4章作业答案(信号和测试)(2021年整理精品文档)
信号与系统课后答案第四章作业答案_第一次

2 Tnω1
j3nω1
e2
sin
⎛ ⎜⎝
nω1 2
⎞ ⎟⎠
−
2 Tnω1
− j3nω1
e2
sin
⎛ ⎜⎝
nω1 2
⎞ ⎟⎠
=
1 T
j3nω1
e2
Sa
⎛ ⎜⎝
nω1 2
⎞ ⎟⎠
−
1 T
− j3nω1
e2
Sa
⎛ ⎜⎝
nω1 2
⎞ ⎟⎠
4-5 设 x (t ) 是基本周期为 T0 的周期信号,其傅里叶系数为 ak 。求下列各信号的傅里叶级数
d dt
e jkω1t
∞
=
ak ⋅ jkω1 e jkω1t
k =−∞
故
bk = ak ⋅ jkω1
=
∞
bk e jkω1t
k =−∞
=
x(t )*
=
⎡ ⎢⎣
k
∞ =−∞
ak
e
jkω1t
⎤ ⎥⎦
∗
=
∞
a e∗ − jkω1t k k =−∞
∞
∞
∞
( ) ∑ ∑ ∑ 由于 k 从 −∞ 到 ∞ ,故 y t =
b e jkω1t k
=
a e∗ − jkω1t k
=
a e ∗ jkω1t −k
,所以
k =−∞
2
( ) ( ) = 1 ⋅
1
e− jnω1t − 1 ⋅
1
e− jnω1t
T − jnω1
−2 T − jnω1
1
( ) ( ) = 1
e − e j2nω1
jnω1
(2021年整理)复变函数第四章答案

复变函数第四章答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(复变函数第四章答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为复变函数第四章答案的全部内容。
复变函数作业12 复数项级数 幂级数1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限:(1)1i 1i n n a n +=- (2)i 12nn a -⎛⎫=+ ⎪⎝⎭;(3)i (1)1n n a n =-++ (4)i /2e n n a π-=; (5)i /21e n n a nπ-=. 解 (1)1i0i 110i in n n a n→∞++=−−−→=---,lim 1n n a →∞=-,即{}n a 收敛于1-。
(2)i|0|102nnn n a --→∞-=+=−−−→⎝⎭,1i lim 02nn -→+∞+⎛⎫= ⎪⎝⎭,即{}n a 收敛于0。
(3)因n a 的实部(1)n -不收敛,虚部11n +收敛于零,所以{}n a 不收敛。
(4)cos isin22n n n a ππ=-,lim cos 2n n π→∞与lim sin 2n n π→∞均不存在(分n 为奇数与偶数便知),所以{}n a 不收敛.(5)i /2i /2111|0|||e 0,lim e 0n n n n n a a n nn ππ--→∞-===→=,即{}n a 收敛于零.2. 下列级数是否收敛? 是否是绝对收敛?(1)2111i n n n +∞=+∑;(2)1(1i)2nn n n ∞=+∑;(3)1(35i)!n n n ∞=+∑;(4)/21(1i)2cosi n n n n ∞=+∑.解 (1)原式=1111i (1)n n n n n ∞∞==+-⋅∑∑,显然11n n ∞=∑发散,而11(1)n n n ∞=-∑收敛.故原级数发散。
信号与系统第四章习题解答

得E(s) =
L
⎡⎣e(t )⎤⎦
=
1 s +1
rzs
(t)
=
r
(t)
=
1 2
e−t
−
e−2t
+
2e−3t
Rzs ( s) =
L
⎡⎣rzs
(t
)⎤⎦
=
1
2(s +1)
−
s
1 +
2
+
s
2 −
3
故
H
(s)
=
Rzs ( s) E(s)
=
⎡ ⎢ ⎣
2
(
1
s +1)
−
s
1 +
2
+
s
2 −
3
⎤ ⎥ ⎦
⋅
(
s
+
1)
= 1 − s +1 + 2(s +1)
2 s+2 s−3
=3+ 1 − 8 2 s+2 s−3
( ) 所以
h(s) =
L
−1
⎡⎣ H
(
s )⎤⎦
=
3 2
δ
(t
)
+
e−2t + 8e3t
u (t )
4-35 解题过程:
k
∏(s − zi )
( ) H (s) = K
i =1 l
∏ s− pj
j =1
− 3e−2t
(7)
L
−1
⎡ ⎢⎣
s
1 2+
1
+
1⎤⎥⎦
= sin t + δ (t)
信号与系统第4章答案

