生物柴油的常用原料
生物柴油中的成分范围

生物柴油中的成分范围
生物柴油是一种由动、植物油脂等可再生生物资源生产的清洁燃料,主要用于压燃式发动机。
其主要成分是脂肪酸甲酯或乙酯,由甲醇或乙醇与油脂酸通过酯交换反应制成。
此外,生物柴油中还含有少量的二甲酯、烯烃、酚类和醇类等杂质。
生物柴油不含有或含有很微量的芳香族化合物、硫化物等有害成分,而且含氧量远高于普通石化柴油,因此能够较为完全地燃烧,从而降低了炭烟等有害物的生成,对环境更为有利。
具体来说,采用生物柴油,尾气中有毒有机物排放量仅为普通石化柴油的1/10,颗粒物为普通石化柴油的20%,CO2和CO排放量仅为石化柴油的10%,无SO2和铅及有毒物排放。
请注意,生物柴油的具体成分可能会因生产方法和原料的不同而有所差异。
因此,如果需要更详细或具体的信息,建议查阅相关的专业文献或咨询相关领域的专家。
微藻与生物柴油知识点总结

微藻与生物柴油知识点总结一、微藻简介微藻(Microalgae)是一类单细胞或多细胞的微小藻类植物,它们通常生长在水体中,并且可以进行光合作用来进行自我营养。
微藻具有高生长速度、高光合效率、丰富的油脂储备等优点,因此被认为是未来可持续能源的重要来源。
微藻可用于生物燃料、食品添加剂、医药等领域。
二、微藻生产生物柴油的原理微藻中的油脂是生产生物柴油的主要原料。
通过光合作用,微藻会积累大量油脂,其油脂含量可达20% - 50%。
生产生物柴油需要将微藻中的油脂提取出来,经过酯化等化学过程,将其转化为生物柴油。
这一生产过程可以使用碳中和的方式,减少对环境的负面影响。
三、微藻生产生物柴油的优势1. 高能效:微藻生产生物柴油的能量投入产出比高,有利于提高能源利用效率。
2. 可持续性:微藻作为生物原料,其生产过程不会产生温室气体和其他污染物,对环境友好。
3. 原料丰富:微藻生长速度快,可在短时间内获得大量原料,供应相对充足。
4. 可再生:微藻是可以再生的生物资源,具有无限的潜在供应量。
5. 多用途:微藻生产的生物柴油不仅可以替代常规石油柴油,还可以作为食品添加剂、医药原料等。
四、微藻生产生物柴油的挑战1. 成本问题:目前微藻生产生物柴油的成本较高,需要通过技术创新和规模效应等手段降低成本。
2. 生产规模:微藻生产的规模较小,需要通过工程技术手段提高规模化生产的能力。
3. 技术要求:微藻生产生物柴油需要复杂的生产工艺和设备,需要进一步提升技术水平。
4. 资源利用:微藻生产生物柴油对水资源、土地资源等资源有一定的需求,需要合理分配资源,避免资源浪费。
5. 法律政策:相关法律政策对于微藻生产生物柴油的规范和支持程度还待完善。
五、微藻生产生物柴油的应用前景1. 交通运输领域:微藻生产的生物柴油可以替代传统石油柴油,应用于汽车、船舶以及航空等交通工具中。
2. 工业用途:生物柴油还可以用于工业锅炉、发电机组等设备中,起到减少对化石能源的依赖,减少温室气体排放的作用。
生物柴油产业链分析

生物柴油产业链分析生物柴油是一种以植物油、动植物脂肪为原料生产的一种绿色环保燃料,它与传统的石油柴油具有相似的化学性质和燃烧特性,在汽车、船舶、发电、农业机械等领域均有广泛应用。
随着人们对环保与可再生能源需求的提高,生物柴油产业链也逐渐受到了关注和重视。
本文将对生物柴油产业链进行全面分析,从生产原料、生产加工、销售与应用等多个环节进行细致的探讨,为读者全面了解生物柴油产业链提供参考。
一、生物柴油的生产原料生物柴油的生产原料主要包括植物油和动植物脂肪。
