(完整版)二元一次方程组应用题大全

合集下载

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。

已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。

为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。

因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。

根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。

二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。

求甲、乙两人的速度。

解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。

根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。

因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。

将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。

二元一次方程组应用题训练题(含答案)

二元一次方程组应用题训练题(含答案)

二元一次方程组应用题一、解答题(共19题;共95分)1.加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一第二道工序所完成的件数相等.2.垃圾对环境的影响日益严重,垃圾危机的警钟被再次拉响.我市某中学积极响应国家号召,落实垃圾“分类回收,科学处理”的政策,准备购买、两种型号的垃圾分类回收箱共20只,放在校园各个合适位置,以方便师生进行垃圾分类投放.若购买型14只、型6只,共需4240元;若购买型8只、型12只,共需4480元.求型、型垃圾分类回收箱的单价.3.某农场去年生产大豆和小麦共300吨。

采用新技术后,今年总产量为350吨,与去年相比较,大豆超产10%,小麦超产20%。

求该农场今年实际生产大豆和小麦各多少吨?4.有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,各增产花生多少千克?5.某书店的两个下属书店共有某种图书5000册,若将甲书店的该种图书调出400册给乙书店,这样乙书店的该种图书的数量仍比甲书店该种图书的数量的一半还少400册。

求这两个书店原有这种图书的数量差。

6.甲种电影票每张20元,乙种电影票每张15元,若购买甲乙两种电影票共40张,恰好用去720元,求甲、乙两种电影票各买了多少张?7.小欢和小乐一起去超市购买同一种矿泉水和同一种面包,小欢买了3瓶矿泉水和3个面包共花21元钱;小乐买了4瓶矿泉水和5个面包共花32.5元钱.求此种矿泉水和面包的单价.8.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房间,两人间客房间,请列出满足题意的方程组.9.甲、乙两人做同样的零件,如果甲先做天,乙再开始做天后两人做的一样多,如果甲先做个,乙再开始做,天后乙反而比甲多做个.甲、乙两人每天分别做多少个零件?(用方程组解答)10.七年级一班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有元,请帮我安排买支钢笔和本笔记本.售货员:好,每支钢笔比每本笔记本贵元,退你元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?11.根据下图提供的信息,求每件恤衫和每瓶矿泉水的价格.12.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.求购进甲、乙两种花卉,每盆各需多少元?13.某饮料加工厂生产的A、B两种饮料均需加入同种派加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产多少瓶?14.某班师生共44人去公园划船,公园有大、小两种型号的船只,每艘船可容纳的人数和费用如下表:若每艘船刚好坐满(即没有空位),一共花费1200元请问公园提供了大、小船各多少艘?15.有黑白两种小球各若干个,且同色小球质量均相等,在如图所示的两次称量的天平恰好平衡,如果每只砝码质量均为5克,每只黑球和白球的质量各是多少克?16.有大小两种货车,2辆大货车与3辆小货车一次可以运货17吨,5辆大货车与6辆小货车一次可以运货38吨.求一辆大货车和一辆小货车每次分别可以运货多少吨?17.某汽车制造厂接受了在预定期限内生产一批汽车的任务,如果每天生产35辆,则差10辆才能完成任务;如果每天生产40辆,则可超额生产20辆.试求预定期限是多少天?计划生产多少辆汽车?18.列方程或方程组解应用题:“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分﹣21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.19.一种口服液有大盒、小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.求大盒、小盒每盒各装多少瓶?答案解析部分一、解答题1.【答案】解:设第一道工序需要x人,第二道工序需要y人,根据题意得:,解得:,答:第一道工序需要4人,第二道工序需要3人.【考点】二元一次方程组的其他应用【解析】【分析】由题意可得等量关系:每天第一、第二道工序所完成的件数相等和现有7位工人参加这两道工序,据此列出方程组,求解即可.2.【答案】解:设型垃圾分类回收箱的单价为元/只, 型垃圾分类回收箱的单价为元/只依题意得:解之得:答:型垃圾分类回收箱的单价为200元/只, 型垃圾分类回收箱的单价为240元/只.【考点】二元一次方程组的其他应用【解析】【分析】根据题意,设型垃圾分类回收箱的单价为元/只,型垃圾分类回收箱的单价为元/只,结合题目等量关系列出二元一次方程组,进而求解即可.3.【答案】解:设去年大豆、小麦产量分别为ⅹ吨、y吨,由题意得解得(1+10%)x=11×100=110吨,(1+20%)y=1.2×200=240答:大豆,小麦今年的产量分别为110吨和240吨。

