神奇的幻方1

合集下载

公开课神奇的幻方

公开课神奇的幻方

神奇的幻方教学内容:奇数阶幻方的认识、奇数阶幻方的解决方法、幻方的实际应用。

教学目标:1、初步认识幻方,了解幻方的起源,激发学生热爱祖国的思想感情。

2、在合作学习的过程中,探究幻方的特征。

3、会根据幻方的特征填数。

4、培养自主探究的能力和团结协作的能力。

教学重、难点:探究幻方的特征。

教具准备:多媒体课件,实物展示平台。

教学过程:一、欣赏古诗,引入课题。

师:语文课上我们学过很多古诗,那位同学能不能背一首?生:能。

语文课代表起头,背诗一首。

《春晓》春眠不觉晓,处处闻啼鸟。

夜来风雨声,花落知多少。

师:这首诗描写的是春天的场景。

其实,在数学中也有许多美妙古诗,今天梅老师也给大家带来一首,请听:洛书•四海三山八仙洞,•九龙王子一枝莲。

•二七六郎赏月半,•周围十五月团圆。

师:这首诗描述的就是这幅图,认识这幅图吗?这幅图来头可大了。

相传三千多年前大禹治水的时候,从洛水中浮出一只神龟。

龟背上刻有神奇的图案,就是这幅图。

它有什么奇特之处呀?请同学们仔细观察,这里有黑白圈共45个,用直线连成9个数,白色是单数,黑色是双数,神奇吧?还有更神奇的呢,你看:它每一横行三数加起来和是多少?每一竖列三数加起来和是多少?对角线三数的和又是多少?和都是15,而且这个和跟正中间的数有关系吗?是中间数的3倍。

中间数5跟所填的9个数又有什么关系呢?我们把这9个数从小到大排列之后,5是不是位居中间的位置呀?这幅神奇的龟背图被称为“洛书”。

如果我们把洛书中的点换成对应的数字,就成了这样的一个三阶幻方,4 9 23 5 78 1 6洛书实际上就是一个三阶幻方,(即三行三列九个方格)由于洛书是9个数组成,所以称为“九宫”。

我国的少数民族如藏族和纳西族都曾有“九宫图”。

刚才那首诗就是当时赞美九宫图的。

九宫图还有很多好听的名字,如宋朝数学家杨辉曾给它起名“纵横图”,后来传到外国,取名为“幻方”,意思是变幻莫测的方块。

幻方曾让大数学家欧拉、著名物理学家富兰克林很感兴趣。

北师大版七年级上册数学综合与实践探寻神奇的幻方课件

北师大版七年级上册数学综合与实践探寻神奇的幻方课件
幻方网站与博客 1.中国幻方 (幻方学会主席的博客) 2.幻立方博客 3.幻环研究博客 4.广州市幻方数棋科技网站---玩数棋 5.陈钦梧幻方世界
变化的是形式 不变的是规律 以不变应万变 就是数学奥秘
洛书故事
公元前三千多年,有条洛河经常发大水,皇帝夏
禹带领百姓去治理洛河,这时,从水中浮起一只大乌 如果你已经被“幻方知识”吸引,你可以
468 927
492 357
816
幻方中每一个数字都加同一个数,所得方格仍是幻方.
挑战自我 270
中级
第 2关
135 6 -1 4
492 357
816
幻方中每一个数字都减同一个数,所得方格仍是幻方.
挑战自我
中级
8 18 4
第 3关
6 10 14 16 2 12
492 357
816
幻方中每一个数字都乘同一个不为零的数,
挑战自我
高级
请你设计一个幻和为60的三阶幻方。
第 2关
挑战自我
高级
请你设计一个幻和为60的三阶幻方。
4+15 9+15 2+15
3+15 20 7+15
8+15 1+15 6+15
4×4 3×4
9×4
20
2×4 7×4
第 2关
8×4 1×4 6×4
总结收获:
一、幻方的智力开发功能。
围棋盘是一个19阶方阵,象棋盘是一个八 阶方阵(其将帅宫是一个三阶方阵), 它们的 走法原理均同幻方的布局原理相关。
a+e+i+b+e+h+c+e+g=3m 幻方已应用于“建路”,“爵当曲线”,“七座桥”等的位置解析学及组合解析学中。

小学奥数教程之-幻方(一) (68) (含答案)

小学奥数教程之-幻方(一) (68) (含答案)