目前常用的生物柴油原料主要有大豆油、菜籽油、棕榈油、花生油等植物油和动植物脂肪如动物脂肪、植物脂肪酸甘油酯等。
植物油作为生物柴油的主要原料,具有易获取、成本低、燃烧效率高等优点,而动植物脂肪则可以作为替代原料,可以降低生产成本。
生物柴油的生产原料主要来源于农作物的种植与动植物的饲养。
种植农作物产生植物油原料,动植物饲养产生动植物脂肪原料。
生物柴油产业链的第一环节即是农业生产。
农业种植和养殖企业的规模化、化肥农药的使用与管理将直接影响生物柴油生产原料的产量和品质。
生物柴油的生产加工是将植物油与动植物脂肪进行化学反应,经过酸碱中和、醇改性、酯交换、脱色、脱水、脱臭等一系列工艺过程,最终得到生物柴油产品。
生物柴油的生产加工过程需要借助专业的生产设备和技术,需要满足环保、安全、卫生等多个方面的要求。
在生物柴油的生产加工环节,生产企业需要对原料采购、生产设备维护更新、生产工艺技术进行研发改进等方面进行有效管理。
生产加工过程中需要严格遵守国家有关环保、生产安全等法律法规,确保产品的质量和合规性。
三、生物柴油的销售与应用生物柴油的销售与应用是生物柴油产业链的最后一环节。
生物柴油产品主要销售给燃料经销商、加油站等销售渠道,再通过这些销售渠道进入最终用户的手中。
目前,生物柴油在航空、运输、农业、工业等领域有广泛的应用需求。
在生物柴油的销售与应用环节,生产企业需要对市场需求、产品定位、销售渠道、价格竞争等方面进行有效的把握与管理。
生物柴油成分

生物柴油成分
生物柴油是指植物油(如菜籽油、大豆油、花生油、玉米油、棉籽油等)、动物油(如鱼油、猪油、牛油、羊油等)、废弃油脂或微生物油脂与甲醇或乙醇经酯转化而形成的脂肪酸甲酯或乙酯。
生物柴油是典型的“绿色能源”,具有环保性能好、发动机启动性能好、燃料性能好,原料来源广泛、可再生等特性。
生物柴油的主要成分是脂肪酸甲酯,是酯类化合物,是动植物油脂与甲醇通过酯化反应得到的;而普通柴油属于烃类物质,是从石油里面提炼出来的。
首先是制备工艺不同,生物柴油的原料来源广泛,可以通过动植物废弃油脂、餐饮废油、棕榈酸化油等加工提炼而成。
而柴油则是直接通过石油转化而成,前者提炼工艺要复杂,对技术要求更高,这是两者最本质的区别。
再者就是两者特点也存在明显不同。
生物柴油通过生物质技术提炼而成,其性能上远远优于普通柴油,下面我们来具体说说生物柴油的特点:
1.含水率较高,最da可达30%-45%。
水分有利于降低油的黏度、提高稳定性,但降低了油的热值;
2.pH值低,故贮存装置最hao是抗酸腐蚀的材料(制备方法不同的酸价不一样);
3.密度比水小,相对密度在0.8724~0.8886之间;
4.润滑性能好。
5.优良的环保特性:硫含量低,二氧化硫和硫化物的排放低、生物柴油的生物降解性高达98%,降解速率是普通柴油的2倍,可大大减轻意外泄漏时对环境的污染;。
生物柴油的原料是什么

目前国家出台了多项节能减排的政策措施,节约发展、清洁发展、安全发展、可持续发展日益受到重视。
生物柴油作为一种清洁的“绿色”能源,在政府制定的各种法律、法规鼓励下,生物柴油行业得到了大力发展。
生物柴油根据生产工艺不同分为两种:第一种是化学法生产,利用动植物油和甲醇作为主要原料,经过加热、强酸和强碱作为催化剂,发生化学反应合成,又名脂肪酸甲酯,这种生物柴油不能直接加到车辆使用,需要与成品柴油调和后使用,但是调和比例较低,按照目前国家规定的调和标准,生物柴油所用比例为10%。