二元一次方程组应用题(50题)

二元一次方程组应用题(50题)

二元一次方程组应用题(50题)1. 婆婆家的流水问题婆婆家有一个流水池,从自来水管道接入流水池中,再从流水池中通过自来水管道供应给家中的各个水龙头。

假设自来水管道的水流速度为x,流水池的容积为y,通过自来水管道流出的水量为z。

已知当自来水管道的水流速度为8升/分钟时,流水池会在20分钟内完全注满。

求出流水池的容积和通过自来水管道流出的水量之间的关系。

解题思路:设流水池的容积为y升,通过自来水管道流出的水量为z升。

根据题意得到以下方程组: 1. 自来水管道的水流速度与流水池的注水时间关系:8升/分钟 = y/20分钟 2. 流水池的容积与自来水管道流出的水量关系:z = y根据方程组可以求得:y = 160升,z = 160升。

2. 兰兰购买书籍兰兰去书店购买了几本书,每本书的价格不等。

已知兰兰购买的这几本书的总价格为x元,当其中两本书的价格分别减少5元和增加7元后,他们的价格相等。

求出每本书的原始价格。

解题思路:设第一本书的价格为y元,第二本书的价格为z元。

根据题意得到以下方程组: 1. 兰兰购买的这几本书的总价格:x = y + z 2. 当其中两本书的价格分别减少5元和增加7元后,他们的价格相等:y - 5 = z + 7将第二个方程式代入第一个方程式中,求解可以得到:y = (x + 12) / 2,z = (x - 12) / 2。

3. 成绩排名班级里有30个学生,数学和英语两门课的成绩分别用x和y表示。

已知数学成绩平均分为80分,英语成绩平均分为85分。

学生成绩排名中,有10个学生的数学成绩高于平均分,有15个学生的英语成绩高于平均分。

求出数学和英语成绩中,既高于平均分,又相等的学生人数。

解题思路:设数学成绩高于平均分且相等的学生人数为y,英语成绩高于平均分且相等的学生人数为z。

根据题意得到以下方程组: 1. 数学成绩平均分为80分:(80 * 30 + y) / 30 =80 2. 英语成绩平均分为85分:(85 * 30 + z) / 30 = 85 3. 学生成绩排名中,有10个学生的数学成绩高于平均分:y = 10 4.学生成绩排名中,有15个学生的英语成绩高于平均分:z =15求解方程组可以得到:y = 10,z = 15,既高于平均分,又相等的学生人数为10。

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。

类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。

类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。

二元一次方程组经典例题

二元一次方程组经典例题

二元一次方程组经典例题一、例题例1:解方程组2x + y = 5 x - y = 1解析:1. 观察方程组的特点- 这个方程组中y的系数分别为1和-1,可以采用加减消元法。

2. 消元求解- 将方程2x + y = 5与方程x - y = 1相加,得到(2x + y)+(x - y)=5 + 1。

- 化简得2x+y+x - y=6,即3x=6,解得x = 2。

3. 回代求y- 把x = 2代入x - y = 1中,得到2 - y = 1,解得y=1。

所以方程组的解为x = 2 y = 1例2:解方程组3x+2y = 8 2x - 3y=-5解析:1. 选择消元方法- 为了消去其中一个未知数,我们可以给第一个方程乘以3,第二个方程乘以2,然后再相加来消去y。