空格只位于两个单元之内,但是同时多了一个大小关系作为限制条件)来缩小可选数字的范围。
总结 4 个小技巧:
1、
巧选突破口:数独中未知的空格数目很多,如何寻找突破口呢?首先我们要通过规则的限制来分析
每一个空格的可选数字的个数,然后选择可选数字最少的方格开始,一般来说,我们会选择所在行、
所在列和所在九宫格中已知数字比较多的方格开始,尽可能确定方格中的数字;而大小数独中已知
Number Place。现今流行的数独于 1984 年由日本游戏杂志《パズル通信ニコリ》发表并得了现时的名称。数
独本是“独立的数字”的省略,因为每一个方格都填上一个个位数。 数独可以简单的数为:让行与列及单元格
的数字成规律性变换的一类数字谜问题
解题技巧:数独游戏中最常规的办法就是利用每一个空格所在的三个单元中已经出现的数字(大小数独一个
4 92
357
8 16
我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三 右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻 方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月 半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.
的数字往往非常少,这个时候大小关系更加重要,我们除了利用已知数字之外更加需要考虑大小关
系的限制。
2、 相对不确定法:有的时候我们不能确定 2 个方格中的数字,却可以确定同一单元其他方格中肯定不
会出现什么数字,这个就是我们说的相对不确定法。举例说明,A1 可以填入 1 或者 2,A2 也可以填
入 1 或者 2,那么我们可以确定,1 和 2 必定出现在 A1 和 A2 两者之中,A 行其他位置不可能出现 1

北师大版初中数学七年级上册综合与实践探索神奇的幻方PPT优秀课件

北师大版初中数学七年级上册综合与实践探索神奇的幻方PPT优秀课件

不仅具有一般幻方的 性质,而且它们的连乘 积也等于另一个定值。
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
双重幻方
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
六角幻方
任一条直线上的数字之和都等于同一个数。
当德时国的画占家星阿家尔认布为莱四希阶特魔.杜方勒阵可的以著驱作除《忧梅郁伦, 可利所亚以》他(就Me将le这nc个ol魔ia方)(阵意放为入“作忧品郁之”中)。,
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
①以1-16依次作四行排列; ②打两条对角线,被对角线穿过的数字不动; ③其他数字,按对角线的交点为对称中心, 对称对调.
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
北 师 大 版 初 中数学 七年级 上册 综 合 与实 践 - 探 索 神 奇的幻 方 课 件
古往今来, 很多人在研究幻方,
北 师 大 版 初 中数学 七年级 上册综 合与实 践探索 神奇的 幻方PP T优秀课 件
北 师 大 版 初 中数学 七年级 上册综 合与实 践探索 神奇的 幻方PP T优秀课 件
南宋数学家杨辉,在他著的《续古摘 奇算法》里介绍了这种方法:
① ④② ⑦⑤ ③ ⑧⑥

①将九个自然数按照从小到大的递增次序斜排; ②把上、下两数对调,左、右两数也对调; ③把中部四数各向外面挺出,幻方就出现了。

神奇的幻方 ppt课件

神奇的幻方 ppt课件
将n阶单偶幻方表示为4m+2阶幻方。将其等分为四分, 成为如下图所示A、B、C、D四个2m+1阶奇数幻方。
AC
DB
A用1至2m+1填写成(2m+1)2阶幻方; B用(2m+1)2+1至2*(2m+1)2填写成2m+1阶幻方; C用2*(2m+1)2+1至3*(2m+1)2填写成2m+1阶幻方; D用3*(2m+1)2+1至4*(2m+1)2填写成2m+1阶幻方;
1
6
2
11 24 7 20 3
16 4 12 25 8 16
21
17 5 13 21 9
22 10 18 1 14 22
23 6 19 2 15
24
20
25
4 5
10
四阶幻方构成方法
一字排开 对角不动 上下交换 左右更替
15 14
12
9
8
5
32
六阶幻方构成
把1-36中,中间的16个数 (11-26)填到四阶幻方中
26 12 13 23 15 21 20 18 19 17 16 22 14 24 25 11
❖ 其余的数写成对 1、 2、 3、 4、 5、 6、 7、 8、 9、 10 36、35、34、33、32、31、30、29、28、27
1 9 34 33 32 2
6
31
10
27
30
7
29
8
35 28 3 4 5 36
❖ 这种排列方式的纵横图称为n 阶纵横图, 或n阶幻方。
三阶幻方,具有一个十分“漂亮”的性质
洛书
492 357 816

探寻神奇的幻方(1)

探寻神奇的幻方(1)

