小学数学10种经典路程问题剖析及相关解法
小学数学中的行程问题公式及解析

小学数学中的行程问题公式及解析一、基本行程问题行程问题的三个基本量是距离、速度和时间,按所行方向的不同可分为三种:(1)相遇问题:(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度x时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和*时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差x时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关有助于迅速地找到解题思路。
(一)相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题相遇问题。
数量关系:路程÷速度和=相遇时间路程÷相遇时间=速度和速度和x相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
(2)解题秘诀:(3)(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(4)(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
(二)追及问题追及问题也是行程问题中的一种情况。
这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);迫及路程=路程差=两个物体之间相距的路程迫及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。
小学奥数行程问题类型归纳及解题技巧总结

小学奥数行程问题类型归纳及解题技巧总结在小学生数学竞赛中,行程问题是一个常见的考点。
而在行程问题中,又分为多种类型,比如速度问题、时间问题、距离问题等等。
本文将对小学奥数行程问题的类型进行归纳总结,并提供解题技巧供同学们参考。
一、速度问题速度问题是行程问题中最经典的类型之一。
通常情况下,速度问题会给出一个人或物体的速度以及时间,然后要求计算距离。
解决速度问题的关键在于掌握单位之间的转换关系。
常见的单位包括:米/秒、千米/时、厘米/分等等。
在解题过程中,我们可以利用等速运动的基本公式:速度=距离/时间。
通过根据已知条件列出方程,求解未知量即可得到结果。
例如,某辆汽车以60千米/时的速度行驶了3小时,求汽车行驶的距离。
解法:根据已知条件,我们可以列出方程:60 = 距离/3。
通过解方程可得距离=60×3=180千米。
因此,汽车行驶的距离为180千米。
二、时间问题时间问题是行程问题中常见的类型之一。
解决时间问题的关键在于掌握时间的单位换算。
在解题过程中,我们需要灵活运用时间=距离/速度的公式,根据已知条件列方程,最后求解未知量。
例如,小明骑自行车以20千米/时的速度骑行了2小时,求小明骑行的距离。
解法:根据已知条件,我们可以列出方程:2 = 距离/20。
通过解方程可得距离=2×20=40千米。
因此,小明骑行的距离为40千米。
三、距离问题距离问题是行程问题中常见的类型之一。
在距离问题中,我们通常需要根据已知的速度和时间,求解行程的距离。
同样,解决距离问题也需要掌握单位的换算关系。
例如,一辆火车以每小时50千米的速度行驶了4小时,求火车行驶的距离。
解法:根据已知条件,我们可以列出方程:50 = 距离/4。
通过解方程可得距离=50×4=200千米。
因此,火车行驶的距离为200千米。
四、奥数行程问题解题技巧总结1. 学会单位之间的转换:在解决行程问题时,单位之间的转换是非常重要的。
小学奥数行程问题分类总结汇总版(题型全,知识点详细)

目录目录 (1)行程专题(1)——简单相遇追及问题 (3)行程专题(2)——多人相遇追及问题 (6)行程专题(3)——多次相遇追及问题 (8)模块一:由简单行程问题拓展出的多次相遇问题 (8)模块二:运用比例关系解多次相遇问题 (8)模块三:多次相遇与全程的关系 (9)行程专题(4)——变速变道问题 (10)模块一:变速问题 (10)模块二:变道问题 (10)模块三:走停问题 (11)行程专题(5)——火车过桥问题 (12)模块一:火车过桥(隧道、树)问题 (12)模块二:火车与人的相遇与追及问题 (12)模块三:火车与火车的相遇与追及 (13)行程专题(6)——流水行船问题 (14)模块一、基本的流水行船问题 (14)模块二、相遇与追及问题 (15)行程专题(7)——发车问题 (17)行程专题(8)——环形跑道问题 (19)模块一、一般环形跑道问题 (19)模块二、环形跑道——变道问题 (19)模块三、环形跑道——变速问题 (20)模块四、时钟问题 (20)行程专题(9)——比例解行程题综合 (22)模块一:比例初步——利用简单倍比关系进行解题 (22)模块二:时间相同速度比等于路程比 (22)模块三:路程相同速度比等于时间的反比 (23)模块四、比例综合题 (23)行程专题强化(1) (24)行程专题强化(2) (26)行程专题强化(3) (27)目录行程专题强化(4) (28)行程专题强化(5) (29)行程专题强化(6) (30)行程专题强化(7) (31)行程专题强化(8) (32)行程专题强化(9) (33)行程专题强化答案(1) (34)行程专题强化答案(2) (36)行程专题强化答案(3) (38)行程专题强化答案(4) (40)行程专题强化答案(5) (42)行程专题强化答案(6) (44)行程专题强化答案(7) (46)行程专题强化答案(8) (48)行程专题强化答案(9) (50)行程专题(1)——简单相遇追及问题行程问题的基本公式:关于路程,速度,时间三者的基本关系:路程=速度×时间可简记为:s = v×t时间=路程÷速度可简记为:t = s÷v速度=路程÷时间可简记为:v = s÷t相同时间内,路程比=速度比平均速度的基本关系式为:平均速度=全部路程÷全部时间全部时间=全部路程÷平均速度全部路程=平均速度×全部时间相遇:甲乙从AB两地同时出发,两人在途中相遇,实际上是甲和乙一起行了A,B之间这段路程,如果两人同时出发,那么:相遇总路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间一般地,相遇问题的关系式为:路程和=速度和×相遇时间追及:如果设甲走得快,乙走得慢,相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间【例题1】(23中2012)一列慢车和一列快车分别从A、B两站相对开出,快车和慢车速度的比是5:4,慢车先从A站开出27千米,快车才从B站开出。
小学数学巧解12个经典的行程问题(干货)

小学数学巧解12个经典的行程问题(干货)无论是小学奥数,还是公务员考试,还是公司的笔试面试题,似乎都少不了行程问题——题目门槛低,人人都能看懂;但思路奇巧,的确会难住不少人。
平时看书上网与人聊天和最近与小学奥数打交道的过程中,我收集到很多简单有趣而又颇具启发性的行程问题,在这里整理成一篇文章,和大家一同分享。
这些题目都已经非常经典了,绝大多数可能大家都见过;希望这里能有至少一个你没见过的题目,也欢迎大家留言提供更多类似的问题。
让我们先从一些最经典最经典的问题说起吧。
1甲、乙两人分别从相距 100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是 3 米每秒。
一只狗从 A 地出发,先以 6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。
问在此过程中狗一共跑了多少米?这可以说是最经典的行程问题了。
不用分析小狗具体跑过哪些路程,只需要注意到甲、乙两人从出发到相遇需要 20 秒,在这 20 秒的时间里小狗一直在跑,因此它跑过的路程就是 120 米。
说到这个经典问题,故事可就多了。
下面引用某个经典的数学家八卦帖子:John von Neumann (冯·诺依曼)曾被问起一个中国小学生都很熟的问题:两个人相向而行,中间一只狗跑来跑去,问两个人相遇后狗走了多少路。
诀窍无非是先求出相遇的时间再乘以狗的速度。
Neumann 当然瞬间给出了答案。
提问的人失望地说你以前一定听说过这个诀窍吧。
Neumann 惊讶道:“什么诀窍?我就是把狗每次跑的都算出来,然后计算无穷级数⋯⋯”2某人上午八点从山脚出发,沿山路步行上山,晚上八点到达山顶。
不过,他并不是匀速前进的,有时慢,有时快,有时甚至会停下来。
第二天,他早晨八点从山顶出发,沿着原路下山,途中也是有时快有时慢,最终在晚上八点到达山脚。
试着说明:此人一定在这两天的某个相同的时刻经过了山路上的同一个点。
小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。
然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。
解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。
