合成氨工业-造气
氨合成工艺流程

氨合成工艺流程
《氨合成工艺流程》
氨是一种重要的化工原料,广泛用于生产化肥、氨水、硝化剂等产品。
氨的合成工艺是通过哈伯—博希法进行的,其工艺流程包括合成气的制备、合成氨的反应、氨的提纯与储存等步骤。
首先,合成气的制备是氨合成工艺的第一步。
合成气由一定比例的一氧化碳和氢气组成,通常采用天然气、煤炭或石油等作为原料,经过蒸汽重整和变换反应等工艺,得到高纯度的合成气。
接下来,合成氨的反应是氨合成工艺的核心步骤。
在一定的温度和压力下,将合成气与催化剂进行反应,生成氨气。
该反应通常在高压下进行,反应过程需要严格控制温度、压力和催化剂的选择,以提高反应速率和氨气的产率。
随后,氨的提纯与储存是氨合成工艺的最后步骤。
氨气通过吸附、冷凝和脱水等工艺,去除杂质和水分,获得高纯度的氨气。
氨气通常以液态形式储存,以便于运输和使用。
总的来说,氨合成工艺流程复杂且技术要求高,但是由于氨的重要性,使得这一工艺在化工生产中起到了至关重要的作用。
随着科技的不断发展,氨合成工艺也在不断改进与完善,以提高氨气的产率和质量,减少能耗和气体排放,实现更加环保和可持续的生产。
合成氨生产工艺介绍

1、合成氨生产工艺介绍1)造气工段造气实质上是碳与氧气和蒸汽的反应,主要过程为吹风和制气。
具体分为吹风、上吹、下吹、二次上吹和空气吹净五个阶段。
原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。
所制的半水煤气进入洗涤塔进行除尘降温,最后送入半水煤气气柜。
造气工艺流程示意图2)脱硫工段煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。
气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。
脱硫液再生后循环使用。
脱硫工艺流程图3)变换工段变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。
河南中科化工有限责任公司采用的是中变串低变工艺流程。
经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。
变换工艺流程图4)变换气脱硫与脱碳经变换后,气体中的有机硫转化为H2S,需要进行二次脱硫,使气体中的硫含量在25mg/m3。
脱碳的主要任务是将变换气中的CO2脱除,对气体进行净化,河南中科化工有限责任公司采用变压吸附脱碳工艺。
来自变换工段压力约为1.3MPa左右的变换气,进入水分离器,分离出来的水排到地沟。
变换气进入吸附塔进行吸附,吸附后送往精脱硫工段。
被吸附剂吸附的杂质和少量氢氮气在减压和抽真空的状态下,将从吸附塔下端释放出来,这部分气体称为解析气,解析气分两步减压脱附,其中压力较高的部分在顺放阶段经管道进入气柜回收,低于常压的解吸气经阻火器排入大气。
变换与脱硫工艺流程图5)碳化工段5.1、气体流程来自变换工段的变换气,依次由塔底进入碳化主塔、碳化付塔,变换气中的二氧化碳分别在主塔和付塔内与碳化液和浓氨水进行反应而被吸收。
合成氨生产常用的原料有哪些

1合成氨生产常用的原料有哪些?原料:(包括提供H2的原料和燃料)固体原料:焦碳、煤气体原料:天然气、重油、焦炉气等液体原料:石脑油、重油、原油等常用的原料有:焦碳、煤、天然气、重油2合成氨生产分哪几个基本工序?三个基本工艺步骤是什么/(1)造气:即制备含有氢、氮的原料气(2)净化:不论采用何种原料和何种方法造气,原料气中都含有对合成氨反应过程有害的各种杂质,必须采取适当的方法除去这些杂质。
(3)压缩和合成:将合格的氮、氢混合气压压缩到高压,在铁催化剂的存在下合成氨。