北师大版七年级上册综合与实践《探寻神奇的幻方(1)》教学设计西工大附中分校费红刚课型: 综合与实践课课时: 共2课时,本课为第1课时一、教材分析本节是北师大2012版七年级上册教材“综合与探究”中“探寻神奇的幻方”的第一课时.这节内容是北师大版教材首次引入幻方知识,也是学生初中阶段接触的第一个“综合与实践”.新《课标》中要求学生以探寻三阶幻方的本质特征为中心并体验综合运用数学知识解决问题的过程,培养学生运用数学解决问题的能力;以幻方的历史背景帮助学生感受数学之美.本节课是应用代数和几何知识解决问题的一节综合课,也是体现数形结合数学思想的一节课,在本册书中有着综合性、应用性和总结性的作用,有着举足轻重的地位.二、学情分析学生此前已完成“有理数及其运算”与“整式及其加减”的学习,部分学生已经会用1~9填三阶幻方,在方法上有初步的感性认识.学生的认知条件决定了它主要立足于丰富学生的数学活动经验、应用已学知识解决实际问题并在此过程中感悟数学思想,然而学生目前最主要的问题是:从哪里入手研究三阶幻方;从哪些角度着手解决三阶幻方.针对学生的问题,需要以一种全新的自主探究和小组交流为特色的学习方式、需要以课本问题串为学习思路、需要以探寻幻方的实质为重点.学生首先要做的是在问题串引导下综合运用已学知识逐一解决问题,对所要解决的问题的方法和经验进行补充和调整.其次是学生利用充足的探究时间,通过各种途径从多个角度进行尝试,自主地去探究幻方的本质特征.三、教法学法教法:情景体验法、引导发现法.具体地,首先通过神话故事引入三阶幻方,学生从图形感受三阶幻方的对称美,然后设计一系列开放性的问题串引导学生独立思考、大胆质疑、交流合作,从而引导学生借助有理数的相关运算、代数式、轴对称和旋转等知识,揭示简单的三阶幻方的本质特征,最后让学生应用得到的本质特征尝试构造满足要求的三阶幻方,初步获取构造三阶幻方的经验.学法:小组讨论、自主探究、合作交流.四、教学用具:电子白板,多媒体课件.五、教学目标1.综合运用有理数混合运算、字母表示数及其运算等知识,探索出三阶幻方的特征.2.经历观察、猜想、归纳、类比等活动,初步积累构造三阶幻方的经验.3.通过自主探究、合作交流的学习方式,感悟数学思想、体验数学之美. 六、教学重难点重点:探索三阶幻方的本质特征. 难点:构造符合要求的三阶幻方. 七、教学过程:(一)巧设情景,引入新课 [师](引入神话传说)相传三千多年前大禹治水的时候,有一只神龟出自洛水.龟背上刻有神奇的图案.手下拔刀就要砍杀,被大禹阻止了,大禹说,这只乌龟背上的图案奇特,此乃吉祥的征兆.没过几天,连降大雨,洛水即将泛滥,这时那只乌龟浮出水面,背上发出一道亮光,不久雨就停了,老百姓因此躲过一劫.大家想知道这只乌龟背上是什么图案吗?(出示投影片:龟背图) 学生齐声:想!这个龟背图很特别,被称为“洛书”,我们仔细观察图1,黑白圈都代表什么? 学生回答,抽象出1—9个数字,变成数学表格得到图2.[师]把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方.【 设计意图:介绍神话故事和幻方的历史,使学生对幻方的相关知识有简单的了解,不仅有利于学生课余时间对幻方深入探究,还培养了学生民族自豪感.观察“洛书”是经历由形到数,有具体到抽象的过程.】 (二) 合作探究,适时点拨[师]同学们仔细观察图2的幻方 (投影片出示课本“议一议”中的5个问题)在如图的三阶幻方中:(1)你能发现哪些相等的关系?最核心的位置是什么?其它奇偶数是怎么分布的? 为什么?幻和:相等的和(15);中间数:5;四个角是偶数其余是奇数.说明中间数是5的方法:设中间数为x,则3×15+3x=4×15.(2)如果把和相等的每一组数分别连线,这些连线会构成一个怎样的图形?描述你得到的图形有什么特点?图形:米字格;特点:整个图形绕四条线的交点旋转180度后重合,整个图形沿着四条线分别对折后重合,具有对称性.(3)你能否改变幻方中数字的位置,使它们仍然满足你刚才发现的那些相等关系?小组讨论后小组代表用电子白板演示8种结果.(4)在幻方中,有没有“成对”的数?你怎么利用这些数和中间数构造三阶幻方?一般方法:定幻和;定中间数;定四角.规律:先把最大和最小的“成对”的数1和9填在中间数的“上下”或“左右”,根据幻和再填其它数.(5)你还有什么新的发现?发现规律:如果每行、每列上的三个数看成一个三位数.那么(1)492+357+816=294+753+618;(2)951+159=357+753=456+654=258+852.发现方法:(1)杨辉法;(2)梅氏法.(提预习)杨辉法:梅氏法:法国数学家梅齐利亚克创造了一种构造奇数幻方的方法,以上问题学生独立思考,再合作交流,学生回答问题得到答案,问题3由学生讨论后派代表用电子白板板演.【设计意图:学生根据教师布置的学习任务,通过独立思考、小组讨论、合作探究等形式,基本能掌握三阶幻方的特点和构造三阶幻方的方法,为下一步探究埋下伏笔.】(三)反馈练习,方法共享1.试将2、3、4、5、6、7、8、9、10填入到3×3的方格中,使之成为三阶幻方.2.试将-2、-1、0、1、2、3、4、5、6填入到3×3的方格中,使之成为三阶幻方.2、4、6、8、10、12、14、16、18呢?3.拓展练习(在有充足时间的情况下出示)【设计意图:让学生构造三阶幻方是让学生通过实践来掌握规律,教学中鼓励学生又快又对的填完.】(四)总结概括,整理知识1.本节课主要学习了什么知识?学生回顾两个目标:(1)三阶幻方的规律:(2)构造三阶幻方的方法2.这节课对你的学习带来什么启发?【设计意图:让学生梳理所学知识点,培养归纳概括能力和语言表达能力.反思自己的学习过程,有利于学生看到自己今后努力的方向,同时也有助于学习习惯的培养.】(五)布置作业1.必做题:自行选取一组数构造一个三阶幻方,使得每行、每列、每条对角线上的三个数之和等于60.2.选做题:拓展(在有充足时间的情况下练习)【设计意图:分层次作业的设置,为学生搭建不同高度的学习平台,满足不同层次学生学习数学的需要,鼓励学有余力的学生课外自主探究.】(七)板书设计。

