富水砂卵石地层中盾构施工的控制难点及措施22

合集下载

富水砂层盾构施工注意事项

富水砂层盾构施工注意事项

富水砂层盾构施工注意事项富水砂层盾构施工是指在富水砂层环境下进行的盾构隧道施工工艺。

富水砂层是指含水量较高,且颗粒粒径较小的砂土层,相对于其他类型的地层,富水砂层的盾构施工存在一定的难度和风险。

下面将从盾构设计、施工方法和安全措施等几个方面详细介绍富水砂层盾构施工的注意事项。

首先,盾构设计方面需要考虑富水砂层的特点。

盾构施工在富水砂层中容易发生涌水和土体突泥,因此在设计过程中应采用有效的水封及排泥措施,使得施工过程中水文地质条件得到控制。

此外,针对砂层松散性和水稳性差的特点,可以适当增加盾构壳体的保护深度,以确保盾构的施工安全。

其次,在盾构施工方法方面,需要选用适合富水砂层盾构的施工工艺。

富水砂层盾构施工可以采用开挖前水封、预冻法或喷浆加固等方法增强地层的稳定性,在施工过程中降低水位的影响。

同时,选用适当的推力及掘进速度可以减小地层沉降和土体突泥的风险,确保盾构施工的安全性。

再次,盾构施工中的对地层水文地质条件的监测需要及时、准确地进行。

监测手段包括地下水位监测、土体渗透性监测、土体极限含水量角监测等。

通过实时监测,可以及时了解地层变化情况,提前预警并采取相应的应对措施,减小富水砂层盾构施工的风险。

此外,盾构施工过程中需要加强对盾构机械设备的维护和保养。

富水砂层的盾构施工对盾构机械设备的抗水性、推进能力和密封性等要求较高。

因此,在施工前需要对盾构设备进行全面检查,并定期进行维护保养,确保设备的正常运行和施工的连续进行。

最后,盾构施工安全措施需要得到充分重视。

由于富水砂层盾构施工容易出现涌水和突泥等地质灾害,施工现场需要设置必要的安全警示标识,防止人员误入危险区域。

同时,盾构施工人员需要经过专业培训,掌握富水砂层盾构施工的相应知识和技能,提高应对突发情况的能力。

综上所述,富水砂层盾构施工需要在设计、施工方法、地层监测、设备维护和安全措施等多个方面进行注意。

只有全面考虑和采取相应措施,才能保证富水砂层盾构施工的安全性和顺利进行。

谈富水砂卵石地层土压平衡盾构施工安全风险与管控

谈富水砂卵石地层土压平衡盾构施工安全风险与管控

谈富水砂卵石地层土压平衡盾构施工安全风险与管控盾构法在中国大力发展,土压平衡盾构由于其诸多优点应用于各大城市地铁建设中。

但伴随而来的是盾构施工风险的产生。

盾构施工风险主要有安全风险、地质风险、设备风险、进度风险、成本风险等。

地质风险是指采用盾构法施工的地层较差(如上软下硬、大漂石、流砂、淤泥质地层等),盾构设备不适应,导致出现的风险。

设备风险是指盾构主要设备部件(如刀盘、主轴承、螺旋输送机等)出问题,导致无法正常施工产生的风险。

进度风险和成本风险是指由于地质差、盾构设备不适应等原因导致进度慢、成本高而产生的相应风险。

由于地质差、设备不适应、盾构技术水平低、管理不到位等原因,导致出现安全事故,最终体现是盾构施工出现安全风险。

盾构施工安全风险主要有超方导致地表及附近建(构)筑物出问题、由于盾尾、铰接或螺旋输送机等密封出问题导致地层损失出问题、水平运输电瓶车出现溜车导致设备损坏或人员伤亡造成的风险、常规(如高坠、触电、物体打击等)安全风险等。

盾构施工出现安全事故,最终结论大部分都归结于管理不到位、地层不良等原因,实际上主因都是技术原因和技术水平。

为什么大部分人都归结于管理不到位、地层不良等原因呢?因为盾构工法还不成熟,盾构技术还在不断完善中,更主要的是盾构技术并不是那么好掌握的(找管理问题容易找技术问题要靠水平)。