3写出天燃气蒸汽转化法生产合成气的主要反应方程式、工艺条件和工艺流程图,说明天然气蒸汽转化法为何要进行二段转化操作?(1)主反应式:CH4 + H2O(g) = CO + 3H2 206.3KJ/mol (1)CO + H2O(g) = CO2 + H2 -41.2KJ/mol (2)副反应式:CH4 = 2H2 + C2CO = CO2 + CCO + H2 = H2O + C(2)工艺条件:压力3~4 MPa;一段转化反应温度800℃;二段转化反应温度1000℃;水碳比S=3~4;空间速度(根据炉型、分段情况、催化剂的不同以及反应的不同时期来确定)(4)书上18页第一段4干法脱硫与湿法脱硫各有甚么优缺点?干法:优点:既能脱除有机硫,又能脱除无机硫;出口气含S<1×10-6(无加氢)、S<2×10-8(有加氢)。
缺点:脱硫剂再生困难,只可用于脱微量硫。
湿法:优点:液态脱硫剂易于输送,可以再生,能回收硫磺,可用于脱除大量无机硫。
5改良ADA法脱硫由哪几个基本反应过程构成?原理:分为四步:①用pH=8.5~9.2的稀碱溶液吸收H2SNa2CO3 + H2S == NaHS + NaHCO3②硫氢化物被氧化为S2NaHS + 4NaVO3 + H2O == Na2V4O9 + 4NaOH + 2S偏钒酸钠焦性偏钒酸钠(有还原性)以上两步为脱硫,在脱硫塔中进行。
合成氨工业-造气

造气工段3.1双一段甲烷转化天然气中的主要成分是甲烷,其中通常还含有少量C2H6、C3H8、C4H10等烷烃和CO、CO2、H2等组分。
在烃类转化制合成气的各种方法中,蒸汽转化工艺是最重要和最具有代表性的技术,玉龙化工采用的就是这一工艺就行原料气的生产。
在一段蒸汽转化炉中,气态烃中主要组分甲烷进行的主要反应如下:1.CH4+H2O = CO +3H2△H298=206.3 kJ2.CH4+2H2O= CO2+4H2△H298=165.3 kJ3.CO+H2O = CO2+H2△H298=-41.2 kJ4.CO2+CH4 = 2CO+2H2△H298=247.3 kJ在一定条件下,蒸汽转化过程中可能发生析碳反应,它们是蒸汽转化过程中应当重点防止的有害副反应:2CO = CO2+C △H298=-171kJCO+H2 = C+H2O △H298=-122.6kJCH4 = C+2H2△H298=82.4kJ甲烷蒸汽转化反应是强吸热反应,变换反应是中等放热反应,甲烷蒸汽转化总反应是强吸热反应。
二段转化是轻质烃蒸汽转化制氨合成气的第二步,其目的是为了进一步彻底转化一段转化气中残余甲烷,并添加一定量的氮气以满足合成氨所需之氢氮比。
二段转化炉内进行的主要反应如下:H2+O2 = H2O △H298=-241kJCO+O2 = CO2△H298=-283.2kJCH4+O2 = CO+2H2△H298=-35.6kJ在催化剂层进行转化及变换反应:CH4+ H2O = CO+3H2△H298=206.3kJCH4+CO2 = CO+3H2△H298=247.3kJCO+ H2O = CO2+H2△H298=-41.2kJ上诉反应中,氢气与氧气的燃烧反应的速率比其他反应的速率要快1×103~1×104倍,因而在二段炉的顶部空间中主要进行氢与氧的燃烧反应,反应中生成水并放出大量的热。
当混合气到达催化剂层时,几乎所有的氧气均已消耗掉了(氧的反应率达到99%以上)。
以煤为原料制取合成氨造气工段物料

以煤为原料制取合成氨造气工段物料、热量衡算一、已知条件1、计算基准:按照100Kg煤为计算标准。
