AAS进行判定,故本选项不符合题意;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项不符合题意.故选:A.4.(2019•阿坝州)如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC ≌△DEF了.【解答】解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;故选:B.5.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是AD=AC(∠D=∠C或∠ABD=∠ABC等).(只填一个即可)【分析】利用全等三角形的判定方法添加条件.【解答】解:∵∠DAB=∠CAB,AB=AB,∴当添加AD=AC时,可根据“SAS”判断△ABD≌△ABC;当添加∠D=∠C时,可根据“AAS”判断△ABD≌△ABC;当添加∠ABD=∠ABC时,可根据“ASA”判断△ABD≌△ABC.故答案为AD=AC(∠D=∠C或∠ABD=∠ABC等).6.(2020•铜仁市)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.【分析】首先利用平行线的性质得出∠ACB=∠DFE,进而利用全等三角形的判定定理ASA,进而得出答案.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,∠B=∠EBC=EF∠ACB=∠DFE,∴△ABC≌△DEF(ASA).三.直角三角形全等的判定(共1小题)7.(2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件AB=ED(BC=DF或AC=EF或AE=CF等),使Rt△ABC和Rt△EDF全等.【分析】本题是一道开放型的题目,答案不唯一,可以是AB=ED或BC=DF或AC=EF或AE=CF等,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:AB=ED,理由是:∵在△ABC和△EDF中∠B=∠DAB=ED∠A=∠DEF,∴△ABC≌△EDF(ASA),故答案为:AB=ED.四.全等三角形的判定与性质(共9小题)8.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,②正确;由全等三角形的性质得出∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,①正确;作OG⊥AM于G,OH⊥DM于H,如图所示:则∠OGA=∠OHB=90°,由AAS证明△OGA≌△OHB(AAS),得出OG=OH,由角平分线的判定方法得出OM平分∠AMD,④正确;假设OM平分∠AOD,则∠DOM=∠AOM,由全等三角形的判定定理可得△AMO≌△OMD,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故③错误;即可得出结论.【解答】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,OA=OB∠AOC=∠B0DOC=OD∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,在△OGA和△OHB中,∵∠0GA=∠OHB=90°∠OAG=∠OBHOA=OB,∴△OGA≌△OHB(AAS),∴OG=OH,∴OM平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,∠AOM=∠DOMOM=OM∠AMD=∠DMO,∴△AMO≌△OMD(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.9.(2019•临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD 的长是()A.0.5B.1C.1.5D.2【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中∠A=∠FCE∠ADE=∠FDE=FE,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.10.(2020•菏泽)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.【分析】由“AAS”可证△ABC≌△AED,可得AE=AB,AC=AD,由线段的和差关系可得结论.【解答】证明:∵ED⊥AB,∴∠ADE=∠ACB=90°,∠A=∠A,BC=DE,∴△ABC≌△AED(AAS),∴AE=AB,AC=AD,∴CE=BD.11.(2020•泸州)如图,AC平分∠BAD,AB=AD.求证:BC=DC.【分析】由“SAS”可证△ABC≌△ADC,可得BC=DC.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB=AD,AC=AC,∴△ABC≌△ADC(SAS),∴BC=CD.12.(2020•南充)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.【分析】证明△ABC≌△CDE(ASA),可得出结论.【解答】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,∠ACB=∠CEDBC=DE∠ABC=∠CDE,∴△ABC≌△CDE(ASA),∴AB=CD.13.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.【分析】(1)先由平行线的性质得∠B=∠C,从而利用SAS判定△ABF≌△DCE;(2)根据全等三角形的性质得∠AFB=∠DEC,由等角的补角相等可得∠AFE=∠DEF,再由平行线的判定可得结论.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,∵AB=CD∠B=∠CBF=CE,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF∥DE.14.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD =AE.【解答】证明:在△ABE与△ACD中∠A=∠AAB=AC∠B=∠C,∴△ABE≌△ACD.∴AD=AE.∴BD=CE.15.(2018秋•溧水区期末)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【分析】(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△DCF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFD,即可求出答案.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,∠A=∠D∠B=∠CAE=DF,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD(180°﹣40°)=70°.五.全等三角形的应用(共1小题)16.(2019•南通)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?【分析】利用“边角边”证明△ABC和△DEC全等,再根据全等三角形对应边相等解答.【解答】解:量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,BD=CE∠ACB=∠DCECA=CD,∴△ABC≌△DEC(SAS),∴AB=DE.六.角平分线的性质(共3小题)17.(2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.B.C D.3【分析】过点D作DF⊥AC于F如图所示,根据角平分线的性质得到DE=DF=1,解直角三角形即可得到结论.【解答】解:过点D作DF⊥AC于F如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF,∴BC=BD+CD=,故选:A.18.(2019•张家界)如图,在△ABC中,∠C=90°,AC=8,DC AD,BD平分∠ABC,则点D到AB 的距离等于()A.4B.3C.2D.1【分析】过点D作DE⊥AB于E,求出CD,再根据角平分线上的点到角的两边的距离相等解答.【解答】解:如图,过点D作DE⊥AB于E,∵AC=8,DC AD,∴CD=8=2,∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2.故选:C.19.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.42【分析】过D作DH⊥AB交BA的延长线于H,根据角平分线的性质得到DH=CD=4,根据三角形的面积公式即可得到结论.【解答】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=AB•DH+BC•CD=×6××9×4=30,故选:B.。