一个好的盾构施工管理者需要具有机械、液压、电气、地质、化学和管理等专业知识,有时他的判断才可能是正确的。

现从技术层面谈盾构施工安全风险。

盾构密封出问题产生的安全风险主要与盾构掘进地层有关系,流砂和淤泥质地层当密封失效,由于压力作用流砂和淤泥肯定会向密封失效处涌入,进而导致地层损失。

佛山、天津等地出现的盾构被埋、地表坍陷等安全事故都与此有关。

想要解决此安全风险只能通过技术手段防止密封失效。

流砂和淤泥质地层需要采用好的铰接密封和盾尾密封刷,使用优质盾尾密封脂来解决此安全风险。

富水砂卵石地层主要需要解决的是超方问题。

地铁盾构施工富水砂层盾构施工须注意事项

地铁盾构施工富水砂层盾构施工须注意事项

地铁盾构施工富水砂层盾构施工须注意事项富水砂层盾构施工须注意事项一、盾构机设计要考虑的关键因素1、盾构密封系统富水砂层中的土砂在高水头压力下可能从各种间隙涌入隧道,为此盾构设计必须有良好的密封系统,其中重点保证盾尾系统、铰接系统和螺旋输送机的密封防水性能。

(1)盾尾密封系统盾构机盾尾设计不应少于3排环形弹性较好的钢丝刷,每排钢丝间距应合理均匀的构成盾尾油脂仓;油脂孔数量和位置的设置应能满足富水地层盾构掘进油脂仓油脂的及时填充的需要,掘进中自动或手动注入密封油脂以减少钢丝刷磨损和填充钢丝刷之间的空隙,防止砂水进入盾构机。

(2)铰接密封系统铰接利于盾构曲线施工,其连接部位必须考虑防水措施。

铰接部位除了采用弹性橡胶条,还设置了应急橡胶气囊。

当橡胶止水条不能满足防水要求时,立即向橡胶气囊充气,使气囊膨胀暂时堵塞空隙,然后逐步缩回后体。

(3)螺旋输送机密封系统为有效防止“喷涌”,螺旋输送机应设计双闸门。

前闸门通过螺旋轴伸缩来实现关闭,后闸门随时能关闭。

如果施工人员带压进行土仓作业,关闭前闸门可进一步提高土仓的密封性。

2、盾构机刀盘系统砂层软土地层中刀盘设计应考虑以切刀为主、刮刀辅助。

刀盘开口率大小须根据标段具体地质情况和专家评审意见定夺,不得随意更改和使用原有刀盘。

碴槽布置与土碴开挖量应对应,碴槽最好接近刀盘中心,以防止刀盘中心部位“泥饼”的形成,提高刀盘的开挖效率。

为改善砂层的塑性及粘度、降低透水性及内摩擦力,刀盘及密封隔板还应设计足够的泡沫、泥浆注入管路,通过压注高性能泡沫和经过合理配比的泥浆,有效防止高水头水砂“喷涌”的发生。

二、盾构安全始发、到达的注意事项一)盾构机始发注意事项盾构始发或到达时须破除盾构井围护结构(一般是人工挖孔桩、钻孔桩或是连续墙等),盾构穿过围护结构抵达土体撑子面或进入盾构井。

为了确保暴露出来的盾构撑子面稳定,在软土地层中必须对端头的土层进行加固。

一般要求如下:始发端头,富水砂层中沿着隧道纵向1倍盾构机主机长度,宽度为盾构直径左右两边各延长3m,深度为盾构下方3m至盾构上方3m;到达端头,加固宽度和深度与始发端头的相同,只是隧道纵向1倍盾构机主机长度加1环管片宽度。

富水砂卵石地层地铁区间隧道盾构法施工管理规程指导意见

富水砂卵石地层地铁区间隧道盾构法施工管理规程指导意见

富水砂卵石地层地铁区间隧道盾构法施工管理规程指导意见成都轨道交通有限公司2011年6月前言本规程是根据成都轨道交通有限公司的要求(合同编号:2D0251-2010-028-KY006),由西南交通大学、成都轨道交通有限公司、中国中铁隧道集团有限公司等单位共同编写。