2. 消元计算- 方程3x + 2y = 8两边乘以3得9x+6y = 24。

- 方程2x - 3y=-5两边乘以2得4x-6y=-10。

- 将这两个新方程相加:(9x + 6y)+(4x-6y)=24+( - 10)。

- 化简得9x+6y + 4x-6y = 14,即13x=14,解得x=(14)/(13)。

3. 回代求y- 把x=(14)/(13)代入3x + 2y = 8中,得到3×(14)/(13)+2y = 8。

- 即(42)/(13)+2y = 8,移项得2y = 8-(42)/(13)。

- 2y=(104 - 42)/(13)=(62)/(13),解得y=(31)/(13)。

所以方程组的解为x=(14)/(13) y=(31)/(13)例3:某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,问购买甲、乙两种票各多少张?设购买甲种票x张,购买乙种票y张。

根据题意可列方程组x + y = 40 10x+8y = 370解析:1. 消元方法选择- 由第一个方程x + y = 40可得y = 40 - x,我们可以采用代入消元法。

二元一次方程应用题66道

二元一次方程应用题66道

二元一次方程组应用题66道1. 一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?2. 某厂买进甲、乙两种材料共56吨,用去9860元。

若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨?3. 某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?4.一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?5.某厂买进甲、乙两种材料共56吨,用去9860元。

若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨?6.某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?7.有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?8. 种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。

3种包装的饮料每瓶各多少元?9.某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。

已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。

10.一级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,求初一级学生人数及长凳数.11.两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.12.购买甲种图书10本和乙种图书16本共付款410元,甲种图书比乙种图书每本贵15元,问甲、乙两种图书每本各买多少元?13.甲、乙两人分别从甲、乙两地同时相向出发,在甲超过中点50米处甲、乙两人第一次相遇,甲、乙到达乙、甲两地后立即返身往回走,结果甲、乙两人在距甲地100米处第二次相遇,求甲、乙两地的路程。

二元一次方程组应用题百题汇编

二元一次方程组应用题百题汇编

二元一次方程组解应用题知能点11、班上有男女同学32人,女生人数的一半比男生总数少10人,若设男生人数为x 人,女生人数为y 人,则可列方程组为2、甲乙两数的和为10,其差为2,若设甲数为x ,乙数为y ,则可列方程组为3、已知方程y=kx+b 的两组解是⎩⎨⎧==;2,1y x ⎩⎨⎧=-=.01,y x 则k=b= 4、某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x 万元,总产值为y 万元,那么x,y 所满足的方程为5、学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x 张,乙种票y 张,则列方程组,方程组的解是6、一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x 米,另一段为y ,那么列的二元一次方程组为7、一个矩形周长为20cm ,且长比宽大2cm ,则矩形的长为cm ,宽为cm8、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为 ( )9、一只轮船顺水速度为40千米/时,逆水速度为26千米/时,则船在静水的速度是_______ ,水流速度是 ____.10、一辆汽车从A 地出发,向东行驶,途中要过一座桥,使用相同的时间,如果车速是每小时60千米,就能越过桥2千米;如果车速是每小时50千米,就差3千米才能到桥,则A 地与桥相距 _____千米,用了小时.(考虑问题时,桥视为一点)11、一块矩形草坪的长比宽的2倍多10m ,它的周长是132m ,则宽和长分别为_____.12、一批书分给一组学生,每人6本则少6本,每人5本则多5本,该组共有_____名学生,这批书共有_______本.13、某年级有学生246人,其中男生比女生人数的2倍少3人,求男、•女生各有多少人.设女生人数为x 人,男生人数为y ,则可列出方程组_______.14、甲、乙两条绳共长17m ,如果甲绳减去15,乙绳增加1m ,两条绳长相等,求甲、•乙两条绳各长多少米.若设甲绳长x (m ),乙绳长y (m ),则可列方程组( ).15、已知长江比黄河长836km ,黄河长度的6倍比长江长度的5倍多1 284km .设长江、黄河的长度分别为x (km ),y (km ),则可列出方程组.16、班上有男女同学32人,女生人数的一半比男生总数少10人,若设男生人数为x 人,女生人数为y 人,则可列方程组为17、甲乙两数的和为10,其差为2,若设甲数为x ,乙数为y ,则可列方程组为18、已知方程y=kx+b 的两组解是⎩⎨⎧==;2,1y x ⎩⎨⎧=-=.01,y x 则k=b= 19、某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x 万元,总产值为y 万元,那么x,y 所满足的方程为20、学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x 张,乙种票y 张,则列方程组 ,方程组的解是21、一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x 米,另一段为y ,那么列的二元一次方程组为22、一个矩形周长为20cm ,且长比宽大2cm ,则矩形的长为cm ,宽为 cm23、 七(2)班有任课教师6名,学生30名,其中男生占全班学生的60%,若画出该班全体师生人数的扇形统计图,男生所占的扇形的圆心角为.24、小利持250元钱到一超市购买一物品,发现每个物品上标价为2.5元/个,而在超市的促销广告上却标明:买这种物品达到100个以上(不包括100个)售价为2.4元/个,小利用手中的钱最多可买个这种物品.25、某同学买80分邮票与一元邮票共花16元,已知买的一元邮票比80分邮票少2枚,设买80分邮票x 枚,则依题意得到方程为()26、某种商品的进价为15元,出售时标价是22.5元。