2019-2020学年八年级数学上学期《12.2三角形全等的判定》测试卷及答案解析

2019-2020学年八年级数学上学期《12.2三角形全等的判定》测试卷及答案解析
A.OA=ODB.AB=DCC.OB=OCD.∠ABO=∠DCO
16.如图,D是AB上一点,DF交AC于点E,FC∥AB,则下列结论错误的是( )
A.若AE=CE,则DE=FEB.若DE=FE,则AE=CE
C.若BC=CF,则AD=CFD.若AD=CF,则DE=FE
17.如图,在四边形ABCD中∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是9,则DP的长是( )
A.∠ACB=∠DBCB.AB=DCC.∠A=∠DD.OC=OB
7.如图所示,CD=BD,∠B=∠C,给出下列结论:①BM=CN;②△ACN≌△ABM;③∠1=∠2;④AE=AF;⑤∠E=∠F=90°.其中正确的结论是( )
A.①②B.①②③C.①②③④D.①②③④⑤
8.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为( )
其中错误的结论有( )
A.0个B.1个C.2个D.3个
12.如图,点B、F、C、E在一条直线上,AC=DF,BF=CE,那么添加下列一个条件后,仍无法判断△ABC≌△DEF的是( )
A.∠A=∠D=90°B.∠BCA=∠EFDC.∠B=∠ED.AB=DE
13.如图,在△ABC中,AD是∠BAC的平分线,且AB=AC+CD,若∠BAC=n°,则∠ABC的大小为( )
A.15B.12.5C.14.5D.17
9.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是( )
A. B.2C.2 D.
10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法中正确的个数是( )

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。

2019-2020人教版八年级数学上册第十二章全等三角形章末复习课件共58张


章末复习
相关题1 如图12-Z-11所示的4×4正方形网格中,∠1+∠2+ ∠3+∠4+∠5+∠6+∠7=__3_15_°.
章末复习
解析 由题图得∠1+∠7=90°,∠2+∠6=90°,∠3+∠5=90°, ∠4=45°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+ 90°+45°=315°.
章末复习
相关题3-2 如图12-Z-9所示, 已知∠1=∠2, 请你添加一个条件, 证明AB=AC. (1)你添加的条件是________________; (2)请写出证明过程.
章末复习
解:(1)由 AD=AD,∠1=∠2 这两个已知条件,根据 “AAS”
或“ASA”写出第三个条件即可.添加的条件是∠B=∠C 或∠ADB
章末复习
解:答案不唯一,如以①②为题设,④为结论,可写出一个 真命题如下:
已知:如题图,在△ACD 和△ABE 中,点 D 在 AB 上,点 E 在
AC 上,AE=AD,AB=AC. 求证:∠B=∠C.
证明如下:在△ACD 与△ABE 中,
AC=AB,

∠A=∠A, AD=AE,
∴△ACD≌△ABE(SAS),∴∠B=∠C.
全等三角 形的性质
应用
角的平 分线
全等三角形
章末复习
全等三 角形
角的平 分线
全等三角形
边边边(SSS)
一般三 角形
直角三 角形
性质
边角边(SAS) 角边角(ASA) 角角边(AAS)
角的平分线上 的点到角的两 边的距离相等
SSS, SAS, ASA, AAS
HL(只适用于判定两 个直角三角形全等)
章末复习

人教版数学八年级上册第十二章《全等三角形》测试题含答案

人教版数学八年级上册第十二章《全等三角形》测试题一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.参考答案及试题解析一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EB C=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。

最新人教版初中数学八年级数学上册第二单元《全等三角形》测试题(含答案解析)