本规程编写组参照了国内外盾构隧道相关标准,结合了多年来成都地铁盾构隧道工程实践经验和技术成果,并征求建设、设计、施工、监理等有关单位的意见,最终制定本规程。

本规程的主要技术内容为:1.总则;2.术语;3.基本规定;4.盾构始发;5.一般地段盾构掘进控制;6.出土管理;7.壁后注浆;8.刀具更换;9.盾构接收;10.盾构停机重启;11.特殊地段施工;12.管片拼装;13.监控量测及质量检测;14.隧道施工组织管理。

各单位在执行本规程过程中,结合过程实践,认真总结经验,如发现需要修改和补充之处,请将意见或建议寄西南交通大学《成都地铁盾构隧道施工规程》编写组(地址:四川省成都市二环路北一段111号西南交通大学土木馆1609室;邮政编码:610031),以供今后修订时参考。

主编单位:西南交通大学成都轨道交通有限公司参编单位:中国中铁隧道集团有限公司中铁十三局集团有限公司中铁二院工程集团有限责任公司中铁二局集团有限公司中铁十五局集团有限公司中煤国际工程集团重庆设计研究院广东华隧建设股份有限公司主要起草人:何川肖中平马文义沈卫平吕强方勇张延晏启祥刘高峰姚小平江英超张志强耿萍王士民汪波封坤郭瑞目次1总则 (1)2术语 (1)3基本规定 (2)4盾构始发 (3)4.1地层处理 (3)4.2盾构始发准备工作 (3)4.3盾构姿态控制 (4)4.4盾构始发掘进控制 (4)5一般地段盾构施工 (4)5.1一般规定 (4)5.2盾构推力 (5)5.3推进速度 (5)5.4掘削扭矩 (5)5.5刀盘转速 (5)5.6土仓压力 (5)6出土管理 (5)6.1碴土改良 (6)6.2添加材要求 (6)6.3出土体积控制 (6)6.4出土重量控制 (6)6.5螺旋输送机 (6)6.6防喷涌 (7)6.7出土记录管理 (7)7壁后注浆 (7)7.1一般规定 (7)7.2注浆参数的选择 (7)7.3注浆材料 (8)7.4二次注浆 (8)7.5注浆作业管理 (8)8刀具更换 (8)8.1换刀地点 (8)8.2换刀方法 (9)8.3带压换刀 (9)9盾构接收 (9)9.1接收前准备 (9)9.2盾构接收掘进控制 (10)10盾构停机重启 (10)10.1带压换刀作业完成后盾构重启 (10)10.2盾构长时间停机重启 (10)11特殊地段盾构施工 (10)11.1一般规定 (10)11.2特殊地段的施工措施 (11)12管片拼装 (11)12.1一般规定 (11)12.2拼装前的准备 (11)12.3拼装作业 (11)12.4管片拼装质量控制 (12)12.5管片修补 (12)12.6防水 (12)13监控量测及质量检测 (13)13.1一般规定 (13)13.2监控量测内容 (13)13.3沉降及位移监测 (14)13.4管片结构内力及荷载量测 (14)13.5质量检测 (14)13.6资料整理和信息反馈 (15)14隧道施工组织管理 (16)14.1一般规定 (16)14.2业主单位 (16)14.3监理单位 (16)14.4施工单位 (16)14.5第三方监测单位 (17)本规程用词说明 (18)附:条文说明 (20)1 总则1.0.1为了加强成都地铁盾构法隧道工程的施工管理,统一盾构法隧道工程的施工技术与质量验收标准,确保施工过程的工程安全、环境安全和工程质量,制定本规程。

浅谈富水砂层盾构施工控制措施

浅谈富水砂层盾构施工控制措施

浅谈富水砂层盾构施工控制措施通过相同富水砂层地带地质掘进施工,探索盾构施工参数,进行沉降分析,掌握沉降变化规律。

对过程中突发事件做好应对措施,为顺利穿越富水砂层地带的既有建筑群提供可靠的技术依据。

标签:城市轨道交通;富水砂层;盾构施工参数;沉降分析;措施0 引言本论文以广州市轨道交通某标段盾构区间工程为背景,为确保盾构顺利穿越富水砂层地带及地表为浅基础和无基础的175 栋群体房屋,在富水砂层地质试验段,进行盾构施工管控及施工参数拟定。