2、已知条件(1)煤的组成(2)吹风气组成(3)半水煤气组成(4)灰渣组成(5)带出物组成(6)现有生产消耗(7)循环时间(8)各物料进出煤气炉的温度空气:温度2℃吹风气:350℃上行煤气温度:360℃下行煤气温度:160℃灰渣:200℃入炉蒸汽:压力0.05Mpa 温度220℃(9)带出物的百分比:11.6%(10)千立方耗蒸汽790Kg/KM3,千立方耗煤625Kg/KM3,吨氨耗气3700M3,16台煤气炉产气量55000M3/h,每小时蒸汽用量845×55=46475Kg,每台炉每小时蒸汽使用量46475/16=2904.7Kg。
按照上下吹蒸汽手轮开启比例计算上下吹蒸汽用量:V=uA,上吹手轮为下吹手轮的1.8倍,面积是(1.8×1.8)/1=3.24倍,忽略入炉蒸汽压力波动,上吹蒸汽流量为1921.4Kg/h,下吹蒸汽流量为640.5Kg/h.每台里每小时产气量为55000/16=3437M3,使用煤量为3437×625/1000=2148Kg/h,每100Kg煤每小时蒸汽上吹用量为1921.4/2148×100=89.45Kg/h, 每小时蒸汽下吹用量为640.5/2148×100=29.82Kg/h。
二、基本的物料衡算(一)带出物中各组分的含量Kg100×11.6%=11.6其中:C 11.6×62.51%=7.25A 11.6×24.32%=2.82(二)由灰渣平衡计算灰渣质量Kg灰渣质量=(24.32-2.82)/0.8051=26.705其中:C 26.705×24.32%=6.49A 26.705×80.51%=21.5(三)煤种各组分损失带出物及灰渣中的总量Kg其中:C 7.25+6.49=13.74A 2.82+21.5=24.32(四)煤气化后进入煤气中的C元素的量Kg100Kg原料煤,固定碳含量为60.04%,其碳含量为100×60.04%=60.460.4-13.74=46.66三、吹风阶段的计算(一)物料衡算1、每m3吹风气中所含各元素的量KgC=12×(0.094+0.119+0.014)/22.4=0.122N=28×0.735/22.4=0.922、由碳平衡计算吹风气的产量M360.4/0.122=495.083、由氮平衡计算空气用量M3(495.08×0.92)×22.4/(0.79×28)=461M3(二)热量衡算(基准温度为0℃)计算依据根据反应前后碳反应所产生的热量,以及计算出热量的使用地方,如何才能够最大限度利用这部分热量。
氨合成造气碳化操作规程

氨合成造气碳化操作规程第一节碳化工序的任务一是把合成送来的气氨用母液和稀氨水吸收制取合格的浓氨水,二是用制得的浓氨水洗去变换气中的二氧化碳,并把氨水洗去后气体中的氨回收下来,以保证供给合格的原料气;三是制得肥料碳酸氢铵。
第二节基本原理碳化工序包括:碳化、回收清洗、离心分离、吸氨四个过程,其基本原理为:NH3+CO2+H2O=NH4HCO3第三节工艺流程简述一、气体流程来自变换工序含二氧化碳的气体,依次进入碳化主塔和副塔(主、副塔视塔内结巴情况,二塔轮流倒用),鼓泡通过碳化液并进行反应。
反应放出的热量通过水箱冷却水带走。
含二氧化碳 1%左右的气体从副塔顶部出来进入回收清洗塔,继续吸收气体中二氧化碳和氨,使出口气中二氧化碳和氨含量降至正常控制指标内,然后送往压缩工段。
二、液体流程浓氨水由浓氨水贮槽,经过浓氨水泵进入副碳化塔鼓泡,吸收主塔来的气体中二氧化碳,并鼓泡溶解塔内的结巴,然后由塔底部排除,经碳化泵加压进入主塔,吸收变换气中的二氧化碳,生成含晶体50-60%的碳酸氢铵悬浮液,此悬浮液靠压差进入稠厚器,经离心分离后,得到固体碳酸氢铵产品,由底部下料斗卸出,包装后入库。
分离晶体后尚有部分微小晶粒的母液,靠位差流入晶液槽,经晶液泵送到稠厚器进行二次分离,清液去母液槽。
造气送来的脱盐水通过计量进入综合塔上段,清洗回收气体中的氨,回收液进入稀氨槽,稀氨水通过稀氨水泵加压进入综合塔下段,吸收气体中二氧化碳,使二氧化碳含量小于0.2%,回收液到稀氨水槽循环使用和制备浓氨水用。