一、选择题1.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > 2.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°3.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对4.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对5.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒6.下列说法正确的是( )①近似数232.610⨯精确到十分位;②在2,()2--,38-,2--中,最小的是38-;③如图所示,在数轴上点P 所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点.A .1B .2C .3D .47.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等 8.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 9.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④10.如图所示,已知∠A =∠C ,∠AFD =∠CEB ,那么给出的条件不能得到ADF CBE △≌△是( )A .∠B =∠D B .EB=DFC .AD=BCD .AE=CF 11.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 12.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A .OA =OB B .AC =BC C .∠A =∠BD .∠1=∠2二、填空题13.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.14.如图所示,在ABC 中,D 是BC 的中点,点A 、F 、D 、E 在同一直线上.请添加一个条件,使BDE CDF ≌(不再添其他线段,不再标注或使用其他字母),并给出证明.你添加的条件是______15.如图所示,ABC ≅△AB C '',20CAC ∠'=︒,BAB ∠'=___度.16.如图,线段AB ,CD 相交于点O ,AO=BO ,添加一个条件, 能使AOC BOD ≅,所添加的条件的是___________________________.17.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.18.已知70COB ∠=,30AOB ∠=,OD 平分AOC ∠,则BOD ∠=_________ 19.在Rt △ABC 中,∠C =90°,AC =15cm ,BC =8cm ,AX ⊥AC 于A ,P 、Q 两点分别在边AC 和射线AX 上移动.当PQ =AB ,AP =_____时,△ABC 和△APQ 全等.20.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____三、解答题21.如图1是一个平分角的仪器,其中OD=OE ,FD=FE .(1)如图2,将仪器放置在△ABC 上,使点O 与顶点A 重合,D 、E 分别在边AB 、AC 上,沿AF 画一条射线AP ,交BC 于点P .则AP 就是∠BAC 的平分线吗?请给出判断并说明理由.(2)如图3,在(1)的前提下,过点P 作PQ ⊥AB 于点Q ,已知PQ=4,AC=7,△ABC 的面积是32,求AB 的长.22.如图,Rt ABC 与Rt DEF △的顶点A ,F ,C ,D 共线,AB 与EF 交于点G ,BC 与DE 相交于点H ,90B E ∠=∠=︒,AF CD =,AB DE =.(1)求证:Rt ABC Rt DEF ≌;(2)若1GF =,求线段HC 的长.23.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.24.如图,Rt △ABC 中,∠ACB=90°,D 是AB 上的一点,过D 作DE ⊥AB 交AC 于点E ,CE=DE .连接CD 交BE 于点F .(1)求证:BC=BD ;(2)若点D 为AB 的中点,求∠AED 的度数.25.如图,在ACD △与BCE 中,AC BC =,CD CE =,ECD ACB ∠=∠.(1)求证:AD BE =;(2)若105ACD ∠=︒,32D ∠=︒,求B 的度数.26.求证:全等三角形对应边上的中线相等.(根据图形写出已知,求证并完成证明)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】当x =d 时,BC ⊥AM ,C 点唯一;当x ≥a 时,能构成△ABC 的C 点唯一,可确定取值范围.【详解】解:若△ABC 的形状、大小是唯一确定的,则C 点唯一即可,当x =d 时,BC ⊥AM ,C 点唯一;当x >a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有一个交点,x =a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有两个交点,一个与A 重合, 所以,当x ≥a 时,能构成△ABC 的C 点唯一,故选为:A .【点睛】本题考查了三角形的画法,根据题意准确作图并且能够分类讨论是解题关键. 2.B解析:B【分析】由SAS 证明△BDE ≌△CFD ,得出∠BDE=∠CFD ,∠EDF 可由180°与∠BDE 、∠CDF 的差表示,进而求解即可.【详解】解:在△BDE 与△CFD 中,BD CF B C BE CD ⎧⎪∠∠⎨⎪⎩===,∴△BDE ≌△CFD (SAS );∴∠BDE=∠CFD ,∴∠EDF=180°-(∠BDE+∠CDF )=180°-(∠CFD+∠CDF )=180°-(180°-∠C )=50°; 故选:B .【点睛】本题主要考查了全等三角形的判定及性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 3.B解析:B【分析】根据线段垂直平分线的性质得到,AC=AD ,BC=BD ,OC=OD ,然后根据”HL”可判断Rt △AOC ≌Rt △AOD ,Rt △BOC ≌Rt △BOD ;根据“SSS”可判断△ABC ≌△ABD .【详解】解:∵AB 是线段CD 的垂直平分线,∴AC=AD ,BC=BD ,OC=OD ,∴Rt △AOC ≌Rt △AOD (HL ),Rt △BOC ≌Rt △BOD (HL ),△ABC ≌△ABD (SSS ). 故选:B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”“HL”;全等三角形的对应边相等.也考查了线段垂直平分线的性质.4.C解析:C【分析】根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.5.A解析:A【分析】由条件可知BO 、CO 平分∠ABC 和∠ACB ,利用三角形内角和可求得∠A .【详解】解:∵点O 到ABC 三边的距离相等,∴BO 平分ABC ∠,CO 平分ACB ∠,∴ ()180A ABC ACB ∠=︒-∠+∠()1802OBC OCB =︒-∠+∠()1802180BOC =︒-⨯︒-∠()1802180110︒=︒-⨯-︒40=︒.故选A .【点睛】本题主要考查角平分线的性质,掌握角平分线的交点到三角形三边的距离相等是解题的关键.6.B解析:B【分析】根据近似数的精确度定义,可判断①;根据实数的大小比较,可判断②;根据点在数轴上所对应的实数,即可判断③;根据反证法的概念,可判断④;根据角平分线的性质,可判断⑤.【详解】①近似数232.610⨯精确到十位,故本小题错误;()22--=2=-,-=③在数轴上点P 所表示的数为1-+④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;⑤在ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点,故本小题正确.故选B【点睛】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键.7.B解析:B【分析】先分别写出这些定理的逆命题,再进行判断即可.【详解】解:A .直角三角形的两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;B .全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C .两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;D .角平分线上的点到角两边的距离相等的逆命题是到角两边的距离相等的点在角平分线上,是真命题.