借鉴成都地铁盾构穿越富水砂卵石地层的掘进管控方式,拟定非同条件地层的施工管理方式、施工参数。

目前富水砂层盾构施工成为研究的热点问题,本次研究可为盾构穿越复杂地质条件施工提供可靠的技术依据。

1 工程概况广州市轨道交通某标盾构区间工程(DK 20+264.92~DK 20+540)下穿既有建筑物(居民区),其中盾构施工段右线257~372 环,共174 m;左线225~257环、307~344 环,共107 m。

开挖面地层多为砂层和黏土层,地质较差,隧道洞顶距地面10~20 m。

线路正上方有不同年代居民房屋40 栋,总面积12 066 m2,施工影响范围(隧道2 倍埋深,约为25.0~38.0 m)内有房屋175 栋,总面积50 938 m2。

受规划道路拆迁的影响,既有建筑物均有加盖现象,地表建筑物极其密集。

其中多数建筑物为浅基础或无基础,少部分为人工挖孔桩基础,直接坐落在砂层地质上,存在较大施工风险。

根据补勘资料,本工程所处的地质条件较为复杂,隧道穿越的地层主要包括粉细砂、中粗砂、砾砂、黏土层,地下水丰富。

选择试验段为YDK 20+790.17~YDK 20+661.23 区间(40~125 环),试验重点段为YDK 20+745.16~YDK 20+685.16 区间(70~110 环),地质条件与目标区域类似。

其中砂层约占87.2%,黏土层约占12.8%,地表为盾构施工场地与荒地,无建筑物。

最新富水砂卵石地层中盾构施工的控制难点及措施

最新富水砂卵石地层中盾构施工的控制难点及措施

富水砂卵石地层中盾构施工的控制难点及措施富水砂卵石地层中盾构施工的控制难点及措施段浩引言:随着中国经济的快速增长、城市人口数量迅速膨胀,机动车辆的数量呈级数比例增长,原有的市政道路难以满足交通的需要,为缓解城市交通压力、创造良好的生活和投资环境,国内各主要城市均选择修建地铁工程来提升城市形象和投资环境。

隧道是地铁工程最主要的组成部分,隧道盾构法施工具有施工速度快、工期短、洞体工程质量易控制、质量比较稳定且良好的防渗水性能、施工安全系数高、对周边建筑物影响极小、基本不影响地面交通、适合地层范围广、地质情况复杂的施工作业环境等优点。

随着我国各大城市地铁建设热情的高涨,隧道盾构施工方法必将在地铁建设中被广泛推广应用。

盾构施工虽然有对地层的广泛适应性、施工安全系数高等优点,但因地质情况千变万化、施工环境的复杂性,在盾构施工中必然存在盾构机的适应性和施工方法、措施的调整。

成都地铁穿越的地层主要为砂卵石地层并夹杂有粉细砂层透镜体,地下水丰富、水位高、补给迅速,国内、国际在该种地质条件下全面实施盾构施工隧道尚不多见,无较多经验可以借鉴,在地铁建设史上的应是一次重要技术性突破。

截至目前成都地铁采用泥水盾构和土压平衡盾构施作的隧道,已经完成成型隧道1000余米,在施工中出现一些有别于其它地质情况下施工的难点,对这些难点的技术处理为在富水砂卵石地层中盾构施工积累了一些应对的经验。

成都地铁地质情况描述:盾构隧道从<2-8>、< 3-4>、<3-7〉等砂卵石地层中通过。

卵石成分主要为灰岩、砂岩、石英岩,卵石的含量达67%,中间夹杂大漂石。

砂卵石具有分选性差,强度高的特点。

<2-8>卵石土(Q4al):黄灰色,黄褐色,中密~密实为主,部分密实,潮湿~饱和。

卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。

磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量65~75%,粒径以30~70mm为主,钻探揭示最大粒径145mm,夹零星漂石,充填物为细砂及圆砾。

在富水砂卵石地层中盾构机掘进重难点控制

在富水砂卵石地层中盾构机掘进重难点控制

在富水砂卵石地层中盾构机掘进重难点控制摘要:本文针对盾构机在富水砂卵石地层中掘进,介绍了掘进中的重难点,刀盘、螺旋机如何选型、配置,进行有效的渣土改良及控制,洞内注浆参数的选择,预防、控制地面沉降,地面监测位置、时机确定,为今后类似问题的处理与解决提供了参考与借鉴。