三、吸氨流程母液、稀氨水、浓氨水由吸氨泵送至强化吸氨器顶部进入中心管,经中心管的小孔向四周喷射,气氨进入吸氨器的圆筒,与吸收液接触而被吸收,吸收氨后的浓氨水经冷却排管冷却后,送入浓氨水槽。
第四节工艺流程方框图一、气相流程二、液相流程三、吸氨流程第五节工艺指标一览表指标名称控制范围指标名称控制范围低变气压力≤0.85MPa气氨压力≤ 0.25 MPa 尾气压力≤0.6MPa浓氨水滴度198-202塔上部温度30-35 ℃稀氨水滴度≥ 125塔中部温度35-45 ℃吸氨排管 tt198-215塔下部温度30-35 ℃浓稀氨水碳化≤80度主塔出口 CO2含 3-8%活性物含量0.1-0.25量副塔出口 CO2含≤1.8%碳铵含水量≤ 5.0%量尾气 CO2含量≤0.2%碳铵含氮量≥ 16.8%尾气氨含量≤0.3%分离器液位1/2-2/3第六节生产操作要点及常见故障处理一、操作控制1、稳定各塔液位,使氨水浓度和碳化度在适宜的范围内。
工业制氨气的方法

工业制氨气的方法
工业合成氨生产工艺基本过程如下:
1.造气
合成氨原料气中的氮气一般来自空气,氢气则需要制备。
制氢的原料有天然气、石脑油、重质油、煤等。
2.脱硫
制氢的原料中,一般含有少量的硫化氢或硫化物,它们会进入原料气中,这些含硫物质,极易使后续阶段使用的催化剂中毒,必须首先将其除去,这个过程称为脱硫。
脱硫主要有物理吸收(用甲醇、聚乙二醇二甲醚作吸收剂)和化学吸收两种,后者常用的有氨水催化法和改良蒽醌二磺酸法等。
3.变换
经脱硫后的原料气中,除氢气外,还含有一定量的一氧化碳。
为提高氢气产量,利用水蒸气和一氧化碳反应,使之转化成氢气,该过程称为变换。
4.精炼
经过上述几个过程得到的氮、氢原料气中还含有少量的一氧化碳和二氧化碳,而合成反应使用的催化剂要求碳的氧化物总量不能大于10ppm,必须进一步脱去;少量水分对催化剂的活性等也有影响,同样要除去。
除去这些微量有害物质的过程,称为精炼。
合成
经过上述处理并经过多级压缩后达到指定高压(一般为32MPa)的氮、氢混合气,送到合成塔中在一定温度(~500℃)范围内,经催化剂(Fe2O3为主体)作用,进行合成反应。
化学人教版选修2导学案:第4课时 合成氨的基本生产过程和合成氨工业的发展

第4课时合成氨的基本生产过程和合成氨工业的发展学案【学习目标】1.了解合成氨生产的一般流程和反应原理、反应条件。
2.了解实验研究与实际生产之间的转化。
3.了解合成氨的发展4.了解合成氨工业的三废处理。
【重点难点】1.合成氨的主要原理、原料、重要设备、流程和意义2.利用所学的化学反应速率和化学平衡理论解释合成氨中的相关问题。
课前预习【情景材料】在让合成氨的工艺走出实验室实验工业化学生产的过程中,德国化学工程师博施作出了重大贡献,他经过大量试验,找到较为理想的铁催化剂,设计并建造了能够耐高温、高压的合成氨装置。
1910年,德国建立了世界上第一座合成氨试验厂,1913年,又建立了生产规模的合成氨厂。
从此以后,合成氨工业便迅速发展起来。
工业上是如何合成氨的?【预习内容】根据教材有关内容填写下列空白:一、合成氨的基本生产过程合成氨的基本生产过程主要包括三个步骤:、、。
1.原料气的制备(1)氮气的制备①物理方法:②化学方法:将空气中的氧气与作用生成,再除去。
(2)氢气的制备①碳与水蒸气的反应,用方程式表示为:。
②水蒸气与碳氢化合物的反应,用方程式表示为:,。
2.原料气的净化(1)含义:原料气的净化是指,目的是。
(2)净化方法①H2S的除去,用方程式表示为:;②CO的除去,用方程式表示为:;③CO2的除去,用方程式表示为:。
3.氨的合成与分离(1)氨的合成:将净化后的原料气加压送进,在适宜条件下充分反应制取氨。