故选:B .【点睛】此题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8.B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.9.A解析:A【分析】根据已知条件,已知两角对应相等,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案即可;【详解】题意已知:∠A=∠D,∠B=∠E,∴①根据“ASA”可添加AB=DE,故①正确;②根据“AAS” 可添加AC=DF,故②正确;③根据“AAS” 可添加BC=EF,故③错误;④根据“ASA”可添加AB=DE,故④错误;所以补充①②可判定两三角形全等;故选:A.【点睛】本题主要考查了三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结;10.A解析:A【分析】直接利用全等三角形的判定方法进行判断即可;三角形全等的证明方法有:SSS、SAS、AAS、ASA;【详解】A∵∠A=∠C,∠AFD=∠CEB,∠B=∠D,三个角相等,不能判定三角形全等,该选项不符合题意;B∵∠A=∠C,∠AFD=∠CEB,EB=DF,符合AAS的判定,该选项符合题意;C∵∠A=∠C,∠AFD=∠CEB,AD=BC,符合AAS的判定,该选项符合题意;D∵∠A=∠C,∠AFD=∠CEB,AE=CF,∴AF=CE,符合ASA的判定,该选项符合题意;故选:A.【点睛】本题考查了全等三角形的判定方法,正确掌握判定方法是解题的关键;11.D解析:D【分析】设点Q的运动速度是x cm/s,有两种情况:①AP=BP,AC=BQ,②AP=BQ,AC=BP,列出方程,求出方程的解即可.【详解】解:设点Q的运动速度是x cm/s,∵∠CAB=∠DBA,∴△ACP与△BPQ全等,有两种情况:①AP=BP,AC=BQ,则1×t=4-1×t,则3=2x,解得:t=2,x=1.5;②AP=BQ,AC=BP,则1×t=tx,4-1×t=3,解得:t=1,x=1,故选:D.【点睛】本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.12.B解析:B【分析】根据题意可以得到∠AOC=∠BOC,OC=OC,然后即可判断各个选项中条件是否能判定△AOC≌△BOC,从而可以解答本题.【详解】解:由已知可得,∠AOC=∠BOC,OC=OC,∴若添加条件OA=OB,则△AOC≌△BOC(SAS),故选项A不符合题意;若添加条件AC=BC,则无法判断△AOC≌△BOC,故选项B符合题意;若添加条件∠A=∠B,则△AOC≌△BOC(AAS),故选项C不符合题意;若添加条件∠1=∠2,则∠ACO=∠BCO,则△AOC≌△BOC(ASA),故选项D不符合题意;故选:B.【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题13.50【分析】过点B作BE⊥DC交DC的延长线于点E先证明∠CBE=∠ACD从而证明∆ACD ≅∆CBE 进而即可求解【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ∵BE ⊥CE ∴∠BEC=∠CDA=90°解析:50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E ,先证明∠CBE=∠ACD ,从而证明∆ ACD ≅∆ CBE ,进而即可求解.【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ,∵BE ⊥CE ,∴∠BEC=∠CDA=90°,∴∠CBE+∠BCE=90°,又∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠CBE=∠ACD ,在∆ ACD 与∆ CBE 中,∵CBE ACD CEB ADC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ ACD ≅∆ CBE (AAS ),∴BE=CD=10,∴BCD ∆的面积=12CD∙BE=12×10×10=50, 故答案是50.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的性质,添加辅助线,构造“一线三垂直”模型,是解题的关键. 14.ED=FD (答案不唯一∠E=∠CFD 或∠DBE=∠DCF )【分析】根据三角形全等的判定方法SAS 或AAS 或ASA 定理添加条件然后证明即可【详解】解:∵D 是的中点∴BD=DC①若添加ED=FD 在△BD解析:ED=FD (答案不唯一,∠E=∠CFD 或∠DBE=∠DCF )【分析】根据三角形全等的判定方法SAS 或AAS 或ASA 定理添加条件,然后证明即可.【详解】解:∵D 是BC 的中点,∴BD=DC①若添加ED=FD在△BDE 和△CDF 中,BD CD BDE CDF ED FD =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CDF (SAS );②若添加∠E=∠CFD在△BDE 和△CDF 中,BDE CDF E CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CDF (AAS );③若添加∠DBE=∠DCF在△BDE 和△CDF 中,BDE CDF BD CD DBE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CDF (ASA );故答案为:ED=FD (答案不唯一,∠E=∠CFD 或∠DBE=∠DCF ).【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键. 15.20【分析】根据△得到由此推出得到答案【详解】解:△∴;∵∴故答案为:20【点睛】此题考查全等三角形的性质:全等三角形的对应角相等熟记性质定理是解题的关键解析:20【分析】根据ABC ≅△AB C ''得到CAB C AB ∠=∠'',由此推出CAC C AB BAB C AB ''∠'+∠=∠'+∠得到答案.【详解】解:ABC ∆≅△AB C '',∴CAB C AB ∠=∠'';∵CAC C AB CAB '∠'+∠=∠,BAB C AB C AB '∠'+∠=∠'',∴CAC C AB BAB C AB ''∠'+∠=∠'+∠,20CAC BAB ∴∠'=∠'=︒.故答案为:20.【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,熟记性质定理是解题的关键. 16.或或或【分析】先根据对顶角相等可得再根据三角形全等的判定定理即可得【详解】由对顶角相等得:当时由定理可证当时由定理可证当时由定理可证当时则由定理可证故答案为:或或或【点睛】本题考查了对顶角相等三角形 解析:CO DO =或A B ∠=∠或C D ∠=∠或//AC BD【分析】先根据对顶角相等可得AOC BOD ∠=∠,再根据三角形全等的判定定理即可得.【详解】由对顶角相等得:AOC BOD ∠=∠,AO BO =,∴当CO DO =时,由SAS 定理可证AOC BOD ≅,当A B ∠=∠时,由ASA 定理可证AOC BOD ≅,当C D ∠=∠时,由AAS 定理可证AOC BOD ≅,当//AC BD 时,则A B ∠=∠,由ASA 定理可证AOC BOD ≅,故答案为:CO DO =或A B ∠=∠或C D ∠=∠或//AC BD .【点睛】本题考查了对顶角相等、三角形全等的判定定理等知识点,熟练掌握三角形全等的判定定理是解题关键.17.5【分析】根据角平分线的性质及垂线段最短解答【详解】根据垂线段最短可知:当PM ⊥OC 时PM 最小∵OP 平分PD=5∴PM=PD=5故答案为:5【点睛】此题考查角平分线的性质垂线段最短掌握点到直线的所有解析:5【分析】根据角平分线的性质及垂线段最短解答.【详解】根据垂线段最短可知:当PM ⊥OC 时,PM 最小,∵OP 平分AOC ∠,PD OA ⊥,PD=5,∴PM=PD=5,故答案为:5.【点睛】此题考查角平分线的性质,垂线段最短,掌握点到直线的所有连线中垂线段最短是解题的关键.18.20°或50°【分析】根据题意分两种情况进行讨论然后根据角平分线的性质计算解决即可【详解】解:①如图∵∠BOC=70°∴∠AOC=100°∵OD 平分∠AOC ∴∠AOD=∠AOC=50°∠AOD-=2解析:20°或50°根据题意,分两种情况进行讨论,然后根据角平分线的性质计算解决即可.