人教版七年级下册数学二元一次方程组应用题(和差倍分问题)精选全文完整版

人教版七年级下册数学二元一次方程组应用题(和差倍分问题)精选全文完整版

可编辑修改精选全文完整版人教版七年级下册数学二元一次方程组应用题(和差倍分问题)1.第一小组的同学分铅笔若干支,若每人各取5支,则还剩4支;若有1人只取2支,则其余每人恰好6支.问第一小组同学有多少人?铅笔有多少只?2.甲仓库存粮比乙仓库存粮少5吨,现从甲仓库运出存粮30吨,从乙仓库运出存粮的40%,这时乙仓库所余粮食是甲仓库所余粮食的2倍,问甲、乙两仓库原各存粮多少吨?3.用一根绳子环绕一棵大树.若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少了3尺.这根绳子有多长?环绕大树一周需要多少尺?4.某中学为了丰富学生的课外体育活动,准备购买一批新的篮球和足球总共160个.已知购买篮球的数量比足球的数量的2倍还多10个,求购买的篮球和足球的数量分别是多少个?5.高台县为加快新农村建设,建设美丽乡村,对A、B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;巷道镇建设了2个A类村庄和5个B类村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)骆驼城镇改建3个A类美丽村庄和6个B类美丽村庄共需资金多少万元?6.学校开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品.若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.求甲、乙两种笔记本的单价各是多少元?7.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.求甲、乙两种办公桌每张各多少元?8.新冠肺炎疫情期间,佩戴口罩是做好个人防护的重要举措。