(2)从合成塔出来的混合气体,其中氨气占总体积的15%,要把混合气体通过使氨液化,再导入。
二、合成氨工业的发展1.原料及原料气的净化原料气之一的氮气来自,现在氢气主要通过不同的态可燃物(煤和焦炭)、态可燃物(石油提炼后的石脑油、重油)、态可燃物(天然气、焦炉气)为原料。
2.催化剂的改进多年来一直用 作催化剂,目前有采用 为基础活性物质的新型催化剂。
3.环境保护(l)废渣:可用作 的原料。
(2)废气:主要是 和 等有害气体,对H2S 的处理,先后采用直接 法(选择性催化氧化)、 法(用溶剂吸收浓缩,CO2也可用来生产 和 等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
造气工段3.1双一段甲烷转化天然气中的主要成分是甲烷,其中通常还含有少量C2H6、C3H8、C4H10等烷烃和CO、CO2、H2等组分。
在烃类转化制合成气的各种方法中,蒸汽转化工艺是最重要和最具有代表性的技术,玉龙化工采用的就是这一工艺就行原料气的生产。
在一段蒸汽转化炉中,气态烃中主要组分甲烷进行的主要反应如下:1.CH4+H2O = CO +3H2△H298=206.3 kJ2.CH4+2H2O= CO2+4H2△H298=165.3 kJ3.CO+H2O = CO2+H2△H298=-41.2 kJ4.CO2+CH4 = 2CO+2H2△H298=247.3 kJ在一定条件下,蒸汽转化过程中可能发生析碳反应,它们是蒸汽转化过程中应当重点防止的有害副反应:2CO = CO2+C △H298=-171kJCO+H2 = C+H2O △H298=-122.6kJCH4 = C+2H2△H298=82.4kJ甲烷蒸汽转化反应是强吸热反应,变换反应是中等放热反应,甲烷蒸汽转化总反应是强吸热反应。
二段转化是轻质烃蒸汽转化制氨合成气的第二步,其目的是为了进一步彻底转化一段转化气中残余甲烷,并添加一定量的氮气以满足合成氨所需之氢氮比。
二段转化炉内进行的主要反应如下:H2+O2 = H2O △H298=-241kJCO+O2 = CO2△H298=-283.2kJCH4+O2 = CO+2H2△H298=-35.6kJ在催化剂层进行转化及变换反应:CH4+ H2O = CO+3H2△H298=206.3kJCH4+CO2 = CO+3H2△H298=247.3kJCO+ H2O = CO2+H2△H298=-41.2kJ上诉反应中,氢气与氧气的燃烧反应的速率比其他反应的速率要快1×103~1×104倍,因而在二段炉的顶部空间中主要进行氢与氧的燃烧反应,反应中生成水并放出大量的热。
当混合气到达催化剂层时,几乎所有的氧气均已消耗掉了(氧的反应率达到99%以上)。
可以认为,在二段炉中的催化剂层内进行的反应主要是甲烷蒸汽转化和变换反应,不过实际进行的是变换反应的逆反应。
在催化剂层中进行这些反应并吸热,于是气体温度从顶部空间的1200~1250℃逐渐下降到出口处的约950~1000℃。
二段炉内进行的反应式自热的无需外部供热。
显然,空气添加量是十分重要的——其他条件不变,它将决定提供热量的多少和二段炉出口温度可能达到的值。
当空气配比失调或者混合器结构设计不好或损坏时,会造成炉内空间中气体混合不均匀,二段炉内不可避免的会出现局部过热(局部温度可达1500℃以上),并对催化剂和二段炉有明显的不利影响。
烃类转化反应的催化剂只有在有烃类催化剂存在时,在500~1000℃烃类蒸汽转化反应才能获得满意的反应速度,才能实现工业化生产。
工业催化剂应当拥有较高且较温度的活性、抗毒能力和抗析碳能力强,还原性能好和使用寿命长的特点。
而且二段催化剂上部应当填充一层耐热催化剂。