【详解】解:①如图∵30∠=︒,AOB∠BOC=70°,∴∠AOC=100°,∵OD平分∠AOC∴∠AOD=1∠AOC=50°,2∠=20°;∠=∠AOD-AOBBOD②如图,∵30∠=︒,AOB∠BOC=70°,∴∠AOC=40°,∵OD平分∠AOC∠AOC=20°,∴∠AOD=12∠=50°;BOD∠=∠AOD+AOB故答案为:20°或50°本题考查了角平分线的性质,解决本题的关键是正确理解题意,熟练掌握角平分线的性质,能够由角平分线得出相等的角,在解决问题时注意要分类讨论.19.8cm 或15cm 【分析】分情况讨论:①AP =BC =8cm 时Rt △ABC ≌Rt △QPA (HL );②当P 运动到与C 点重合时Rt △ABC ≌Rt △PQA (HL )此时AP =AC =15cm 【详解】解:①当P 运动解析:8cm 或15cm【分析】分情况讨论:①AP =BC =8cm 时,Rt △ABC ≌Rt △QPA (HL );②当P 运动到与C 点重合时,Rt △ABC ≌Rt △PQA (HL ),此时AP =AC =15cm .【详解】解:①当P 运动到AP =BC 时,如图1所示:在Rt △ABC 和Rt △QPA 中,AB QP BC PA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △QPA (HL ),即AP =B =8cm ;②当P 运动到与C 点重合时,如图2所示:在Rt △ABC 和Rt △PQA 中,AB PQ AC PA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △PQA (HL ),即AP =AC =15cm .综上所述,AP 的长度是8cm 或15cm .故答案为:8cm 或15cm .【点睛】本题考查了三角形全等的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键,注意分类讨论,以免漏解.20.【分析】先添加辅助线过点作交的延长线于点过点作交的延长线于点过点作于点根据角平分线的判定性质定义以及三角形外角的性质邻补角的定义角的和差等可求得【详解】解:过点作交的延长线于点过点作交的延长线于点过 解析:46︒【分析】先添加辅助线“过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ”,根据角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等可求得()1462ADB CBE BAC ∠=∠-∠=︒. 【详解】 解:过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ,如图:∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥∴12BAD BAC ∠=∠,DE DF = ∵136ACD ∠=︒ ∴18044DCF ACD ∠=︒-∠=︒∵44BCD ∠=︒,92ACB ACD BCD ∠=∠-∠=︒∴CD 平分BCF ∠∵DF AC ⊥,DG BC ⊥∴DF DG =∴DE DG =∵DE AB ⊥,DG BC ⊥∴BD 平分CBE ∠ ∴12DBE CBE ∠=∠ ∴ADB DBE BAD ∠=∠-∠1122CBE BAC =∠-∠ ()12CBE BAC =∠-∠ 12BCA =∠ 46=︒.故答案是:46︒【点睛】本题考查了角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等,熟练掌握相关知识点是解题的关键.三、解答题21.(1)AP 是∠BAC 的平分线,理由见解析;(2)AB=9【分析】(1)利用“SSS”证明△ADF ≌△AEF 即可证明AP 是∠BAC 的平分线;(2)利用角平分线的性质得到PG=PQ=4,再根据三角形的面积公式即可求解.【详解】解:(1)AP 是∠BAC 的平分线,理由如下:在△ADF 和△AEF 中,AD AE AF AF DF EF =⎧⎪=⎨⎪=⎩,∴△ADF ≌△AEF (SSS ),∴∠DAF=∠EAF ,即AP 平分∠BAC ;(2)过点P 作PG ⊥AC 于点G ,∵AP 平分∠BAC ,PQ ⊥AB ,PG ⊥AC ,∴PG=PQ=4, ∵11 22ABC ABP APC SS S AB PQ AC PG =+=⋅+⋅ ∴114743222AB ⨯+⨯⨯=, ∴AB=9.【点睛】本题考查了全等三角形的判定及性质,角平分线的判定和性质.熟练掌握确定三角形的判定方法,正确的识别图形是解题的关键. 22.(1)见详解;(2)1【分析】(1)先证明AC=DF ,再根据HL 证明Rt ABC Rt DEF ≌;(2)先证明∠AFG=∠DCH ,从而证明∆AFG ≅∆DCH ,进而即可求解. 【详解】(1)∵AF CD =,∴AF+CF=CD+CF ,即AC=DF ,在Rt ABC 与Rt DEF △中,∵AC DF AB DE=⎧⎨=⎩, ∴Rt ABC ≅Rt DEF △(HL );(2)∵Rt ABC ≅Rt DEF △,∴∠A=∠D ,∠EFD=∠BCA ,∵∠AFG=180°-∠EFD ,∠DCH=180°-∠BCA ,∴∠AFG=∠DCH ,又∵AF CD =,∴∆AFG ≅∆DCH ,∴HC=GF =1.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握HL 和ASA 证明三角形全等,是解题的关键.23.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F ,BC=EF ,然后根据SAS 可以得到结论;(2)同(1)有∠B=∠F ,再结合已知条件和对顶角相等可以证得ΔABO ≅ΔDFO ,从而得到OB=OF ,所以点O 为BF 中点 .【详解】证明:(1)∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,∴在ΔABC 和ΔDFE 中,AB DF B F BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ΔABC ≅ΔDFE (SAS );(2)与(1)同理有∠B=∠F ,∴在ΔABO 和ΔDFO 中,AOB DOF B F AB DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO ≅ΔDFO (AAS ),∴OB=OF ,∴点O 为BF 中点 .【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键. 24.(1)见详解;(2)60°.【分析】(1)利用HL 直接证明Rt △DEB ≌Rt △CEB ,即可解决问题.(2)首先证明△ADE ≌△BDE ,进而证明∠AED=∠DEB=∠CEB ,即可解决问题.【详解】证明:(1)∵DE ⊥AB ,∠ACB=90°,∴△DEB 与△CEB 都是直角三角形,在△DEB 与△CEB 中,EB EB DE CE =⎧⎨=⎩, ∴Rt △DEB ≌Rt △CEB (HL ),∴BC=BD .(2)∵DE ⊥AB ,∴∠ADE=∠BDE=90°;∵点D 为AB 的中点,∴AD=BD ;在△ADE 与△BDE 中,AD BD ADE BDE DE DE =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BDE (SAS ),∴∠AED=∠DEB ;∵△DEB ≌△CEB ,∴∠CEB=∠DEB ,∴∠AED=∠DEB=∠CEB ;∵∠AED+∠DEB+∠CEB=180°,∴∠AED=60°.【点睛】该命题以三角形为载体,以考查全等三角形的判定及其应用为核心构造而成;解题的关键是灵活运用全等三角形的判定及其性质,来分析、判断或推理.25.(1)见解析;(2)43°【分析】利用 SAS 证明≌ACD BCE 即可;由全等三角形的性质可知:B A ∠=∠ 再根据三角形内角和为180︒,可求出A ∠的度数,即可求出B .【详解】(1)证明:∵ECD ACB ∠=∠.∴ECD ACE ACB ACE ∠+∠=∠+∠∴ACD BCE ∠=∠,在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴()ACD BCE SAS ≌∴AD BE =(2)∵105ACD ∠=︒,32D ∠=︒∴1801053243A ∠=︒-︒-︒=︒由(1)得≌ACD BCE∴43B A ∠=∠=︒.【点睛】本题考查了全等三角形的判定和性质,三角形的内角和定理,属于中考常考题型. 26.见解析【分析】利用SAS 证明ABD ≌A B D '''△,即可证得结论.【详解】 解:已知:如图,ABC ≌A B C ''',AD 和A D ''分别是BC 和B C ''上的中线,求证:AD =A D ''.证明:∵ABC ≌A B C ''',∴AB =A B '',∠B =∠B ',BC =B C '',∵AD 、A D ''是 BC 和B C ''上的中线,∴BD =12BC ,12B D B C ''''=, ∴BD =B D '',∴在ABD 与A B D '''△中 AB A B B B BD B D =⎧⎪∠=∠⎨⎪=''''⎩' ∴ABD ≌A B D '''△(SAS ),∴AD =A D ''.【点睛】本题考查了全等三角形的判定与性质,证明线段相等的问题,基本的思路是转化成三角形全等.。