第4章拉普拉斯变换与连续系统复频域分析4.6本章习题全解4.1 求下列函数的拉普拉斯变换(注意:为变量,其它参数为常量)。
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)解:(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18) ()(19)(20)(21)(22)(23)(24)4.2 已知,求下列信号的拉普拉斯变换。
(1)(2)(3)(4)(5)解:(1)(2)(3)(4)(5)所以4.3 已知信号的拉普拉斯变换如下,求其逆变换的初值和终值。
(1)(2)(3)(4)解(1)初值:终值:(2)初值:终值:(3)初值:终值:(4)初值:终值:4.4 求题图4.4所示信号的单边拉普拉斯变换。
题图4.4解(1)所以根据微分性质所以注:该小题也可根据定义求解,可查看(5)小题(2)根据定义(3)根据(1)小题的结果再根据时移性质所以根据微分性质得(4)根据定义注:也可根据分部积分直接求取(5)根据单边拉氏变换的定义,本小题与(1)小题的结果一致。
(6)根据单边拉氏变换的定义,在是,对比(3)小题,可得4.5 已知为因果信号,,求下列信号的拉普拉斯变换。
(1)(2)(3)(4)解:(1)根据尺度性质再根据s域平移性质(2)根据尺度性质根据s域微分性质根据时移性质(3)根据尺度性质再根据s域平移性质(4)根据时移性质再根据尺度性质本小题也可先尺度变化得到,再时移单位,得到结果4.6 求下列函数的拉普拉斯逆变换。
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)解:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14){} =(15){} =(16){}=(17){}=(18){}=(19){}=(20){}=(21){}=(22){}=(23) {}=(24) ()=4.7 求如题图4.7所示的单边周期信号的拉普拉斯变换。
(仅供参考)信号与系统第四章习题答案

t→∞
t→∞
a −σ < 0
即收敛域为σ > a,σ 0 = a 。
[ ] ∫ ∫ ( ) ( ) (4) F s = L e − a t ε t = 0 e at e − st dt + ∞ e − at e − st dt
−∞
0
∫ ∫ = 0 e (a−s )t dt + ∞ e −(a +s )t dt = 1 + 1
T
T 2 T
= 2 tε (t) − 4 t − T ε t − T + 2 (t − T )ε (t − T )
T
T 2 2 T
因 ε (t ) ↔ 1 , tε (t ) ↔ 1 ,根据拉普拉斯变换时延特性,有
s
s2
( ) X s
=
2 Ts 2
−
4 Ts 2
− sT
e2
+
2 Ts 2
t→∞
t→∞ 2
t→∞ 2
由此可得其收敛域为:σ > 3 同理,对于对于图 4.2(b)来说,其收敛域为:σ > 5
209
对于图 4.2(c)来说,其收敛域为:α > 1 (3)(4)情况下,收敛域均为: − ∞ < α < ∞
4.4 针对图 4.3 所示的每一个信号的有理拉氏变换的零极点图,确定: (1)拉氏变换式; (2)零极点图可能的收敛域,并指出相应信号的特征。
cos 2
ϕ
−
sin ϕ 2j
∞ eω0tj e−st dt
0
+
cosϕ 2
+
sin ϕ 2j
∞ e−ω0tje −st dt
信号与系统(第四版)第四章课后答案

第5-10页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
四、常见函数的单边拉普拉斯变换
1. (t ) 1, 2.( t) 或1 3. ( t ) s, 4. 指数信号e
1
s
, 0
1 s s0
s0t
(t 2)
f1(t) 1 0 1 f2(t) 1 t
例1:e (t 2) e
-t
2
e
(t 2)
e
2
1 s 1
e
2s
-1 0
第5-17页
■
1
t
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.2 拉普拉斯变换性质
1 1e sT
例2: 单边冲激 T(t ) 1 e sT e s 2T 例3: 单边周期信号 fT(t ) (t ) f1(t ) f1(t T ) f1(t 2T ) F1(s )(1 e sT e s 2T )
8 e 2 s
s
f(t ) 1 0 1 y(t ) 2 4 t
二、尺度变换
2s
2
(1 e 2 s 2s e 2 s )
2 e 2 s 2 (1 e 2 s 2s e 2 s ) s
第5-16页
■
0
2
4
t
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
拉氏逆变换的物理意义
f (t )
2 j 1
j
j
F (s)est ds
信号与系统第四章部分习题解答