这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
行程问题数学解题技巧

行程问题数学解题技巧一、基本公式1. 路程 = 速度×时间,即s = vt。
- 速度v=(s)/(t)。
- 时间t=(s)/(v)。
二、相遇问题1. 题目类型及公式- 相向而行(两人或两车等从两地同时出发,面对面行走):总路程s = (v_1 + v_2)t,其中v_1、v_2分别是两者的速度,t是相遇时间。
2. 题目解析- 例:甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是5米/秒,乙的速度是3米/秒,经过10秒两人相遇,求A、B两地的距离。
- 解析:已知v_1 = 5米/秒,v_2 = 3米/秒,t = 10秒。
根据相遇问题公式s=(v_1 + v_2)t=(5 + 3)×10 = 8×10 = 80米,所以A、B两地的距离是80米。
三、追及问题1. 题目类型及公式- 同向而行(一人或一车等在前面走,另一人或车在后面追):追及路程s=(v_1 - v_2)t,其中v_1是快者速度,v_2是慢者速度,t是追及时间。
2. 题目解析- 例:甲在乙前面100米,甲的速度是8米/秒,乙的速度是10米/秒,问乙多长时间能追上甲?- 解析:这里追及路程s = 100米,v_1=10米/秒,v_2 = 8米/秒。
根据追及问题公式t=(s)/(v_1 - v_2)=(100)/(10 - 8)=(100)/(2)=50秒,所以乙50秒能追上甲。
四、环形跑道问题1. 相遇情况(同地出发,反向而行)- 公式:环形跑道一圈的长度s=(v_1 + v_2)t,和普通相遇问题公式一样,v_1、v_2是两人速度,t是相遇时间。
- 题目解析:例如,甲、乙两人在周长为400米的环形跑道上,同时同地反向出发,甲的速度是6米/秒,乙的速度是4米/秒,求两人第一次相遇的时间。
- 解析:已知s = 400米,v_1 = 6米/秒,v_2 = 4米/秒,根据公式t=(s)/(v_1 + v_2)=(400)/(6 + 4)=(400)/(10)=40秒,所以两人第一次相遇的时间是40秒。
小学行程问题汇总(含典型例题和习题)精选全文

可编辑修改精选全文完整版小学行程问题汇总(含典型例题和习题)我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。
行程问题主要包括相遇问题、相背问题和追及问题。
这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
知道三个量中的两个量,就能求出第三个量。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
结合分数、百分数知识相关的较为复杂抽象的行程问题。
要注意:出发的时间、地点和行驶方向、速度的变化等,常常需画线段图来帮助理解题意。
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。
所以,求两人几小时相遇,就是求20千米里面有几个10千米。
因此,两人20÷(6+4)=2小时后相遇。
练习 11、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
小学奥数“行程问题”类型归纳及解题技巧总结

小学奥数“行程问题”类型归纳及解题技巧总结“行程问题”主要类型归纳一、直线型(1)两岸型:第n次迎面碰头相遇,两人的路程和是(2n-1)S。
第n次背面追及相遇,两人的路程差是(2n-1)S。
(2)单岸型:第n次迎面碰头相遇,两人的路程和为2ns。
第n次背面追及相遇,两人的路程差为2ns。
二、环型环型主要分两种情况,一种是甲、乙两人同地同时反向迎面相遇(不可能背面相遇),一种是甲、乙两人同地同时同向背面追及相遇(不可能迎面相遇)。
“行程问题”解题技巧总结一、直线型直线型多次相遇问题宏观上分“两岸型”和“单岸型”两种。
“两岸型”是指甲、乙两人从路的两端同时出发相向而行;“单岸型”是指甲、乙两人从路的一端同时出发同向而行。
现在分开向大家一一介绍:(一)两岸型两岸型甲、乙两人相遇分两种情况,可以是迎面碰头相遇,也可以是背面追及相遇。
题干如果没有明确说明是哪种相遇,考生对两种情况均应做出思考。
1、迎面碰头相遇:如下图,甲、乙两人从A、B两地同时相向而行,第一次迎面相遇在a处,(为清楚表示两人走的路程,将两人的路线分开画出)则共走了1个全程,到达对岸b后两人转向第二次迎面相遇在c处,共走了3个全程,则从第一次相遇到第二次相遇走过的路程是第一次相遇的2倍。