原料气的脱硫有原料气中带入的硫有有机硫和无机硫(主要是H2S)两类,根据原料气来源的不同,硫化物的含量和种类不同,采用的脱硫方法也不同。
原料气中硫化物的存在,会增加气体对金属的腐蚀,并使催化剂中毒。
此外,硫本身也是一种重要的资源,应当予以回收利用。
采取的脱除方法有很多,大体上可分为湿法和干法两大类。
因为甲烷化等催化剂对原料脱硫要求总硫<0.2mg/m3,只有用干法脱硫才能达到精细脱硫的要求,所以玉龙使用的脱除硫化物的方法是干法脱硫,采用的是氧化锌法和软锰矿法。
这类方法都是直接脱除气体中的硫化物,对H2S的脱除效果很好,但对有机硫的脱除较差。
在原料气中,含有硫醇、硫醚、二氧化硫、羰基硫和噻吩等。
这些有机硫必须经过催化剂产生加氢反应转化成易脱除的无机硫(H2S)才能脱除干净。
加氢转化催化剂主要组成是γ—Al2O3担载NiO,FeO等。
以氧化态提供用户的催化剂就显示转化加氢活性,但经硫化后可具有更佳的活性,其硫化形态是Co 9S 8,MoS 2,NiS ,FeS 等。
氧化锌脱硫剂氧化锌脱硫剂是一种转化吸收型固体脱硫剂,严格说,它不是催化剂而属于净化剂。
它能脱除H 2S 和多种有机硫(噻吩类除外),脱硫的精度一般可达0.3mg/m 3(标)以下,重量硫容量可达10%~25%以上,使用方便,价格较低,在氨厂中广泛使用。
H 2S 与ZnO 反应,可以生成难于离解的ZnS ,故不能再生,一般用于精脱硫过程。
氧化性脱硫剂发生的主要反应:O H ZnS ZnO S H 22+→+O H H C Z n S Z n O SH H C 24252++→+氧化锌脱硫剂主要成分是氧化锌,通常还添加CuO 、MnO 2和MgO 等促进剂,矾土、水泥等粘结剂,以提高其转化能力和强度。
以氧化锌为主体的接触吸收法脱硫剂,可脱除氨厂原料气中无机硫和有机硫。
在有机硫中,与硫醇反应性较好,但对噻吩转化能力较低,因此采用ZnO 脱除硫不能将全部有机硫化物除尽。
铁锰脱硫剂铁锰脱硫剂是以氧化铁和氧化锰为主要组分,并含有氧化锌等促进剂的转化吸收型双功能脱硫剂。
使用前要用H 2气进行还原,Fe 2O 3和MnO 2分别被还原成具有脱硫活性的Fe 3O 4和MnO 。
采用铁锰脱硫催化剂在约340-400℃高温下发生下述反应:RH S H H RSH +→+22O H M n S M n OS H 22+→+ 在铁锰脱硫剂上,RSH ,RSR ,COS 等有机硫化物可进行氢解反应生成H2S ,RSH 和RSR 也可能发生热解反应而生成硫化氢和烯烃,氢解或热解所生成的H2S 可被脱硫剂主要组分吸收。
一氧化碳变换一氧化碳与水蒸气在催化剂上进行变换反应,生成氢气和二氧化碳。
这个过程在1913年用于合成氨工业,以后并用于制氢工业。
合成氨生产过程中,制取氢气,在生产成本中占有很大的比重,因此要尽一切可能设法获得做多的氢气。
同时CO 对氨合成催化剂有严重毒害,也必须除去。
最好的办法是提高CO 变换率。
最近几十年来,各国学者做了不少工作,对催化剂不断改进,到目前为止,可是变化气CO 含量降至0.2%~0.4%。
通过变换工序后将CO 变为H2使产品成本降低,工厂经济效益提高。
一氧化碳变换的基础在合成氨原料气中,一氧化碳和水蒸气变化反应式是个可逆的放热反应。
CO+H2O CO2+H2 △H298=-41.16 kJ/mol这是一个等体积、可逆、放热反应。
降低温度和提高蒸汽浓度均有利于变换反应的进行。
本工序中变采用铁铬系催化剂,还原后具有催化活性的是43O Fe ,低变采用铜锌系催化剂,还原后具有活性的是Cu。
中变温度在360~400C 0,在催化剂的作用下,反应速度很快,中变炉出口CO≤3.0%。
然后通过换热降温到180C 0左右,在低变催化剂的作用下,使工艺气中的CO含量进一步降到≤0.3%,以满足甲烷化对CO含量的要求。