关键词:盾构机;富水砂卵石;刀盘;渣土改良;注浆;监测1.引言在富水砂卵石地层中掘进,易对刀盘、刀具、渣土输送系统等部位磨损严重,选用盾构机时,要充分考虑刀盘、螺旋机的适应性;刀盘前极易出现固结泥饼现象,容易引起超挖,导致地面塌陷,施工中根据隧道所处位置与地层条件,合理设定开挖面压力,及时调整仓内泡沫、膨润土、水等材料的注入量,调整好渣土和易性,减小渣土对盾构刀具、刀盘的磨损及刀盘扭矩过大等问题,控制地层变形。

调整土。

合理确定同步注浆的材料、压力和流量,及时填充地层空隙,控制地面沉降,在施工过程中根据监测结果,及时进行调整。

2.刀盘及螺旋机的选用盾构机在粒径较大的砂卵石地层中掘进时,经常遇到卵石将螺旋机卡死的情况,虽然通过螺旋机的正反转,前后伸缩能将一些石块排出,人工用风炮破碎,但是情况比较严重的会将螺旋机轴卡断,由于在隧道里修复,安全风险大、工期拖延久,社会影响不好,所以一定要避免断轴状况的发生。

尽可能选择具有较大轮廓直径、牙高值和螺距的螺旋输送机,使其具有通过的较大直径卵石的能力,避免卵石不堵塞或卡死螺旋输送机。

刀盘的开口一定要不能大于螺旋输送机的最大粒径尺寸,也可以采取在刀盘面板开口处增加格栅的方法阻止大粒径石块进入土仓。

根据经验,我们一般选用开口率为35%左右的刀盘,开口率太大,大粒径卵石容易进入土仓、进入螺旋机,开口率太小影响渣土的流动性,影响掘进效率。

通常选用具有破碎大粒径卵石能力的盾构机。

为能够破碎卵石刀盘需要配备滚刀以满足破碎卵石的功能,使大卵石的破碎成为可能。

在砂卵石地层中硬岩滚刀的刃轨迹间距宜参照螺旋输送机能通过的最大粒径设定。

富水砂卵石地层中盾构施工的控制难点及措施

富水砂卵石地层中盾构施工的控制难点及措施

富水砂卵石地层中盾构施工的控制难点及措施
1.土层的物理特性
富水砂卵石地层的物理特性较为复杂,控制困难。

在施工前,需要对
土层进行详细的调查和分析,确定土层的厚度、颗粒大小和含水量等参数,为后续的施工做好准备。

在施工过程中,可以采用增加切割刀盘的数量和
规格、提高推进速度等方法,增强盾构机的推进力,提高施工效率。

2.地下水环境
由于富水砂卵石地层中含有大量的地下水,施工时需要进行有效的水
阻控制。

首先,需要进行地下水位的监测和测量,了解地下水的流动方向
和流速,以便合理设计降水井和排水系统。

其次,在施工前需要进行预排
水措施,将地下水降低到可控制的范围内。

在盾构施工过程中,可以采取
封顶法和预注浆法等措施,有效控制地下水位,减小土体的稳定性变化。

3.地层变形和控制方法
富水砂卵石地层的变形较大,在施工过程中需要注意地层的变形和沉
降情况,及时采取控制措施。

首先,需要进行地层的预测和分析,确定地
层的稳定性和变形特点。

在盾构机的设计中,可以采用强化盾构机结构、
增加刀盘的切割能力、减小切割面积等措施,降低地层的变形。

其次,要
加强地层监测和监控,及时掌握地层变形的情况,调整施工参数,保持施
工的稳定性。

总而言之,富水砂卵石地层中盾构施工的控制难点及措施主要涉及土
层的物理特性、地下水环境、地层变形和控制方法等方面。

针对不同的难点,可以采取相应的措施,加强施工前的调查和分析,进行地下水位的监
测和控制,加强地层变形的预测和监测等,以确保盾构施工的安全和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