之后的每次相遇都多走了2个全程。
所以第三次相遇共走了5个全程,依次类推得出:第n次相遇两人走的路程和为(2n-1)S,S为全程。
而第二次相遇多走的路程是第一次相遇的2倍,分开看每个人都是2倍关系,经常可以用这个2倍关系解题。
即对于甲和乙而言从a到c走过的路程是从起点到a的2倍。
相遇次数全程个数再走全程数1 1 12 3 23 5 24 7 2………n 2n-1 22、背面追及相遇与迎面相遇类似,背面相遇同样是甲、乙两人从A、B两地同时出发,如下图,此时可假设全程为4份,甲1分钟走1份,乙1分钟走5份。
则第一次背面追及相遇在a处,再经过1分钟,两人在b处迎面相遇,到第3分钟,甲走3份,乙走15份,两人在c处相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学一年级数学路程问题剖析
路程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面路程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。
路程问题是物体匀速运动的应用题。
不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为路程=速度×时间。
要想解答路程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。
以下是10种经典路程问题剖析及相关解法。
一、简单相遇及追及问题
1、相遇问题:
总路程=(甲速+乙述)×相遏时间
相遇时间=总路程÷(甲速+乙速)
甲速或乙速=总路程÷相遇时间一乙速或甲速
2、追及问题:
距离差=速度差×追及时间
追及时间=距离差÷速度差
速度差=距离差÷追及时间
速度差=快速一慢速
3、相离问题:
两地距离=速度和×相离时间
相离时间=两地距离÷速度和
速度和=两地距离÷相离时间
示例:
例1:南京到上海的水路长392千米;同时从两港各开出一艘轮船相对而行;从南京开出的船每小时行28千米;从上海开出的船每小时行21千米;经过几小时两船相遇?
解:392÷(28+21)=8(小时)
答:经过8小时两船相遇。
例2:甲乙二人同时从两地骑自行车相向而行;甲每小时行15千米;乙每小时行13千米;两人在距中点3千米处相遇;求两地的距离。
解:“两人在距中点3千米处相遇”是正确理解本题题意的关键。
从题中可知甲骑得快;乙骑得慢;甲过了中点3千米;乙距中点3千米;就是说甲比乙多走的路程是(3x2)千米;
因此:
相遇时间=(3×2)÷(15-13)=3(小时)
两地距离=(15+13)×3=84(千米)
答:两地距离是84千米。
例3:好马每天走120千米;劣马每天走75千米;劣马先走12天;好马几天能追上劣马?
解:
(1)劣马先走12天能走多少千米?75×12=900(千米)
(2)好马几天追上劣马?900÷(120-75)=20(天)
列成综合算式75×12÷(120-75)=900+45=20(天)
答:好马20天能追上劣马。
二、流水行船问题
(1)船速+水速=顺水速度
(2)船速-水速=逆水速度
(3)(顺水速度+逆水速度)÷2=船速
(4)(顺水速度-逆水速度)÷2=水速
两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系
因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速一水速)=甲船速+乙船速
如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水
述无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速
例1:某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米问从乙地返回甲地需要多少时间?
分析要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
解:
从甲地到乙地,顺水速度:15+3=18(千米/小时)
甲乙两地路程:18×8=144(千米)
从乙地到甲地的逆水速度:15-3=12(千米/小时)
返回时逆行用的时间:144÷12=12(小时)。
答:从乙地返回甲地需要12小时。
例2:甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?