第二种是通过物理调和法生产,利用动植物油和炼油厂副产品为主要原料,加入相关添加剂,经专业调和设备生产而成。
该方法工艺流程简单,产品生产成本较低,最关键的是产品能直接替代加油站柴油,能直接在车辆上使用。
物理法生物柴油原材料广泛,化工厂、植物油厂、炼油厂、化工市场等均可提供:1、动植物油厂下脚料、泔水油、地沟油来源于饭店或者植物油厂;2、脂肪酸甲酯来源于生物柴油厂;轻油、洗油、焦化柴油来源于焦化厂3、重油、蜡油、常线油、减线油、重柴、催柴、碳五、碳九、碳十四、碳十六、白柴、来源于各大小炼油厂;4、废轮胎油、废塑料油、臭油、废机油、地炼油、黑柴来源于各小炼油厂。
全国生物柴油厂家至少500家以上,以西南及福建、广东、江苏等沿海地区数量最多,中部地区次之。
大多数生物柴油厂家以化学法为主,生产投资大、成本还偏高,随着生物柴油物理法工艺的成熟,化学法逐步被物理法取代。
生物柴油均成本相对于市场柴油批发价格每吨低600元左右,扣除人工、电费、配送、添加剂等成本,再给客户让利100元,每吨净利润300元以上。
销售以供应矿山、工地、路桥工程、物流车队为主,以每个使用单位平均20台工作车辆使用计算,每台车日用油量250升(约200公斤),每个单位日用油量4吨,一个地区寻找7-8个使用单位,日用油量30吨,每日净利润1万元,年净利润300万元以上。
综上所述,物理法生物柴油技术相对于传统化学法生产工艺流程简单,成本大大降低,所需审批手续也更为简便,最关键的是此种生物柴油可以达到车用柴油国家标准要求,该产品能直接替代加油站柴油,直接在柴油车车辆上使用。
生物柴油的制作和应用

生物柴油的制作和应用生物柴油是指利用植物油、动物油脂等可再生生物质资源经过化学反应制得的柴油燃料,是替代传统石油燃料的一种清洁能源。
相比于传统的石化柴油,生物柴油可降低大气污染物排放,减少温室气体排放,大大降低对环境的污染。
随着环保观念的提高,生物柴油的制作和应用受到越来越多人的关注。
一、生物柴油的原料生物柴油的原料多种多样,包括植物油、动物油、废弃油脂等可再生的生物质资源。
其中,植物油是应用最为广泛的原料之一。
用于生物柴油制造的植物油有一些特性,如含油量、含有酸类、抗氧化能力、油脂酸组成、脂肪酸度等。
常用的植物油有大豆油、棕榈油、棉籽油、花生油等。
动物油脂则包括猪油、牛油、鸡油、鱼油等。
而废弃油脂是指厨余废弃物中的废弃油、食用油炸过的油脂等,可以有效地利用废弃资源,减少环境负担。
二、生物柴油的制作生物柴油是通过化学反应制成的,主要反应是酯化反应。
酯化反应是指在催化剂的作用下,酸性催化剂如硫酸、碱性催化剂如氢氧化钠或氢氧化钾等将油脂酸和醇反应生成酯的过程,这个过程也叫做酯化反应。
酯化反应的反应式为:油脂酸 + 醇→ 酯 + 水在反应中,酯是指酸类与醇类反应而成的化合物。
以此反应为基础,在化学反应的基础上,还需要加入过滤和脱臭等工艺步骤,将其用于生物柴油的制作。
三、生物柴油的应用生物柴油的应用范围很广,可以应用于农机、汽车、船舶、发电机等机械设备的燃料,同时,它还可以用于制备溶剂、润滑油、油漆等化学产品的原料。
生物柴油是一种清洁能源,具有环保、减排的优势。
在全球能源的矛盾愈来愈显著,能源保障成为全球发展重心的今天,寻找新的、可持续、更具社会承载度的能源是社会各界共同面临的挑战,生物柴油将是未来的一种可持续发展的能源。
四、生物柴油的优点生物柴油的优点很明显,它是一种绿色、环保、可再生的新型能源,与传统石化柴油相比较具有以下优势:1.减少污染:生物柴油燃烧后产生的污染物极少,大大降低了对环境的污染。