富水砂卵石地层中盾构施工的控制难点及措施段浩引言:随着中国经济的快速增长、城市人口数量迅速膨胀,机动车辆的数量呈级数比例增长,原有的市政道路难以满足交通的需要,为缓解城市交通压力、创造良好的生活和投资环境,国内各主要城市均选择修建地铁工程来提升城市形象和投资环境。

隧道是地铁工程最主要的组成部分,隧道盾构法施工具有施工速度快、工期短、洞体工程质量易控制、质量比较稳定且良好的防渗水性能、施工安全系数高、对周边建筑物影响极小、基本不影响地面交通、适合地层范围广、地质情况复杂的施工作业环境等优点。

随着我国各大城市地铁建设热情的高涨,隧道盾构施工方法必将在地铁建设中被广泛推广应用。

盾构施工虽然有对地层的广泛适应性、施工安全系数高等优点,但因地质情况千变万化、施工环境的复杂性,在盾构施工中必然存在盾构机的适应性和施工方法、措施的调整。

成都地铁穿越的地层主要为砂卵石地层并夹杂有粉细砂层透镜体,地下水丰富、水位高、补给迅速,国内、国际在该种地质条件下全面实施盾构施工隧道尚不多见,无较多经验可以借鉴,在地铁建设史上的应是一次重要技术性突破。

截至目前成都地铁采用泥水盾构和土压平衡盾构施作的隧道,已经完成成型隧道1000余米,在施工中出现一些有别于其它地质情况下施工的难点,对这些难点的技术处理为在富水砂卵石地层中盾构施工积累了一些应对的经验。

成都地铁地质情况描述:盾构隧道从<2-8>、< 3-4>、<3-7〉等砂卵石地层中通过。

卵石成分主要为灰岩、砂岩、石英岩,卵石的含量达67%,中间夹杂大漂石。

砂卵石具有分选性差,强度高的特点。

<2-8>卵石土(Q4al):黄灰色,黄褐色,中密~密实为主,部分密实,潮湿~饱和。

卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。

磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量65~75%,粒径以30~70mm为主,钻探揭示最大粒径145mm,夹零星漂石,充填物为细砂及圆砾。

<3-4>粉、细砂(Q3fgl+al):灰绿色,饱和,中密,夹少量卵石。

呈透镜体状分布。

<3-7>卵石土(Q3fgl+al):褐黄、黄色,以中密~密实为主,饱和。

卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。

磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量60~75%,粒径以30~70mm为主,据钻探揭示,最大粒径150mm,夹零星漂石,充填物为砂及砾石,具弱泥质胶结或微钙质胶结。

隧道通过的地层含水丰富,根据钻孔揭示,隧道区间分布的卵石土及所夹透镜状砂层为地下水主要含水层,含水量丰富,含水层厚20~22.6m,区间范围内卵石土分选性差,渗透性强。

图一、盾构刀盘前掌子面地层情况图二、基坑开挖时土体状况富水砂卵石地层中盾构施工的难点:通过成都地铁前一阶段盾构掘进施工的情况来看,泥水盾构和土压平衡盾构机在砂卵地层如场地条件许可均可采用。

泥水、土压平衡两种类型的盾构机在成都地质情况下施工的共同难点:(1)在掘进过程中砂卵石地层对刀盘、刀具、渣土输送系统等部位磨损严重,造成换刀频率较高约150米需换刀一次,渣土输送系统需得到及时的修复;(2)地下水位高、掌子面不稳定,清仓比较困难,换刀时停机处易出现坍塌现象;(3)须在降水条件下换刀,在建线路的位置换刀地点难以选择;(4)因地层局部为砂卵石土夹砂透镜体,土压平衡盾构在通过时刀盘前极易出现固结泥饼现象,开仓处理时易引起地面安全风险;(5)地面沉降槽虽较窄,但沉降量和沉降速率难以控制。

下面就土压平衡盾构在该地层中施工中出现问题及采取的措施和思路作简单介绍,以希望为类似地层施工提供借鉴。

砂卵石地层施工防止螺旋输送机卡死和固结泥饼的措施:盾构机制约卵石排出有两个主要的约束条件:(1)刀盘的开口尺寸;(2)螺旋输送机通过的最大卵石粒径的能力。

其中基本的约束条件是螺旋输送机的通过能力,刀盘的开口尺寸受螺旋输送机能通过能力制约。

为确保卵石不堵塞或卡死螺旋输送机,在条件许可的情况下尽可能选择具有较大轮廓直径、牙高值和螺距的螺旋输送机,使其具有通过的较大直径卵石的能力;同时刀盘的开口尺寸要小于螺旋输送机能通过的最大卵石的尺寸,确保进入土仓中的渣土能够顺利排出而不至于堵塞螺旋输送机。