人教版数学八年级上册第12章《全等三角形》复习测试题(配套练习附答案)

∴△ABD≌△C'DB (HL) ,
同理△DCB≌△C'DB,
∵∠A=∠C',∠AOB=∠C'OD,AB=C'D,
∴△AOB≌△C'OD (AAS) ,
所以共有四对全等三角形.
故答案为4.
【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
故选D.
二.填空题(本大题共8小题,共24.0分)
9.如图,在 和 中, ,若利用“HL”证明 ≌ ,则需要加条件______.
【答案】 ,
【解析】
【分析】
添加∠C=∠D=90°,由HL证明△ABC≌△ABD即可.
【详解】添加∠C=∠D=90°,理由如下:
∵∠C=∠D=90°,
∴在Rt△ABC和Rt△ABD中,
A. AE=DFB. ∠A=∠DC. ∠B=∠CD. AB= CD
【答案】D
【解析】
【分析】
根据垂直定义求出∠CFD=∠AEB=90°,由已知 ,再根据全等三角形的判定定理推出即可.
【详解】添加的条件是AB=CD;理由如下:
∵AE⊥BC,DF⊥BC,
∴∠CFD=∠AEB=90°,
在Rt△ABE和Rt△DCF中,
【详解】①∵PR⊥AB,PS⊥AC,PR=PS,
∴点P在∠A的平分线上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,