小明家先后两次在同一电商平台以相同的单价邮购买了A、B两种型号的口罩,第一次购买20个A型口罩,30个B型日单,共花费190元;第二次购买30个A型口罩,20个B型口罩,共花费160元,求A、B两种型号口罩的单价.9.李欣同学昨天在文具店买了2本笔记本和4支水笔,共花了14元;王凯以同样的价格买了1本笔记本和3支水笔,共花了9元;问笔记本和水笔的单价各是多少元?10.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?11.列一元一次方程解应用题:某仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个仓库中的57,问每个仓库各有多少吨粮食?12.养牛场原有的大牛和小牛一天约用饮料475kg;一周后购进一批大牛和小牛后,这时大牛数量增加为原来的3倍,小牛数量增加为原来的2倍,一天约用饮料1350kg,已知大牛一天的饮料需20kg,小牛一天的饮料需5kg,则养牛场原有大牛和小牛数量各是多少?13.我校去年有学生3100名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?14.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从树上飞下去一只,则树上、树下的鸽子就一样多了.”地上的鸽子对树上的鸽子说:“若从地上飞到树上一支鸽子,则树上鸽子是地上的3倍.”你知道树上,树下各有多少只鸽子吗?15.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍.如果我给你一袋,我们才恰好驮的一样多!”求驴子和骡子原来所驮货物分别为多少袋?16.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元,求商店购进篮球,排球各多少个?17.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.18.在某超市小明买了1千克甲种糖果和2千克乙种糖果,共付38元;小强买了2千克甲种糖果和0.5千克乙种糖果,共付27元.(1)求该超市甲、乙两种糖果每千克各需多少元?(2)某顾客到该超市购买甲、乙两种糖果共20千克混合,欲使总价不超过240元,问该顾客混合的糖果中甲种糖果最少多少千克?19.南充某制衣厂现有22名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润?20.某农户原有15头大牛和5头小牛,每天约用饲料325kg;两周后,由于经济效益好,该农户决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg.问每头大牛和每头小牛1天各需多少饲料?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点:二元一次方程组的概念及解法:代入法和加减法二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)相似题:鸡兔同笼问题(1)1、野鸡和兔子共有39只,它们的腿共有100条,求野鸡和兔子各有多少只。

2、已知板凳和木马共有33个,腿共有101条。

板凳和木马各有多少个?(注:板凳4条腿,木马3条腿)3、某文艺团体为“希望工程”募捐组织了一场义演。

其中成人票每张8元,学生票每张5元,共售出1000张票,共筹得票款6950元。

问成人票与学生票各售出多少张?分析:两个相等关系:①;②。

4、某校买了甲、乙两种型号的彩电共7台,花去人民币15900元。

已知这两种型号的彩电的价格分别是3000元和1300元,问该校两种彩电各买了多少台?鸡兔同笼问题(2)1、某校150名学生参加数学考试,平均每人55分,其中及格的学生人均77分,不及格的学生人均47分。

及格、不及格的学生各有多少人?2、一队敌军一队狗,两队并成一队走;脑袋共有八十个,数腿却有二百条;请君仔细算一算,多少敌军多少狗3、现有大人、幼儿共100人,大人一餐吃4个面包,幼儿4人一餐吃一个面包,一餐刚好吃光100个面包,问大人、幼儿各有几人?分配问题(1)【例】栖树一群鸦,鸦树不知数;三只坐一棵,五只没去处;五只栖一棵,闲了一棵树;请你列式算,鸦树各几何?分析:两个等量关系:①3⨯树的棵数+5=乌鸦的只数;②5⨯(树的棵数-1)=乌鸦的只数。

解:设乌鸦有x只,树有y棵。

1、某单位召开会议,安排参加会议人员住宿,若每间宿舍住12人,便有34人没有住处;若每间住14人便多处4间宿舍没人住。

求参加会议的人数和宿舍数。

分析:两个相等关系:①;②。

2、将若干只鸡放入若干个笼子中,若每个笼子放4只,则有1只鸡无笼可放;若每个笼子放5只鸡,则有1笼无鸡可放,试问有多少只鸡,多少个笼子?3、用一根绳子测水泥柱一周的尺寸,若绳子绕水泥柱4周,则绳子还多3尺;若绳子绕水泥柱5周,则绳子还少2尺,求绳子及水泥柱一周的长度。