为使盾构能够在砂卵石地层顺利掘进,应选用具有破碎大粒径卵石能力的盾构机。

为能够破碎卵石刀盘需要配备滚刀以满足破碎卵石的功能,使大卵石的破碎成为可能。

在砂卵石地层中硬岩滚刀的刃轨迹间距宜参照螺旋输送机能通过的最大粒径设定,如本次使用的盾构机的螺旋输送机可通过最大卵石粒径为240mm,则刀刃轨迹间距控制在200mm的范围内。

盾构刀盘面板和刀具布置未使用的螺旋输送机耐磨块情况针对成都地层水压高和水量大的特点,为防止喷涌和水压击穿盾尾密封,在盾构机的结构上采取以下应对措施:⑴提高盾构机防水密封性:a、盾尾密封选用三排钢丝止水密封刷,其间充注密封脂;b、铰接密封采用唇形橡胶密封;c、主轴承外密封采用三重唇形橡胶密封,其间充注常消耗式润滑脂,为提高可靠性同时采用HBW密封脂。

⑵采用具有防喷涌功能的可控两级螺旋输送机出渣系统,并结合适当的渣土改良。

图三、渣土情况图四、破碎的大粒径卵石砂卵石对设备的磨损及换刀时机的选择及其措施:成都的砂卵石地层具有流动性差、磨琢性大的特点,使盾构机的刀盘、刀具和渣土输运系统产生严重的磨损现象。

这样就为如何提高刀盘面板、刀具和螺旋输送机系统(泥水盾构须考虑管道系统)的耐磨性,以减少换刀次数从而降低施工成本和因换刀带来的安全风险,是施工单位考虑的关键问题。

土压平衡盾构机的刀盘面板、刀具和螺旋输送系统配置及有关参数:(1)刀盘为面板形结构,焊有Hards400耐磨钢板,开挖直径¢6.28m,开口率25%,刀盘开口能通过的卵砾石粒径240mm。

(2)刀具配置:32把单刃滚刀、4把双刃中心刀、28把正面铲刀、8把边部刮刀。

(3)螺旋输送机旋叶顶部焊有厚度为40mm的Hards400耐磨钢板。

在砂卵石地层中施工以上配置主要有以下考虑:螺旋输送机排渣的能力限制刀盘开口尺寸大小;为适应砂卵石磨琢性大的特性使刀盘具有较高的耐磨性;为破碎硬的卵石、破坏卵石胶结和保护软土刀具配置滚刀;为增加刀具的刚性和耐磨性,防止硬的卵石破坏刀具同时提高刀具的耐磨性选配大铲刀及刮刀;刀盘的型式及开口率是防止掌子面坍塌的需要。

在得到以上较充分考虑的情况下,砂卵石对刀盘、刀具和螺旋输送机的磨削量仍非常大。

土压平衡盾构在掘进150米时,刀具的磨损情况统计如下:(表一)刀具磨损情况统计泥水盾构掘进240米时,刀盘面板、刀具的磨损情况为:所有刀具严重磨损,滚刀绝大部分严重偏磨损坏、部分滚刀刀圈脱落刀体损坏完全报废;刀盘分别在两个部位有宽180mm、深24mm和宽320mm、深50mm的圆环沟槽形磨损。

螺旋输送机旋叶焊接的耐磨块在推进400米后的检查中发现局部完全磨损。

刀具布置及磨损情况150米刀具的磨损150米刀具的磨损400米螺旋输送机耐磨块的磨损根据刀具磨损的情况分析,在刀具耐磨性确定的条件下每次换刀掘进距离的选择非常重要。