∴Rt△ARP≌Rt△ASP(HL),
∴AR=AS,∴①正确;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每题3分,共24分)
1、已知图中的两个三角形全等,则∠α度数是( )
A.72°
B.60°
C.58°
D.50°
2. 如果两个三角形全等,则不正确的是 ( ) A.它们的最小角相等 B.它们的对应外角相等 C.它们是直角三角形 D.它们的最长边相等
3、如图,将Rt △ABC(其中∠B =340
,∠C =900
)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560
B.680
C.1240
D.1800
4、尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于
C 、
D ,再分别以点C 、D 为圆心,以大于1
2
CD 长为半径画弧,两弧交于点P ,作射线
OP ,
由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS 5、(易错易混点)下列说法正确的个数有( )
①形状相同的两个图形是全等形;②对应角相等的两个三角形是全等三角形;③全等三角形的面积相等;④若△ABC ≌△DEF , △DEF ≌△MNP , 则△ABC ≌△MNP . A .0个 B .1个 C .2个 D .3个
6、(易错易混点)如图,点P 是AB 上任意一点,ABC ABD ∠=∠,还应补充一个条件,才能推出APC APD △≌△.从下列条件中补充一个条件,不一定能....推出
APC APD △≌△的是( )
A .BC BD =
B .A
C A
D =
C .ACB ADB ∠=∠
D .CAB DAB ∠=∠
7、(易错易混点)下列说法中不正确的是( )
A .一个直角三角形与一个锐角三角形一定不会全等
B .两个等边三角形是全等三角形
C .斜边相等的两个等腰直角三角形是全等三角形
D .若两个钝角三角形全等,则钝角所对的边是对应边
8、 如图,已知CD ⊥AB 于点D ,BE ⊥AC 于点E ,CD 、BE 交于点0,且AO 平分∠BAC ,则图中的全等三角形共有( ) A.1对 B.2对 C.3对 D.4对
二、填空题(每题3分,共24分)
9、如图,若111ABC A B C △≌△,且0
30,100=∠=∠C A ,则1B ∠= . 10、已知△ABC ≌△DEF ,且∠A=90°,AB=6,AC=8,BC=10,△DEF 中最大边长是 ,最大角是 度.
11、△ABC ≌△A ’B ’C ’, AB=24, S △A ’B ’C ’=180, 则△ABC 中AB 边上的高是_______________.
12、(易错易混点)如图,已知AB=AD ,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是 .(只需填一个)
13、如图,AD A D '',分别是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的高,且AB A B AD A D ''''==,.若使ABC A B C '''△≌△,请你补充条件___________.(填写
一个你认为适当的条件即可)
14、如图所示,已知△ABC≌△ADE,∠C=∠E,AB=AD,则另外两组对应边为________,另外两组对应角为________.
15、如图,AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是.
16、将矩形ABCD沿AE折叠,得到如图1所示的图形,已知∠CED′= 60°,则∠AED 的大小是
三、解答题(17-19题每题10分,20题12分,21题10分)
17、如图,已知:M是AB的中点,MC=MD,∠1=∠2.
求证:AC=BD.
18、如图2,AB=DC,AC=DB,求证AB∥CD.
19、如图,正方形ABCD 中,E 与F 分别是AD 、BC 上一点.在①AE CF =、②BE ∥DF 、③12∠=∠中,请选择其中一个条件,证明BE DF =. (1)你选择的条件是 (只需填写序号); (2)证明:
20、如图20-1,要在湖的两岸A 、B 件建一座观赏桥,由于条件限制,无法直接度量A 、B 两点间的距离.请你用学过的数学知识按以下要求设计以测量方案.
(1) 画出测量方案;
(2) 写出测量步骤(测量数据用字母表示);
(3) 计算AB 的距离(写出求解或推理过程,结果用字母表示).
21、如图,C F 、在BE 上,A D AC DF BF EC ∠=∠=,∥,. 求证:AB DE =.
参考答案
一、1、D 【解析】在解本题时要注意找好全等三角形的对应角.
2、C 【解析】本题主要考察了全等三角形的性质,全等三角形的对应边和对应角相等,所
以可以知道C 错误.因为权等三角形不一定是直角三角形.
3、.680
【解析】因为将Rt △ABC(其中∠B =340
,∠C =900
)绕A 点按顺时针方向旋转
到△AB 1 C 1的位置,所以Rt △ABC ≌RT △AB 1 C 1,所以∠B =∠B 1=340
,又因为∠C =∠C 1=900
,所以∠A =∠A 1=560
.点C 、A 、B 1 在同一条直线上,所以转过的最小角度是1800-560-560=680.
5、C 【解析】因为全等三角形的面积一定相等;对于④运用了等量代换.
易错分析:在①中有些同学忘记了两个图形是全等形时形状和大小要相等.对于②“AAA ”不能判定三角形全等;
6、B 【解析】本题主要考察了“SSA ”不鞥判定三角形的全等.
易错分析:在判定三角形全等的时候一定要注意“SSA ”和“AAA ”不能判定三角形的全等.
7、B 【解析】要想判定两个三角形全等,必须形状和大小一样,所以A 正确;因为等腰直
角三角形的对应角相等,并且斜边也相等,所以不难判定这样的两个三角形是全等三角形,所以C 正确;两个钝角三角形全等,钝角所对的边是最长的边,所以是对应边,所以D 正确; 易错分析:两个等边三角形可以大小不一样,所以B 错误;
二、9、500【解析】因为111ABC A B C △≌△,所以B ∠=1B ∠,又因为
0030,100=∠=∠C A ,所以B ∠=1B ∠=500.
10、10;90°【解析】根据全等三角形的性质可以得出答案
11、15【解析】因为△ABC ≌△A ’B ’C ’, AB=24, S △A ’B ’C ’=180,所以S △ABC =180,所以△ABC 中AB 边上的高是15.
12、AC=AE 或∠B=∠D 或∠C=∠E.【解析】本题是一道和三角形全等有关的探索题,根据已知条件∠1=∠2,可得∠BAC=∠DAE,又知道一组对应边AB=AD ,所以可根据“SAS”或“ASA”或“AAS”添加条件.若根据判定方法“SAS”,可添加AC=AE ;若根据判定方法“ASA”,可添加∠B=∠D;若根据判定方法“AAS”,可添加∠C=∠E.
易错分析:在解答题时要注意“SSA ”和”AAA ”不能判定三角形全等。