神奇的幻方

神奇的幻方
每行、每列、对角线上的三个数的和都相等的 方格,叫“三阶幻方”.
2、幻方的分类
按照纵横各有数字的个数,可以分为:
三阶幻方、四阶幻方、五阶幻方、
六阶幻方……
按照纵横数字 数量奇偶的不 同,可以分为:
奇阶幻方 偶阶幻方
如何把1、2、3、4、5、6、7、8、9这9个数字填 入下图,使每一横行、竖行、斜行的和都相等?
(1)- 4,- 3,-2,-1,0 ,1 ,2 ,3 ,4. (2) 2 ,4 ,6 ,8 ,10 ,12 ,14,16,18. (3) 1,4,7,10,13,16,19,22,25.
-1 4 -3
8 18 4
10 25 4
-2 0 2
6 10 14
7 13 19
3 -4 1
16 2 12
22 1 16
九宫之义,法以灵龟, 二四为肩,六八为足, 左三右七,戴九履一, 五居中央。
294
753
618
旋转的研究方法
294 276 7 5 3①9 5 1② 618 438
672 618 1 5 9③7 5 3④ 834 294
816 834 3 5 7⑤ 1 5 9⑥ 492 672
438 492 9 5 1⑦ 3 5 7⑧ 276 816
438
3
16
17
1
2 10
2.将4、5、6、10、11、12、16、17、18这九个数填入 方格里,使之成为幻方.
课堂小结
通过本节课的学习,你有那些收获? (1)(三阶)幻方的概念. (2)幻方的特点. (3)能形成幻方的数据的特点和填入方格的方法.
课后作业
1.自行选取一组数构造一个三阶幻方,使得每一 行、每一列和对角线上的三数之和都等于60.