2.降低成本:生物柴油比传统柴油价格便宜很多,可以有效地节省能源成本。
生物柴油的常用原料

生物柴油概念:生物柴油,又称脂肪酸甲酯,是植物柴油和动物柴油的总称,不含硫和芳烃,十六烷值高,且润滑性能好常用原料:油菜籽油、大豆油、玉米油、棉籽油、花生油、葵花子油、棕榈油、椰子油、回收烹饪油及动物油等主要成分:混和脂肪酸甲酯合成:由甲醇等醇类物质与天然植物油或动物脂肪中主要成分甘油三酸酯发生酯交换反应低温流动性参数:浊点(CloudPoint)、冷滤点(Cold Filter Plugging Point):生物柴油可以使用的最低温度倾点(PourPoint)、生物柴油刚刚可以流动的最低温度冷凝点(Solidification Point):影响因素:1.脂肪酸的组成与分布生物柴油的主要成分是混合脂肪酸甲酯,不同的脂肪酸甲酯低温流动性能差别很大,主要受碳链长度、不饱和程度、支链程度以及不饱和脂肪酸甲酯的立体构型影响。
脂肪酸甲酯的熔点随碳链的长度增加而增加,并随其不饱和程度的增加而降低,据报道碳链数都是 18的硬脂酸甲酯和油酸甲酯熔点分别为 39.1 和- 19.8 ℃,两者的熔点相差约 59℃;含支链的分子越多,低温性能越好。
此外,不饱和脂肪酸甲酯的立体构型也对其低温流动性能有很大影响,顺式油酸甲酯与反式油酸甲酯凝点、黏度等低温性能相差很大。
由于不同脂肪酸甲酯低温流动性能不同2.酯基结构生物柴油中的酯基一般是甲基或乙基,相对于柴油有较高结晶温度3.杂质的影响这些杂质包括:合成原料中含有的高熔点甘油二酯、甘油单酯;生物柴油转化过程中反应不完全的甘油三酯、醇类、游离脂肪酸等以及生物柴油转化中产生的皂化物等。
研究发现,尽管倾点不受影响,但浊点随甘油单酯、甘油二酯的增加而升高;浓度为 0.1%饱和甘油单酯或甘油二酯能使浊点升高,不饱和的甘油单酯对浊点及倾点都没有影响。
改善方法:1.加入流动改进剂法2.调和柴油法3.生物柴油的异构化4.冬化处理添加降凝剂机理1.成核理论成核理论认为,由于降凝剂分子的熔点相对高于油品中蜡的结晶温度,它会在油品的浊点(CP )以前析出而起到晶核、活性中心或结晶中心的作用而成为蜡晶生长中心,使油品中小蜡晶增多,从而达到降低冷凝点(PP )或冷滤点(CFPP )的效果。
生物柴油原理

生物柴油原理生物柴油是一种可再生燃料,由植物油、动物脂肪或废弃食用油等生物质原料通过酯化反应制得,通常用于取代传统石油柴油。
它具有低碳排放、环保和可持续发展等优势,成为替代传统燃料的重要选择。
下面将介绍生物柴油的原理以及相关参考内容。
1. 生物柴油制备原理:生物柴油的制备主要包括酯化反应和纯化处理两个步骤。
酯化反应是将生物质原料中的甘油与脂肪酸进行酯化反应,生成生物柴油和甘油。
此反应一般在催化剂的存在下进行,常用的催化剂有强酸(如硫酸)、弱碱(如氢氧化钠)或酶。
生物质原料可以是植物油、动物脂肪或废弃食用油等,具体选择取决于成本、可获得性和原料信用度等因素。
纯化处理是将酯化反应生成的混合物进行分离和纯化,以获得高纯度的生物柴油。
该步骤包括中和酸催化剂、脱水、脱色和脱臭等工艺。
其中,脱水可通过真空蒸馏或分子筛吸附等方法实现,脱色可通过活性炭吸附或聚合物树脂吸附等方法实现,脱臭可通过真空蒸馏或加热通风处理等方法实现。
2. 生物柴油的优点和应用:生物柴油具有以下优点:- 环保性:生物柴油在燃烧过程中释放的二氧化碳量与生物原料吸收的二氧化碳量基本相等,不会增加大气中的二氧化碳含量,具有较低的碳排放。