三、17、证明:∵M 是AB 的中点,∴MA= MB.
在△DAC 和△BCA 中,
⎪⎩

⎨⎧=∠=∠=.,21,MD MC MB MA ∴△DAC ≌△BCA (SAS ). ∴AC=BD.
18、证明:∵ 在△ABC 和△DCB 中,()()()AB DC AC DB BC CB =⎧⎪
=⎨⎪=⎩
已知已知公共边,,,,
∴ △ABC≌△DCB(SSS ). ∴ ∠ABC=∠DCB. ∴ AB∥CD.
20、(1)方案如图20-2所示;(2)在陆地上找到可以直接到达的点A 、B 的一点O ,在AO 的延长线上取一点C ,并测得OC=OA ,在BO 的延长线上取一点D ,并测得OD=OB ,这是测得CD 的长为a ,则AB 的长就是a .(3)理由:由测法可得OC=OA ,OD=OB ,又∠COD=∠AOB(对顶角相等),所以ΔCOD≌ΔAOB(SAS).所以由全等三角形的性质可得:CD=AB=a . 21、证明:
AC DF ∥,
ACE DFB ∴∠=∠,
∴ACB DFE ∠=∠.
=,
又BF EC
=.BF CF EC CF
∴-=-,即BC EF ∠=∠,
又A D
ABC DEF
∴△≌△.
∴=.
AB DE。

相关文档
最新文档