第四章部分习题解答4-7求下列各序列的DFT ,已知N=4。
(1))(0n n -δ 300≤≤n解:044300)()]([kn kn n WWn n n n X =-=-∑=δδ(2))(n G N解:∑∑=====344304)(4)()]([n kn knn N k W Wn G n G X δ (利用正交性)或用矩阵法解 j eW j-==-4214π⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0004111111111111111111111111111)]([946434644424342414j j j j W W W W W W W W W n G X N (3))(n G a N n , 1≠a 解:1,111)(1)()(43044444≠--=--==∑=a aW a aW aW Wn G a k X kn k k kn n(4)}3,2,1,0{)(=n nG N解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=2222263210111111111111)]([4j j j j j j n nG X(5))(0n G e N n j ω解:kj j k j k j knn nj W e e W e W e Wn G ek X 444444300000111)(1)()(ωωωωω--=--==∑=4-8有限长序列x(n)如题图4-2所示,若题图 4-2)())3(()(441n G n x n x -= )())3(()(442n G n x n x -=给出)(1n x 和)(2n x 序列图形,并计算)(1n x 和)(2n x 的离散傅里叶变换。
解:由圆周移位特性知:}1,4,3,2{)(1=n x⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=j j j j j j k X 22222101432111111111111][1 }1,2,3,4{)(2↑=n x⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=j j j j j j k X 22222101234111111111111][2 4-9两有限长序列x(n)和h(n)如题图4-3所示,求)()(n h n x *。
测试信号习题及答案

第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 ,其中目前应用最广泛的是电信号。
2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。
3、 周期信号的频谱具有三个特点: , , 。
4、 非周期信号包括 信号和 信号。
5、 描述随机信号的时域特征参数有 、 、 。
6、 对信号的双边谱而言,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
( )2、 信号的时域描述与频域描述包含相同的信息量。
( )3、 非周期信号的频谱一定是连续的。
( )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
( )5、 随机信号的频域描述为功率谱。
( )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。
2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。
3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。
4、 求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。
5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。
参考答案第一章 信号及其描述(一)1、信号;2、时间(t ),频率(f );3、离散性,谐波性,收敛性;4、准周期,瞬态非周期;5、均值x μ,均方值2x ψ,方差2x σ;6、偶,奇;(二)1、√;2、√;3、╳;4、╳;5、√; (三)1、π02x ,20x ;2、0,220x ,)cos(10ϕωπ+t x ;3、f j a A π2+;4、()()T f c T T f c T )2(sin )2(sin 00ωπωπ-++; 5、faj f a πωπω44202220+--;第二章 测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(tt x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4章作业答案(信号和测试)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(4章作业答案(信号和测试))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为4章作业答案(信号和测试)的全部内容。
3—4 有一电阻应变片(见图3—84),其灵敏度S g =2,R =120Ω。
设工作时其应变为1000με,问∆R =?设将此应变片接成如图所示的电路,试求:1)无应变时电流表示值;2)有应变时电流表示值;3)电流表指示值相对变化量;4)试分析这个变量能否从表中读出?
解:根据应变效应表达式g R R S ε∆=得 R =S g R =2100010—6120=0。
24
1)I 1=1.5/R =1。
5/120=0。
0125A=12.5mA
2)I 2=1.5/(R +R )=1。
5/(120+0。
24)0.012475A=12.475mA
3)=(I 2-I 1)/I 1100%=0.2% 4)电流变化量太小,很难从电流表中读出。
如果采用高灵敏度小量程的微安表,则量程不够,无法测量12.5mA 的电流;如果采用毫安表,无法分辨0。
025mA 的电流变化.一般需要电桥来测量,将无应变时的零位电流平衡掉,只取有应变时的微小输出量,并可根据需要采用放大器放大.
第四章 信号的调理与记录
4-1 以阻值R =120、灵敏度S g =2的电阻丝应变片与阻值为120的固定电阻组成电桥,供桥电压为3V,并假定负载电阻为无穷大,当应变片的应变为2(表示微应变10^(—6))和2000时,分别求出单臂、双臂电桥的输出电压,并比较两种情况下的灵敏度。
解:这是一个等臂电桥,可以利用等臂电桥和差特性表达式求解。
图3-84 题3-4图 1.5V
o 1234e 1()4U R R R R U R =∆-∆+∆-∆
1)=2时: 单臂输出电压:
66o e e 11122103310V 3μV 444
g R U U S U R ε--∆===⨯⨯⨯⨯=⨯= 双臂输出电压:
66o e e 11122103610V 6μV 222
g R U U S U R ε--∆===⨯⨯⨯⨯=⨯= 2)=2000时: 单臂输出电压:
63o e e 11122000103310V 3mV 444
g R U U S U R ε--∆=
==⨯⨯⨯⨯=⨯= 双臂输出电压:63o e e 11122000103610V 6mV 222g R U U S U R ε--∆===⨯⨯⨯⨯=⨯=
双臂电桥较单臂电桥灵敏度提高1倍.
应变是形变量与原来尺寸的比值,用ε表示,即ε=ΔL/L,无量纲,常用百分数表示;微应变也是用来表示形变的变化程度,只不过是用来描述极其微小的形变,用με表示,με=(ΔL/L)*10^(—6),即ε=10^6*με,也就是说微应变是应变的百万分之一.。