使用的盾构刀具在刀体完整不损害的情况下可以通过更换刀圈、焊补耐磨材料等修复重复利用,如刀体损坏刀具将失去修复价值,而修复费用仅为新刀具价格的1/10。

通过数据分析,在盾构掘进施工中每次换刀间距应控制在100-150m之间,能有效减少刀体的损坏;如安排的换刀间距过大将可能造成刀盘磨损产生灾难性事故。

虽然在成都砂卵石地层中换刀频率的增加使安全风险明显增加,但可以显著降低施工机具费用的成本和增加设备使用的安全及耐久性。

施工单位技术人员在施工中应注意收集整理始发段的有关掘进数据并结合开仓检查刀具的磨损情况。

通过数据和观察得出的信息预测换刀时间和地点,并应根据掘进参数设定在何情况下检查或更换刀具。

成都地铁通过的地层具有稳定性差、透气性大、地下水丰富、水位高、水压大等特点。

砂卵石地层中可选择地面加固的措施效果不明显或难以实施,在换刀时如采取有压换刀、地面注浆加固地层将增加换刀的安全风险,采取旋喷桩或挖孔桩加固掌子面可能存在时间、环境上的不便。

成都砂卵石地层在降水条件下稳定性较好,可以均衡安全风险和施工成本,换刀时应首先考虑在降水条件下开仓换刀。

一般地铁线路均位于城市的主要交通干道和繁华地段降水井的位置难以选择,因此应根据现场情况确定降水井施作的地点,以距上次换刀位置距离不大于150米为原则。

降水井深度应超过隧道底部5-7m,位置在选定的换刀点横向轴线附近且距隧道边沿1-2m为宜,有效降水时间宜在15天以上并应根据气候对地下水的影响调整抽水流量和有效降水时间。

如需在带压条件下开仓,加气前为防止砂卵石地层透气性大,难以保压可以在清仓之前向土仓中注入澎润土、黄泥、泡沬济或聚合物同时转动刀盘先行对渣土进行改良,然后再向土仓中加气以实现在掌子面上形成渗透性泥膜来保住压力的目标。

减少换刀频率,增加刀具耐久性可以从三个方面采取应对措施:(1)盾构机渣土改良功能的选择;(2)增强相关部件和配件的耐磨性;(3)掘进参数的调整;(4)调整刀具的配置。

盾构机功能的选择:选用具有加泥、加注泡沬、加注聚合物系统的能实施多种碴土改良工艺盾构设备,根据实际需要随时调整碴土改良方式。

渣土改良以减小摩擦和增强渣土流动性为目的,通过适宜的渣土改良方式实现改善碴土的流动性,降低碴土磨琢性的目标。

增强相关部件和配件的耐磨性:主要是提高刀盘面板、刀具、螺旋输送机系统设备的耐磨性。

通过在刀盘面板上加焊具有高耐磨性能的耐磨块、耐磨条、耐磨网格提高刀盘的耐磨性;通过选用镶嵌有耐磨合金块的软土刀具、选用硬度较高的滚刀来提高刀具的耐磨性;通过在螺旋输送机的旋叶上加焊具有较高耐磨性能的材料提高螺旋输送机的耐磨性。

调整掘进参数:主要是调整土仓压力平衡参数。

即使仅考虑盾构机土仓压力与水压力平衡,则刀盘中心附近的土仓压力也将达到0.13MPa左右,尽管对刀盘、刀具等增加耐磨保护措施,在压力和含量达80%左右的卵石土中掘进亦难以控制刀具、刀盘、土仓壁与螺旋输送机的超量磨损。

为降低推进阻力减少刀具的磨损,可调整土仓压力实施适当的欠压推进。

欠压推进可有效减少刀具的磨损率、设备能耗,同时亦可提高掘进速度和减少刀盘固结泥饼出现的因素、降低渣土改良的成本。

根据对刀具磨损数据的分析和在盾构掘进过程中开仓对刀具运行情况的观察,同等条件下单刃滚刀的磨损量比双刃滚刀的磨损量要大且偏磨和损坏刀体的情况几乎均出现在单刃滚刀上,双刃滚刀均为正常磨损。

单刃滚刀出现偏磨后影响到其轨迹面上其他形式刀具出现较大的磨损量甚至报废。

可以得出通过调整刀具的配置增加双刃滚刀的用量,可以有效减小刀具的磨损、减少换刀次数和降低施工成本。

相关文档
最新文档