解:①相遇时用的时间
336÷(24+32)=336+56=6(小时)。
②追及用的时间(不论两船同向逆流而上还是顺流而下):
336÷(32-24)=42(小时)。
答:两船6小时相遇;乙船追上甲船需要42小时。
例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
分析根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按路程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。
解:
顺水速度:208÷8=26(千米/小时)
逆水速度:208÷13=16(千米/小时)
船速:(26+16)÷2=21(千米/小时)
水速:(26-16)÷2=5(千米/小时)
答:船在静水中的速度为每小时21千米,水流速度每小时5千米。
三、环形跑道问题
从同一地点出发
(1)如果是相向而行,则每走一图相過一次
(2)如果是同向而行,则每追上一園相遇一次
四、多人相遇追及问题
基本公式:
路程和=速度和×相遇时间
路程差=速度差×追及时间
例1:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相過6分钟后,甲又与丙相遇。
那么,东、西两点之间的距离是多少米?
解:
甲、丙6分钟相遇的路程(80+40)×6=720(米)
甲、乙相遇的时间为:720÷(60-40)=36(分钟)
东、西两点之间的距离为(80+60)×36=5040(米)
例2:小红和小明在环形跑道上跑步,两人从同一地点同时出发,小红每秒跑3米,小明每秒跑5米,反向而行,60秒后两人相遇,环形跑道长多少米?
仔细读题,发现两人60秒后相遇,又知道两人的速度,再加上是“反向而行”,根据“路程=时间×速度”可求得环形跑道长多少米。
解:(3+5)×60=8×60=480(米)
答:环形跑道长480米。
五、多次相遇追及问题
当时间相同时,路程和速度成正比;
当速度相同时,路程和时间成正比;
当路程相同时,速度和时间成反比。
设甲、乙两个人,所走的路程分别为S1、S2;速度分别为V1、V2;所有时间分别为T1、T2,由于S1=V1×T1,S2=V2×T2
(1)当时间相同时,有S1:S2=V1:V2
(2)当速度相同时,有S1:S2=T1:T2
(3)当路程相同时,有V1:V2=T2:T1
在此问题中,用比例方法来解决问题,会有很好的效果。
六、火车过桥问题
火车过桥是指全车过桥,即从车头上桥到车尾离开,才算全部过桥。
基本数量关系:
过桥的路程=桥长+车长
车速=(桥长+车长)÷过桥时间
过桥时间=(桥长+车长)÷车速
桥长=车速×过桥时间-车长
车长=车速×过桥时间-桥长
七、火车追及问题
从车头追上到车尾离开的时间=(A的车身长度+B的车身长度)÷(A的车速-B的车速)
两车从车头相遇到车尾离开的时间=(A的车身长度+B的车身长度)÷(A 的车速+B的车速)
例1、例一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?
分析列车过桥,就是从车头上桥到车尾离桥止。
车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速。
解:(800+150)÷19=50(秒)
答:全车通过长800米的大桥,需要50秒。
2、一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。
这条隧道长多少米?
分析先求出车长与隧道长的和,然后求出隧道长。
火车从车头进洞到车尾离洞,共走车长+隧道长。
这段路程是以每秒8米的速度行了40秒。
解:
(1)火车40秒所行路程:8×40=320(米)
(2)隧道长度:320-200=120(米)
答:这条隧道长120米。
3、甲火车从后面追上到完全超过乙火车用了110秒,甲火车身长120米,车速是每秒20米,乙火车车速是每秒18米,乙火车身长多少米?
解:(20-18)×110-120=100(米)
4、甲火车从后面追上到完全超过乙火车用了31秒,甲火车身长150米,车速是每秒25米,乙火车身长160米,乙火车车速是每秒多少米?
解:25-(150+160)÷31=15(米)
八、钟面行程问题
在钟面上,各针转动的速度是确定的,分针的速度是时针的12倍
分针的速度是每分钟1格,钟面上一共360度共60格,所以分针的速度是每分钟6度
时间的速度是每分钟1/12格,时针的速度是每分钟0.5度
九、电梯行程问题
顺行速度=正常行走速度+电梯速度
逆行速度=正常行走速度-电梯速度
十、猎狗追兔问题
(1)将两种动物速度单位统一,路程差÷速度=追及时间
(2)将两种动物速度单位统一,由于追及时间相同,速度比=路程比。