- 可再生性:生物质原料广泛且可再生,可以通过农作物种植或废弃物回收利用等方式进行生产。
- 可降解性:生物柴油具有良好的降解性,对环境影响较小。
- 可混合性:生物柴油可以与传统柴油按一定比例混合使用,适用于多种柴油发动机。
应用方面,生物柴油可广泛用于汽车、发电、航空和农业等领域。
在汽车领域,生物柴油可以直接替代传统柴油使用,并且对发动机的适应性较好。
在发电领域,生物柴油发电机组可以有效利用生物质资源发电,减少矿产柴油的使用。
在航空领域,生物柴油可以与传统喷气燃料混合使用,降低航空业的碳排放。
3. 生物柴油的相关参考内容:- 《生物柴油的生产工艺及纯化技术比较研究》:该论文对生物柴油制备的工艺和纯化技术进行了比较研究,分析了不同工艺的优缺点,并提出了技术改造的建议。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物柴油概念:生物柴油,又称脂肪酸甲酯,是植物柴油和动物柴油的总称,不含硫和芳烃,十六烷值高,且润滑性能好常用原料:油菜籽油、大豆油、玉米油、棉籽油、花生油、葵花子油、棕榈油、椰子油、回收烹饪油及动物油等主要成分:混和脂肪酸甲酯由甲醇等醇类物质与天然植
物油或动物脂肪中主要成分甘油三酸酯发合成:生酯交换反应、(CloudPoint)低温流动性参数:浊点:生物柴油可以使用的最低温度冷滤点(Cold Filter Plugging Point) (PourPoint)倾点、生物柴油刚刚可以流动的最低温度:冷凝点(Solidification Point) 影响因素:1.脂肪酸的组成与分布不同的脂肪酸甲酯低温流动性能差生物柴油的主要成分是混合脂肪酸甲酯,主要受碳链长度、不饱和
程度、支链程度以及不饱和脂肪酸甲酯的别很大,并随其不饱和
立体构型影响。
脂肪酸甲酯的熔点随碳链的长度增加而增加,的
硬脂酸甲酯和油酸甲酯熔点分,程度的增加而降低据报道碳链数
都是18低温性含支链的分子越多,59℃和- 19.8 ,两者的熔点相
差约℃;39.1 别为
不饱和脂肪酸甲酯的立体构型也对其低温流动性能有很大影能
越好。
此外,由于不,响顺式油酸甲酯与反式油酸甲酯凝点、黏度等低温性能相差很大。
同脂肪酸甲酯低温流动性能不同
2.酯基结构
生物柴油中的酯基一般是甲基或乙基,相对于柴油有较高结晶
温度.
3.杂质的影响生物柴油转合成原料中含有的高熔点甘油二酯、
甘油单酯;这些杂质包括:游离脂肪酸等以及生物柴油转化中化过程中反应不完全的甘油三酯、醇类、尽管倾点不受影响,但浊点随甘油单酯、甘产生的皂化物等。
研究发现,
饱和甘油单酯或甘油二酯能使浊点升0.1%油二酯的增加而升高;浓度为
高,不饱和的甘油单酯对浊点及倾点都没有影响。
改善方法:
1.加入流动改进剂法
2.调和柴油法
3.生物柴油的异构化
4.冬化处理
添加降凝剂
机理
1.成核理论
成核理论认为,由于降凝剂分子的熔点相对高于油品中蜡的结晶温度,它会在油品的浊点(CP )以前析出而起到晶核、活性中心或结晶中心的作用而成为蜡晶生长中心,使油品中小蜡晶增多,从而达到降低冷凝点
(PP )或冷滤点(CFPP )的效果。
2.共晶理论
共晶理论认为不加降凝剂时蜡中晶体呈二维生长,蜡晶在与
(001 )面相交的面上生长速率过快,蜡晶长成菱形片状,至200μm 左右时,连结成网,破坏了油品的流动。
而加入添加剂后,降凝剂分子在油品的浊点温度可进入蜡晶取代晶格中的蜡分因其与蜡分子碳链有足够的相似性,下析出,