综合与实践 探寻神奇的幻方(课件)七年级数学上册(北师大版)

综合与实践 探寻神奇的幻方(课件)七年级数学上册(北师大版)

2.等式的基本性质是什么?
1)等式两边同时加(或减)同一个代数式,所得结果 仍是等式。
2)等式两边同时乘同一个数(或除以同一个不为0的 数),所得结果仍是等式。
3.什么叫移项?移项要注意什么? 1)移项指把方程一边的项改变符号后,移到方程的另 一边。 2)移项时,被移的项要改变符号。
3)某项只在方程的一边移动位置时,符号不改变。
【例7】甲、乙两人从相距42千米的两地同时相向出发,3小时 30分钟后相遇.如果乙先出发6小时,那么在甲出发1小时后与 乙相遇,求甲、乙两人的速度.
解:两人的速度和为42÷3.5=12(千米/时);设甲的速度为x千 米/时,则乙的速度为(12﹣x)千米/时.则:x+(1+6)× (12﹣x)=42,解x=7,∴12﹣x=5.答:甲的速度为7千米/时, 则乙的速度为5千米/时.
考点专练
【例1】下列各式中,是一元一次方程的有( ) (1)x+π>3;(2)x﹣2;(3)2+3=5x; (4)x+y=5;(5)x2﹣1=0. A.1个 B.2个 C.3个 D.4个
解:(1)不是方程,故不是一元一次方程;(2)不是方程,故 不是一元一次方程;(3)2+3=5x是一元一次方程.(4)x+y=5 是方程含有两个未知数,故不是一元一次方程;(5)x2﹣1=0是 方程最高次数是2,故不是一元一次方程;故选:A.
1.移项要变号; 2.防止漏项;
系数相加,字母及其指数不变
分子分母不要颠倒
5.列一元一次方程解应用题 一般步骤 (1)审题,分析题中已知什么,未知什么,明确各量之间 的关系,寻找等量关系; (2)设未知数,一般求什么就设什么为x,但有时也可以 间接设未知数; (3)列方程,把相等关系左右两边的量用含有未知数的代 数式表示出来,列出方程; (4)解方程; (5)检验,看该解是否是方程的解、是否符合题意. (6)写出答案.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谢谢观看
关于幻方
❖ 幻方,又称纵横图、奇方或方阵、魔阵等。 ❖ 是把1至n2的自然数排列成正方形,使它的纵
横均有n个数,而把每行、每列、有时还包括 两条对角线的数加起来,它们的和都是相等 的,这个和叫做幻和。 ❖ 幻方的幻和等于 n (n2 +1) ÷2 。 ❖ 这种排列方式的纵横图称为n阶纵横图,或n 阶幻方。
在陕西西安市郊出土的6阶幻方
28 4 3 31 35 10 36 18 21 24 11 1 7 23 12 17 22 30 8 13 26 19 16 29 5 20 15 14 25 32 27 33 34 6 2 9
在陕西西安市郊出土的6阶幻方
东阳农民三年倒腾出“完美幻方”
三枚2011贺岁六阶幻方
通过人们的研究, 现在的幻方种类许许多幻方的 性质,而且它们(每 一行、每一列及两条 对角线上,下同)的 平方和也等于另外的 定值。
不仅具有一般幻方的 性质,而且它们的连乘 积也等于另一个定值。
双重幻方
杨辉幻圆
其同一圆周 上的数字之 和及任意一 条直径上的 数字之和为 147
岫玉雕刻 “奥运幻方”
岫玉雕刻 “奥运幻方”
同中在时间北,的京这四奥1阶运6个幻会方方开 格图幕又共的可1日6组个子成方,1格一6个,件矩每精形个美、 8格的个中玉梯刻雕形有“、一280个个08平3奥位行运数四幻 边字方形,图,横”每行在个、中几竖国何行玉图、都形斜岫 四行岩个的问角数世的字。数之字和之均和为也 都20等08于。2008。
杨 辉 八 阵 图
六角幻方
任一条直线上的数字之和都等于同一个 数。
欧拉的马步幻方
按照国际象棋中马步走法,可以一直走到64。 欧拉幻方有2个特点:1、全部是马步构成; 2、每一个单独的4阶幻方行、列和值为130
别离情
四哥探望十四姐,七转石岭九道砭。
十五月亮一一夜首圆,诗十,二月一逢六个天幻面。方
十诉别情八回怨, 十三云月三重天。 五作别诗十一首,两地相望十六年。
这就是完美幻方。
①具有一般幻方的性质。
②泛对角线所含四数之和均为34。
古往今来, 对幻方的研究不仅仅局限在
数学家或科学领域
当德时国的画占家星阿家尔认布为莱四希阶特魔.杜方勒阵可的以著驱作除《忧梅郁伦, 可利所亚以》他(就Me将le这nc个ol魔ia方)(阵意放为入“作忧品郁之”中)。,
相关文档
最新文档