分配问题(2)1、一组学生用一条绳子测一块的长,量12次,还余80 m没有量,量14次,超出地段20 m,求绳长和地段长。

2、在一条马路旁种树,每隔3米种一棵,到头还剩3棵树;每隔2.5米种一棵,到头还缺77棵树。

问马路有多长?树有多少棵?3、有人在林中散步,听到几个强盗在商量怎样分抢来布匹,一名强盗说:“没人分6匹,但剩下5匹。

”另一名强盗说:“每人分7匹,可又少8匹。

”问有几个强盗几匹布?4、现有一批物资运往三峡工地,由铁路装运,如果每节车皮装50吨,则还缺2节车皮才能把全部物资运走,如果每节车皮多装5吨,则还可再装200吨其它物资,问原有多少物资,共有多少节车皮?调配问题1、甲、乙两盒中各放着一些球,一共有9个,如果从甲盒中拿出5个放入乙盒,乙盒的球数是甲盒的2倍。

问甲、乙两盒中原来各放着多少个球?2、某工厂第一车间人数比第二车间人数的45少30人,若从第二车间调10人到第一车间,则第一车间的人数是第二车间人数34,求各车间的人数。

3、有一大群羊,其中一部分已上山,另一部分还在山下。

如果山下的羊中有3只上了山,则山下的羊是整个羊群的13;如果从山上下来3只羊,则山上、山下的羊就一样多了。

问原来山上、山下各有羊多少只?配套问题样分配,才能使每天生产的螺栓和螺帽刚好配套?2、八年级A班同学50人,为参加学校举办的迎国庆文艺活动,做一批道具,每人每天平均做花18朵,面具16个,如果一个面具配两朵花,应分配多少学生做面具,多少学生做花,才能使面具和花刚好配套?3、某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲零件12个或乙零件23个,应分配多少人生产甲零件,多少人生产乙零件,才能使每天生产的甲零件和乙零件刚好配套?(每3个甲零件和2个乙零件配成一套)年龄问题1、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁。

”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁。

”问甲、乙各多少岁?2、10年前,小兰妈妈的年龄是小兰年龄的3倍;10年后,妈妈的年龄是小兰年龄的2倍,问小兰和妈妈现在的年龄各是多少岁?3、已知仙鹤和乌龟是动物中的长寿星,一天鹤父、鹤女与龟祖、龟孙在聊天,它们发现鹤父的年龄是鹤女的2倍,龟祖的年龄是龟孙的5倍,它们四位的年龄和的3倍恰好是900岁。

十年后,鹤父和鹤女之和的5倍,加上龟祖、龟孙的年龄也是900岁,试求它们分别是多少岁?销售问题(1)【例】某书店向学校推销甲、乙两种素质教育用书,如果原价买这两种书共需1760元,书店推销时甲种书打了8折,乙种书打了7.5折,结果两种书共少要了400元。

问甲、乙两种书原价各需多少钱?分析:两个等量关系:(1)甲种书原价+乙种书原价=1760;(2)甲种书折后价+乙种书折后价=1760-400。

1、新华书店向某校推销甲、乙两种科普书,如以原价买这两种书共需880元,甲种书书店按8折销售,乙种书书店按7.5折销售,结果这两种书共少要了200元,问原来买这两种书各需要多少元?2、“五一”黄金周,人民商场女装部推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客买了一套女装和一套男装,优惠前需付700元,而她实际付款580元。

问男装、女装原价各是多少元?3、某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款386元,这两种商品原销售价之和为500元,问这两种商品的原销售价分别为多少元?销售问题(2)1、华联商场购进甲、乙两种商品后,甲商品加价50%,乙商品加价40%作为标价,后适逢元旦商场搞促销活动,甲商品打八折销售,乙商品打八五折销售。

某顾客购买甲、乙商品各一件,共付款538元,已知商场共盈利88元,求甲、乙两种商品的进价。

2、某商场购进甲、乙两种服装后,都加价40%标价出售。

“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别把标价的八折和九折出售。

某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,求这两种服装的进价和标价各是多少元?3、某商场欲购甲、乙两种商品共50件,甲种商品每件进价为35元,利润率为20%;乙种商品进价为20元,利润率为15%,共获利278元,问甲、乙两种商品各购进多少件?增长率问题(1)【例】某工厂去年的利润为200万。