子(正烷基链分子),从而发生共晶。
但又因为降凝剂分子与蜡晶分子极性部分的不同,阻碍了蜡晶在与(001 )面相交面上的生长,却相对加快了蜡晶在Z轴方向上的生长速度,同时也改变了(001 )面的形状。
随着降凝剂浓度的增加,蜡晶逐渐向着分枝型树枝状结晶方向发展。
当进一步增加浓度时,在促进Z轴方向生长的同时,抑制了X、Y 方向的生长,晶型由不规则的块状向四棱锥、四棱柱形转变。
蜡的这种结晶形态,使比表面积相对减小,表面能下降,而难于聚集形成三维网状结构。
3.吸附理论
吸附理论认为,降凝剂分子在略低于油品CP温度下结晶析出,由于极性基团的作用,改变了蜡晶的表面特征,阻碍了晶体的长大或改变了晶体的生长习性,使蜡晶的分散度增加、不易聚结成网,起到降凝效果
4.增溶理论
改善蜡的溶解性理论认为,降凝剂如同表面活性剂,加剂后,增加了蜡在油品中的溶解度,使析蜡量减少,同时又增加了蜡的分散度,且由于蜡分散后表面电荷的影响,蜡晶之间相互排斥,不
容易聚结形成三维网状结构,而降低PP。
5.吸附共晶理论
Lorensen 等提出了抑制蜡晶的三维网状结构生成的吸附-共晶理论,认为降凝剂的作用机理取决于降凝剂的种类。
某些降凝剂采用吸附机理,有一些则采用共晶机理。
化学降凝剂一般由长链烃和极性基团组成。
若其长链烃与油中石蜡的正构烷烃碳数分布最集中的链相近,则在油冷却重结晶过程中,降凝剂与油中的蜡同时只有个别的没有吸附降凝剂蜡晶的表面或或被吸附在蜡晶表面。
析出共晶,
其棱角,此时担负起结晶中心的作用,蜡晶很快成长起来;而新生成的蜡晶又被降凝剂包围时,在它的棱角处又重新长出新的蜡晶。
由于结晶过程是按照这种链锁方式进行的,由许多结晶中心成长起来的单晶晶体的连生体外,形成多枝状,成为树枝状结晶,它不易形成空间网络结构,不会将油中的液相组分包封起来,从而降低油品的凝固点、粘度等流变参数,改善了油的低温流动性能。
润滑油降凝剂的研发及降凝机理研究是由于降凝剂只是改善含蜡油的低温流动性能,并不能阻止蜡结晶的析出,因此又称之为流动改性剂或降凝剂。
6.凝胶化理论
凝胶化理论是从胶体的观点出发,认为加入降凝剂对原油具有良好的降凝效果。
造成这一现象的原因是由于原油的凝固过程包括蜡晶的形成、发育和蜡晶之间的凝胶化过程,加入降凝剂后,蜡
晶增大,在析出同样重量的蜡晶后,体系中单位体积内蜡晶颗粒数要小于不加剂的蜡晶颗粒数,从而表面能也相对较小,因而加降凝剂后的体系比较稳定,不易形成凝胶,从而降低原油的凝固点。
生物柴油的其他性质:氧化性、运动粘度、比重、润糟性及表面张力
随着环境保护和石油资源枯竭两大难题越来越被关注,生物柴油已成为新能源开发的热点,然而由于其低温流动性差,已限制了其开发利用,因此研究生物柴油低温性能、添加剂与其降凝机理具有十分重要的战略意义。
(1)由于生物柴油的组成有别于传统的石油基柴油,目前生物柴油的来源、组成与其低温流动性的关系以及对其低温流动性还缺乏比较深入的研究,因此研究生物柴油的组成与其低温流动性的关系及其低温降凝机理对于解决对于开发新型的适且是一个较新的课题,该问题具有非常重要的理论意义,
合生物柴油的流动改进剂有着极为重要的指导意义。
(2)尽管传统的柴油流动改进剂并不能完全解决生物柴油的低温流动性问题,但是还是取得了一定的效果,因此借签传统的柴油流动改进剂开发思路,通过不同流动改进剂的复配筛选适合生物柴油的流动改进剂,研究其低温下流动改进剂与生物柴油的相互作用机理,对于进一步开发新型的适合生物柴油的流动改进剂也是一个非常有价值的研究方向.。