甲烷化工序在合成氨原料气酸性气体脱除以后,还有少量的CO ,CO2,一般情况下CO+CO2<0.7%。
为了保护合成催化剂免受毒害,用甲烷化催化剂是碳氧化合物与氢反应生成甲烷。
这种净化原料气的方法既经济又方便,具有设备小、操作简便、费用低廉等优点,在氨厂较普遍地使用此法。
甲烷化过程可能发生的化学反应 CO+3H2 CH4+H2O CO2+4H2 CH4+2 H2O 2CO+2H2 CH4+CO2 CO+ H2O CO2+H22CO CO2+C反应5是一个有害的积碳反应,会损坏催化剂的活性和强度。
甲烷化反应是强放热反应,在氨厂典型甲烷化反应器操作条件下,每1%CO转化的绝热升温为72℃,每1%CO2转化的绝热温升为60℃。
如果原料气中含有微量氧,其温升要比CO,CO2高很多,每1%O2转化的温升为165℃。
所以工艺气中应严格控制氧的进入,否则要引起反应器严重超温而导致催化剂失活。
甲烷化催化剂主要使用的是以镍为主要活性成分的催化剂,一般以氧化态提供给用户,使用前一般需要预还原催化剂。
镍催化剂能很好的达到氨厂规定的气体净化要求因此得到广泛的使用。
造气工段工艺流程新老站来的原料天然气经天压机加压(≤1.45MPa),其总硫含量 120mg/m3。
原料气先法由于经过压缩机段,气体中带有很多油雾,所以首先要进入除油器除去气体中的油分。
进入转化工段之前,原料气体需要脱硫,为了脱除有机硫,玉龙采用铁锰脱硫催化剂在约340-400℃高温下脱除有机硫。
由于干法脱硫需要在高温下进行,所以原料气先在通过方箱炉对流段预热,充分利用方箱炉尾气的余热。
在铁、锰催化剂的作用下,原料气中大约还剩≤5PPm的硫化氢,之后,原料气进入串联在铁锰脱硫槽(D0103a)后的氧化锌脱硫槽(D0103b),在氧化锌催化剂作用下,H2S基本上被吸收完全,且吸收速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至0.5PPm以下。
脱硫后的原料气通过混预器(C0101),与水蒸气按一定水汽比混合,充分利用二段炉出来的高温转化气中的热能,升温至480℃左右,然后原料气分成两股.占总气量60%的一股经方箱炉对流段尾气加热后竟如方箱炉(B0101)辐射段,进入填充有镍催化剂的炉管,炉管内进行的主要是甲烷蒸汽转化反应,方箱炉一段反应的热量来自于炉管外甲烷的燃烧.另一部分从混预器中出来的40%气体进入转化炉(D0101),进行一段转化,其所需的能量来自二段炉转化气.从双一段转化炉出来的气体,残余甲烷浓度约为8~20%,两个一段转化后的气体进入二段转化炉,在二段炉顶部空气分布器加入预热后的工艺空气(经方箱炉尾气预热后温度在500℃左右)燃烧放热,同时又在二段镍触媒的催化作用下,继续进行剩余甲烷的转化反应,二段炉出口温度在810~900C 0之间,经二段转化后,可使转化气达到下列两项要求: (1)氢氮比(分子比):2.2-2.8 (2)残余甲烷(干基):0.3~0.6%在二段炉内主要是氢气的燃烧放热,炉内除氢以外一氧化碳及甲烷也能燃烧,但H2燃烧反应的速度比其他可燃气体快3-4个数量级,所以在二段炉内催化剂上部的非催化剂空间里,首先是空气中的氧与一段转化气中的氢气进行燃烧,放出大量的热用于一段转化气中的残余甲烷继续转化,经二段转化后残余甲烷≤0.6%。
二段炉转换气温度很高,必须要充分的利用,气体出二段炉后, 出二段炉的工艺气体进入换热式转化炉的管间,为管内的转化反应提供热量,然后进入换转混合气预热器的管间,再经废热锅炉加热由汽包下降管送来的锅炉给水,并产生≤1.58MPa 的中压蒸汽,经汽包送入系统,出废热锅炉的转化气经降温后进入变换工序。
出废热锅炉的转化气温度降至了变换工序里,中变催化剂对温度的要求。