今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元。

去年的总产值、总支出各是多少万元?解:设去年的总产值为x万元,总支出y万元。

则有根据上表可列方程组 ⎧⎨⎩ 解得: x y =⎧⎨=⎩答:去年的总产值为 万元,总支出 万元。

1、某企业去年的总收入比总支出多500万元,今年的总收入比去年增加10%,总支出节约15%,因此总收入比总支出多800万元。

求去年的总收入和总支出。

2、某工厂第一季度生产甲、乙两种机器共480台,改进生产技术后,计划第二季度生产两种机器共544台,其中甲种机器产量要比第一季度增产10%,乙种机器产量要比第一季度增产20%。

该厂第一季度生产甲、乙两种机器各多少台?3、革命老区百色的某个芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入和支出各是多少万元? 增长率问题(2)1、某校计划向灾区捐赠图书3500册,实际共捐了4125册,其中初中生比原计划多捐了20%,高中生捐了原计划的115%,问该校初、高中生实际各捐赠图书多少册?解:设初中生实际捐了x 册,高中生实际捐了y 册。

则有根据上表可列方程组 ⎧⎨⎩ 解得: x y =⎧⎨=⎩答:设初中生实际捐了 册,高中生实际捐了 册。

2、某工厂去年的总产值比总支出多500万元,而今年计划的总产值比总支出多950万元,已知今年计划总产值比去年增加15%,而计划总支出比去年减少10%,求今年计划的总产值和总支出各为多少元。

储蓄问题【例】小明以两种方式储蓄了压岁钱2000元,其中一种是年利率为2.25%的教育储蓄,另一种是年利率为3.06%的一年期定期存款,一年后共得利息45.99元,求这两种储蓄各存了多少钱?分析:两个等量关系:(1)两种储蓄共有2000元;(2)教育储蓄的利息+定期存款的税后利息=42.75元。

解:设存一年教育储蓄的钱为x 元,存一年定期存款的钱为y 元。

初中生捐书(册) 高中生捐书(册) 共捐书(册) 实际捐书 x y 5125 计划捐书3500()%-%120元,存一年定期存款的钱为1、某储户存入银行甲、乙两种利息的存款,共计2万元,甲种存款的年利率是3%,乙种存款的年利率是1.5%,不计利息税,该储户一年共得利息525元,求甲、乙两种存款各是多少万元?2、小明以两种方式共储蓄了3000元教育储蓄,一种的年利率为2.25%,另一种的年利率为3.06%,一年后本息和为3079.65元,求每种存款各为多少元?3、王凯以两种方式分别储蓄了2000元和1000元,一年后全部取出,扣除利息税后,可得利息43.9元,已知这两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?数字问题(1)1、一个两位数,十位上的数字是个位上的数字的3倍,将个位上的数字与十位上的数字对调后所得的两位数比原来的两位数小18,求这个两位数。

2、有一个两位数,个位上的数比十位上的数大5。

如果把两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数。

3、一个两位数的十位数字与个位数字的和为7,如果这个两位数加45,那么恰好成为个位数字与十位数字对调后所成的两位数,求这个两位数。

4、有一个两位数,其值等于十位数字与个位数字之和的4倍,其十位数字比个位数字小2,求这个两位数。

数字问题(2)1、两个两位数的和是85,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。

已知前一个四位数比后一个四位数大1287。

求这两个两位数。

2、一个三位数和一个两位数的差为225,在三位数的左边写这个两位数,得到一个五位数,在三位数的右边写上这个两位数,也得到一个五位数。

已知前面的五位数比后面的五位数大225,求这个三位数和两位数。

3、有一个三位数,现将最左边的数字移到最右边,则比原来的数小45;又已知百位数字的9倍比由十位数字和个位数字组成的两位数小3,试求原来的三位数。

相遇问题1、甲、乙两人在一条长400米的环形跑道上跑步,甲的速度是6米/秒,乙的速度是4米/秒。

相关文档
最新文档